
Shared Memory Systems
Part II

Randal E. Bryant
CS 740

Nov. 24, 1997

Topics
• Network-Based Systems

– Coherence based on directories
• Maintaining Consistency

– Relaxed consistency models

CS 740 F’97– 2 –

Shared Memory Model

Conceptual View
• All processors access single memory

– Physical address space
– Use virtual address mapping to partition among processes

• If one processor updates location, then all will see it
– Memory consistency

P P P P• • •

Global Memory Space

CS 740 F’97– 3 –

Network-Based Realization

Memory
• Partitioned Among Processors

Network
• Transmit messages to perform accesses

to remote memories

Caches
• Local copies of heavily used data
• Must avoid stale data

– Harder than with bus-based system
– Lots of things happening simultaneously

Considerations
• Scales well

– 1024 processor systems have been built
• Nonuniform memory access

– 100’s of cycles for remote access

P P P P• • •

Interconnection
Network

C C C C

M M M M

CS 740 F’97– 4 –

Network-Based Cache Coherency
Home-Based Protocol

• Each block has “home”
– Memory controller

tracking its status
– Based on physical

address
• Home maintains

– Block status
– Identity of copy holders

» 1 bit flag / processor
– Only need entry when

block has remote copy

Memory Controller 4

0 1 0 1 0 1 0 1shared

Status Copy HoldersBlock

24

0 1 0 0 0 0 0 0Exclusive25

0 0 0 0 0 0 0 0uncached26

Block Status Values
• Shared

– 1 or more remote, read-only copies
• Exclusive

– Single, writeable copy in remote
cache

• Uncached
– No remote copies

CS 740 F’97– 5 –

Network-Based Consistency
To Obtain Copy of Block

• Processor sends message to its home
• Home retrieves remote copy if status is exclusive
• Sends copy to requester
• If exclusive copy requested, send invalidate message to all other

copy holders

Tricky Details
• Lots of possible sources of deadlock & errors
• Don’t have serialization of events imposed by bus
• Transactions only “seen” by sender & receiver

Example Protocol
• Complete functionality
• Omits optimizations
• Conservative synchronization

CS 740 F’97– 6 –

Implementation Details
• p Processor identifier a Block address d Block data

Messages from Cache to Block Home
Type Contents Purpose

READ p, a Processor p wants to read a
XREAD p, a Processor p wants to write a
WRITEBACK p, a, d Proc. p flushes exclusive block
WRITEHOLD p, a, d Proc. p shares exclusive block

RELEASE p, a Proc. p flushes clean block

Messages from Block Home to Cache
Type Contents Purpose

INVALIDATE p, a Give up clean copy
DATA p, a, d Reply to read / write request
FETCH p, a Get readable copy from remote
XFETCH p, a Get writeable copy from remote
NACK p, a Cannot fulfill request

CS 740 F’97– 7 –

Tricky Issues
Independent Actions between Cache & Home

• Cache evicts exclusive block while home in process of fetching
– Home will get WRITEBACK when expecting WRITEHOLD
– Cache will receive FETCH for invalid block

• Cache evicts exclusive block while home in process of xfetching
– Cache will receive XFETCH for invalid block

Independent Actions between Two Processor Caches
• Processor r attempts read or write while home handling read or write

request by processor p
– Home sends NACK to processor r
– Processor r retries read or write operation

• Potential for livelock
– Processor r keeps getting NACK’ed

CS 740 F’97– 8 –

Performing Processor Operations
• Processor requests cache to perform load or store

– On word in cache block i
• Cache line currently holds block t

– May or may not have i = t
• Cache can either:

– Perform operation using local copy
– Issue request message to network (italicized)

» Wait for response (bold)
» Perhaps stall until completed

Processor

Cache

clean t

Status Tag DataBlock = i

Data

Read / Write

Done / Stall

Request

Reponse

Network

CS 740 F’97– 9 –

Cache Handling of Processor Read

Invalid Shared

Exclusive

i Requested Block
t Current Block

Read
Pending

Read Hit

Read Hit

Read Miss
READ(p,i)

