Shared Memory Systems
Part I

Randal E. Bryant
CS 740
Nov. 24, 1997

Topics
 Network-Based Systems
— Coherence based on directories
« Maintaining Consistency
— Relaxed consistency models

Shared Memory Model

Global Memory Space

AN AR

Pl |P||P]| «ec|P

onceptual View
o All processors access single memory
—Physical address space
—Use virtual address mapping to partition among processes
* If one processor updates location, then all will see it
—Memory consistency

Network-Based Realization

emory
o Partitioned Among Processors
etwork Interconnection
 Transmit messages to perform accesses Network
to remote memories
aches M| [M] |M
» Local copies of heavily used data
 Must avoid stale data C C C

—Harder than with bus-based system
— Lots of things happening simultaneously

onsiderations
« Scales well
— 1024 processor systems have been built
 Nonuniform memory access
—100’s of cycles for remote access

Network-Based Cache Coherency

lome-Based Protocol
e Each block has “home”

—Memory controller
tracking its status Block Status Copy Holders

e physical 24| sharea |[o[t]o[]o[1]o[x

« Home maintains 25 IEchusive o|1|o|o|o|o|o|o
—Block status
— Identity of copy holders

1 bit flag / processor
g J'p Block Status Values
—Only need entry when

block has remote copy Shared
— 1 or more remote, read-only copies

e Exclusive

— Single, writeable copy in remote
cache

 Uncached
— No remote copies

Memory Controller 4

26 |uncached|[ofo]o]o]o]o]o]o

Network-Based Consistency
0 Obtain Copy of Block

 Processor sends message to its home
« Home retrieves remote copy if status is exclusive
« Sends copy to requester
» |If exclusive copy requested, send invalidate message to all other
copy holders
ricky Detalls
» Lots of possible sources of deadlock & errors
 Don’t have serialization of events imposed by bus
 Transactions only “seen” by sender & receiver

xample Protocol

« Complete functionality
* Omits optimizations
« Conservative synchronization

Implementation Detalls

e p Processor identifier a Block address d Block data
lessages from Cache to Block Home
Type Contents Purpose
READ p, a Processor p wants to read a
XREAD p, a Processor p wants to write a
WRITEBACK p,a,d Proc. p flushes exclusive block
WRITEHOLD p, a,d Proc. p shares exclusive block
RELEASE p,a Proc. p flushes clean block
lessages from Block Home to Cache
Type Contents Purpose
INVALIDATE p, a Give up clean copy
DATA p,a,d Reply to read / write request
FETCH P, a Get readable copy from remote
XFETCH P, a Get writeable copy from remote

NACK P, a Cannot fulfill request

Tricky Issues

1dependent Actions between Cache & Home
« Cache evicts exclusive block while home in process of fetching
—Home will get WRITEBACK when expecting WRITEHOLD
— Cache will receive FETCH for invalid block
« Cache evicts exclusive block while home in process of xfetching
— Cache will receive XFETCH for invalid block

1dependent Actions between Two Processor Caches

 Processor r attempts read or write while home handling read or writ
request by processor p

—Home sends NACK to processor r

—Processor r retries read or write operation
« Potential for livelock

—Processor r keeps getting NACK’ed

Performing Processor Operations

Processor requests cache to perform load or store
— On word in cache block i
Cache line currently holds block t
— May or may not have i =t
Cache can either:
— Perform operation using local copy
— Issue request message to network (italicized)
» Wait for response (bold)
» Perhaps stall until completed

Cache
Block =i Status Tag Data
Data =
H
°rocessor .
Read / Write
> -
Done / Stall Reponse
-

- 8- CS 740 F'97

Cache Handling of Processor Read

Read
Pending

Read Miss
RELEASE(p,t)

Read Miss

1,d
READ(p) DATA(p,i,d)

Read Miss

WRITEBACK(p,t,d) Read Hit

Exclusive

| Requested Block Read Hit

t Current Block

Processing by Home

lome Memory Controller
* Receives requests from caches
—To handle processor reads & writes
— Unsolicited evictions
Sends commands to copy holders
Determines when all outstanding copies invalidated
Responds to requestor
Send NACK if unable to satisfy request

Memory Controller

Block Status Copy Holders ommand

24| shared |[of1]o]1|o]1]o]1

25 |Exclusive||o[1]ofo]o]o]o]o Request

or
Reply

26 |uncached||ofo]ofo]o]o]o]o

—10 - CS 740 F'97

Home Handling of Processor Read

Gncachea

READ(r,1) READ(p,i)
NACK(r,i) WRITEHOLD(q,i,d) DATA(p,i,d)
DATA(p,i,d) S+=p
XREAD(ri) Read }—=—=P
NACK(r,1) Pending _‘ C
WRITEBACK(q,i,d)
DATA(p,i,d)
S+=p READ(p,i)
READ(p,i) —=(DATA(p,i,d)
FETCH(q,i) S+=p
Unsolicited
eviction
p Requesting Processor S Set of copy holders
g Copy-holding Processor += Add to set

r Competing Processor(s) —= Remove from set

Cache Handling of Processor Write

Write Miss
RELEASE(p,t)

NACK(p,i)

Write
Pending

Write Miss
XREAD(p,i)

e Miss _
ITEBACK(p,t,d) DATA(p.i,d)
Exclusive
| Requested Block Write Hit

t Current Block

Home Handling of Processor Write

READ(,
NACK (r

XREAD(

RELEASE(q,i)
S—=¢

Uncached

NACK(r
XREAD(p,i) S nonempty
DATA(p,i,d) S empty XREAD(p,i)
S+=p DATA(p,i,d) Forall qin S:
S+=p INVALIDAT
> U
Exclusive
. WRITEBACK(q,i,d)
XREAD(p,1) DATA(p,i,d) S Set of copy holders
XFETCH(q,i) S_=q += Add to set
Dirty \S+=p —= Remove from set