Read Miss
RELEASE(p,t)

DATA(p,i,d)

Read Miss
WRITEBACK(p,t,d)

NACK(p,i)

CS 740 F’97– 10 –

Processing by Home
Home Memory Controller

• Receives requests from caches
– To handle processor reads & writes
– Unsolicited evictions

• Sends commands to copy holders
• Determines when all outstanding copies invalidated
• Responds to requestor

• Send NACK if unable to satisfy request

Memory Controller

0 1 0 1 0 1 0 1shared

Status Copy HoldersBlock

24

0 1 0 0 0 0 0 0Exclusive25

0 0 0 0 0 0 0 0uncached26

Request
or

Reply

Command

Network

CS 740 F’97– 11 –

Home Handling of Processor Read
Uncached

Shared

Exclusive

p Requesting Processor
q Copy-holding Processor
r Competing Processor(s)

Read
Pending

READ(p,i)
DATA(p,i,d)
S += p

READ(p,i)
FETCH(q,i)

S Set of copy holders
+= Add to set
–= Remove from set

READ(p,i)
DATA(p,i,d)
S += p

WRITEHOLD(q,i,d)
DATA(p,i,d)
S += p

WRITEBACK(q,i,d)
DATA(p,i,d)
S += p
S –= q

READ(r,i)
NACK(r,i)

XREAD(r,i)
NACK(r,i)

Unsolicited
eviction

CS 740 F’97– 12 –

Cache Handling of Processor Write

Invalid

Shared

Exclusive

i Requested Block
t Current Block

Write
Pending

Write Miss
RELEASE(p,t)

Write Miss
WRITEBACK(p,t,d)

Write Hit

Write Miss
XREAD(p,i)

DATA(p,i,d)

NACK(p,i)

CS 740 F’97– 13 –

Home Handling of Processor Write

Shared
Exclusive

Clean
Write

Pending
XREAD(p,i)
DATA(p,i,d)
S += p

p Requesting Processor
q Copy-holding Processor(s)
r Competing Processor(s)

S Set of copy holders
+= Add to set
–= Remove from set

Uncached

Dirty
Write

Pending

XREAD(p,i)
Forall q in S:

INVALIDATE(q,i)

RELEASE(q,i)
S –= q

S nonempty

S empty
DATA(p,i,d)
S += p

XREAD(p,i)
XFETCH(q,i)

WRITEBACK(q,i,d)
DATA(p,i,d)
S –= q
S += p

READ(r,i)
NACK(r,i)

XREAD(r,i)
NACK(r,i)

READ(r,i)
NACK(r,i)
XREAD(r,i)
NACK(r,i)

CS 740 F’97– 14 –

Network Monitoring by Cache

• Cache receives commands from network
– Unlike snooping, only get messages regarding

currently-held blocks

• Possible actions
– Invalidate entry and release copy
– Allow sharing of exclusively-held block
– Surrender copy of block

Processor

Cache

clean t

Status Tag Data
Reply

Command

Network

CS 740 F’97– 15 –

Cache Handling of Network Commands

Invalid Shared

Exclusive

t Current Block

INVALIDATE(p,t)
RELEASE(p,t)

FETCH(p,t)
WRITEHOLD(p,t,d)

XFETCH(p,t)
WRITEBACK(p,t,d)

INVALIDATE(p,t)
XFETCH(p,t)

Blocks that have already
been written back or released

CS 740 F’97– 16 –

Home Handling of
Unsolicited Evictions

Exclusive

RELEASE(q,i)
S –= q

WRITEBACK(q,i,d)
S –= q

q Copy-Holding Processor

S Set of copy holders
+= Add to set
–= Remove from set

Uncached Shared

S nonempty

S empty

CS 740 F’97– 17 –

Additional Optimizations
Data Forwarding

• Copy holding processor sends data directly to requestor
– But still must synchronize with home

• Currently pass through home

Quick Acknowledgement
• Supply data to requestor before all outstanding copies invalidated

– Copy holders may continue reading stale data

Processor wants to write to currently-held clean block
• Currently treat as write miss