Write
Pending

EAD(r,)
ACK(r,i)
XREAD(r,)
NACK (r,i)

p Requesting Processor
g Copy-holding Processor
r Competing Processor(s)

Network Monitoring by Cache

Cache receives commands from network

— Unlike snooping, only get messages regarding
currently-held blocks

Possible actions
— Invalidate entry and release copy
— Allow sharing of exclusively-held block
— Surrender copy of block

Cache
| Status Tag Data Reply
=
H
°rocessor
= -

Command

-

- 14 - CS 740 F'97

ache Handling of Network Commanc

Blocks that have already
been written back or released

INVALIDATE(p,t) -
XFETCH(p,t)

INVALIDATE(p,t)

RELEASE(p,t)
» 0

XFETCH(p,t) FETCH(p,t)
WRITEBACK(p,t,d) WRITEHOLD(p,t,d)

Exclusive

t Current Block

Home Handling of
Unsolicited Evictions

RELEASE(q,i)

S empt ==
mpty
Gncache@‘—u_ H]
S nonempty

WRITEBACK(q,i,d)

S—=¢

S Set of copy holders
+= Add to set
—= Remove from set

g Copy-Holding Processor

Additional Optimizations

)ata Forwarding
 Copy holding processor sends data directly to requestor
— But still must synchronize with home
e Currently pass through home

)uick Acknowledgement

e Supply data to requestor before all outstanding copies invalidated
— Copy holders may continue reading stale data

rocessor wants to write to currently-held clean block

o Currently treat as write miss

—Home will invalidate held copy
 Request home to invalidate all other copies
 May want quick acknowledgement

— Implications examined in Asst. 6, Part I

Memory Consistency Revisited

lew By Individual Processor

 Reads and writes to given address
occur in program order

— Guaranteed by hazard-preventing
mechanisms of processor

equential Consistency

 Reads & Writes by processor to
distinct address

* Overall effect should match that of
some interleaving of the individual
process steps

Vhen is a Write “Performed”

« When any later read by any
processor “sees” new data

» All outstanding copies invalidated

Initially: x =y =0
Process A

al: x =1

az2:if (y == 0)
Process B

bl: y =1

b2: if (x == 0)

Sequential Inconsistency

e Cannot have both tests yield T

—b2 must precede al
—a2 must precede bl w

-»

— Cannot satisfy these plus

program order constraints . - @

eal Life Scenario

Network

_>
<—y

e Process A
— Remote write X x=1
» Put into write buffer

I
[EEY

—Local read y

* Process B Pa Ppb
—Remote write y

» Put into write buffer
—Local read x y

 Could have both reads yield 0

Sources of Sequential Inconsistency

rocessor Write Buffer
» Allows processor to continue without waiting for write to complete
-W -/[->R
» write may not complete before later read initiated
o If > 1 entry, also allows multiple outstanding writes
-W -[->W
» Wwrites may not complete in order
lonblocking Read
 Processor doesn’t stall waiting for read to return result
-R-/->W
e If >1 entry load buffer, also allows multiple outstanding reads
—-R-/[->R
ast Acknowledgements in Network-Based Protocol
 Respond to XREAD request before all outstanding copies invalidate

mportant Mechanisms for Tolerating Memory Latency

Relaxed Consistency Models

>0als
 Enable latency tolerating mechanisms as much as possible

 Provide concurrent programmer with some mechanisms for prograr
synchronization

xamples
 Discussed in H&P Section 8.6

supporting Program Synchronizatiol

. : Process
ypical Scenario
 Processes need access to shared *
resources Local
— Tables, shared program state Computation
» Use software locks to prevent
simultaneous access +
— Shared variables + Obtain Lock
synchronization conventions +
rocessor Requirement
« Use acquire primitives to obtain Critical
lock Section
—E.g., MIPS LL/SC *
 Read & write shared data only in
critical section Release Lock
» Use release primitives to release

lock
— Syncronized store

Release Consistency

« Weakest model discussed in
book

o Still allows effective
synchronization

eguirements

 Acquire operation must complete
before any succeeding reads or
writes

— Don't enter critical section too
early

* Release operation may not begin

until all pending reads & writes
completed

—Don’t read or write shared state
once lock released

Obtain Lock

Y

Critical
Section

Y

Release Lock

R, W

Memory Consistency in CILK

)AG Consistency

* View control structure as directed acyclic
graph

— Series-parallel structure formed by spawn’s ‘
& synch’s Spawn

 Guarantee sequential consistency for reads
& writes along any path

— But no guarantees for potentially concurrent

threads Synch
nplications -
* Deterministic outcome as long as no S ‘
:) ynch oo
interference among potentially concurrent N
threads Potentia
—write-read or write-write concurre

 Good enough for writing parallel
applications

— Usually want deterministic results
* Not adequate for supporting OS functions

Implementing DAG Consistency

« DAG dependency between threads | & |
on separate processors p & q

* Processor p writes back any dirty blocks
before passing control from thread i

—Home copies of all data produced up
through i valid

* Processor g flushes all blocks before
executing thread |j

— All thread data by j and successors will
be retrieved from homes
omparison to Other Protocols

 No need to forcibly retrieve data from
processor

 Well suited to software implementation

Processor p

Processor