– Home will invalidate held copy
• Request home to invalidate all other copies
• May want quick acknowledgement

– Implications examined in Asst. 6, Part II

CS 740 F’97– 18 –

Memory Consistency Revisited

View By Individual Processor
• Reads and writes to given address

occur in program order
– Guaranteed by hazard-preventing

mechanisms of processor

Sequential Consistency
• Reads & Writes by processor to

distinct address
• Overall effect should match that of

some interleaving of the individual
process steps

When is a Write “Performed”
• When any later read by any

processor “sees” new data
• All outstanding copies invalidated

Process A

a1: x = 1

a2: if (y == 0) …

Process B

b1: y = 1

b2: if (x == 0) …

Initially: x = y = 0

CS 740 F’97– 19 –

Sequential Inconsistency
• Cannot have both tests yield T

– b2 must precede a1
– a2 must precede b1
– Cannot satisfy these plus

program order constraints

Real Life Scenario
• Process A

– Remote write x
» Put into write buffer

– Local read y
• Process B

– Remote write y
» Put into write buffer

– Local read x
• Could have both reads yield 0

b1

b2

a1

a2

Pa Pb

0
y x

0

Network
x = 1

y = 1

CS 740 F’97– 20 –

Sources of Sequential Inconsistency
Processor Write Buffer

• Allows processor to continue without waiting for write to complete
– W -/-> R

» write may not complete before later read initiated
• If > 1 entry, also allows multiple outstanding writes

– W -/-> W
» writes may not complete in order

Nonblocking Read
• Processor doesn’t stall waiting for read to return result

– R -/-> W
• If > 1 entry load buffer, also allows multiple outstanding reads

– R -/-> R

Fast Acknowledgements in Network-Based Protocol
• Respond to XREAD request before all outstanding copies invalidated

Important Mechanisms for Tolerating Memory Latency

CS 740 F’97– 21 –

Relaxed Consistency Models
Goals

• Enable latency tolerating mechanisms as much as possible
• Provide concurrent programmer with some mechanisms for program

synchronization

Examples
• Discussed in H&P Section 8.6

CS 740 F’97– 22 –

Supporting Program Synchronization
Typical Scenario

• Processes need access to shared
resources
– Tables, shared program state

• Use software locks to prevent
simultaneous access
– Shared variables +

synchronization conventions

Processor Requirement
• Use acquire primitives to obtain

lock
– E.g., MIPS LL/SC

• Read & write shared data only in
critical section

• Use release primitives to release
lock
– Syncronized store

Local
Computation

Obtain Lock

Critical
Section

Release Lock

Process

CS 740 F’97– 23 –

Release Consistency
• Weakest model discussed in

book
• Still allows effective

synchronization

Requirements
• Acquire operation must complete

before any succeeding reads or
writes
– Don’t enter critical section too

early
• Release operation may not begin

until all pending reads & writes
completed
– Don’t read or write shared state

once lock released

Obtain Lock

Critical
Section

Release Lock

SA

SR

R, W

CS 740 F’97– 24 –

Memory Consistency in CILK
DAG Consistency

• View control structure as directed acyclic
graph
– Series-parallel structure formed by spawn’s

& synch’s
• Guarantee sequential consistency for reads

& writes along any path
– But no guarantees for potentially concurrent

threads

Implications
• Deterministic outcome as long as no

interference among potentially concurrent
threads
– write-read or write-write

• Good enough for writing parallel
applications
– Usually want deterministic results

• Not adequate for supporting OS functions

Spawn

Synch

Synch

Potentially
concurrent

CS 740 F’97– 25 –

Implementing DAG Consistency
• DAG dependency between threads i & j

on separate processors p & q
• Processor p writes back any dirty blocks

before passing control from thread i
– Home copies of all data produced up

through i valid
• Processor q flushes all blocks before

executing thread j
– All thread data by j and successors will

be retrieved from homes

Comparison to Other Protocols
• No need to forcibly retrieve data from

processor
• Well suited to software implementation

j

Processor p

Processor q

i

