
High Performance Processors
 CS 740

Sept. 29, 1997

Multicycle Instructions
• Integer multiplication / division
• Floating Point

Overview of Processor Classes
• Intel Microprocessor Progression

CS 740 F’97– 2 –

Multicycle instructions

MIPS R3000 Execution Times
• Measured in clock cycles

Operation Integer Single Double
add / sub 1 2 2

multiply ~12 4 5
divide ~35 12 19

H&P Dynamic Instruction Counts
Operation Int. Benchmark FP Benchmark

Integer FP

add / sub 14% 11% 14%

multiply < 0.1% < 0.1% 13%
divide < 0.1% < 0.1% 1%

CS 740 F’97– 3 –

MIPS Integer Hardware (Guess)

Extra Logic for EX Stage
• HI, LO registers
• Sequential multiplier / divider

– 3 bits / iteration for multiply
– 1 bit / iteration for division

Mult / Div Instruction
• Stall while Busy

– Only 1 mult / div operation at a
time

• Load operands in unit
– Usual bypass paths

Mfhi / Mflo Instruction
• Stall while Busy
• Register becomes EX output

Integer
Mult / Div

HI LO

ALU

mult
div mfhi

mflo

Busy

To Stall Control

CS 740 F’97– 4 –

Multiply Timing Example

IF ID EX M WBli $2, 3

IF ID EX M WBli $3, 7

mult $2, $3 IF ID EX M WB

addu $2, $2, $3 IF ID EX M WB

mflo $4 EX M WB

addu $2, $2, $4 ID EX M WB

(Not to scale)

Stall while Busy

IF ID

IF

• • •

• • •

CS 740 F’97– 5 –

MIPS Floating Point Hardware

Independent Hardware Units
• Can concurrently execute add, divide, multiply
• Except that all share exponent and rounding units
• Independent of integer operations

Mantissa
Divider

Mantissa
Multiplier

E
x
p

R
o
u
n
d

divide

add

mult

From FP
Registers

To FP
Registers

Alignment &
Exponent

Computation

Bypass Paths

CS 740 F’97– 6 –

Control Logic

Busy Flags
• One per hardware unit
• One per FP register

– Destination of currently executing operation

Stall Instruction in ID if:
• Needs unit that is not available
• Source register busy

– Avoids RAW (Read-After-Write) hazard
• Destination register busy

– Avoids WAW hazard
mul.d $f4, $f0, $f2

add.d $f4, $f0, $f2

Bypass paths
• Similar to those in integer pipeline

EX
EX WB

WB
M

M

CS 740 F’97– 7 –

FP Timing Example

IF ID EX M WBadd.d $f0, $f2, $f4

IF ID EX M WBmul.d $f6, $f0, $f2

add.d $f8, $f0, $f2

add.d $f6, $f0, $f2 • • •

• • •IF ID EX M WB

IF ID EX

• • •
RAW Stall

Structural Stall

WAW Stall

CS 740 F’97– 8 –

MIPS Wrap-Up

MIPS Pipeline Characteristics
• In-order issue

– Instructions fetched and decoded in program order
• Out-of-order completion

– Slow instructions may complete after ones that are later in program
order

Performance Opportunities
• Compiler optimizations to expose potential parallelism
• Schedule code to use multiple functional units

– Must understand idiosyncracies of pipeline structure

CS 740 F’97– 9 –

Intel x86 Processors

Processor Year Transistors MHz Spec92 (Int/FP) Spec95 (Int/FP)
8086 ‘78 29K 4

Basis of IBM PC & PC-XT

i286 ‘83 134K 8
Basis of IBM PC-AT

i386 ‘86 275K 16
‘88 33 6 / 3

i486 ‘89 1.2M 20
50 28 / 13

Pentium ‘93 3.1M 66 78 / 64
150 181 / 125 4.3 / 3.0

PentiumPro ‘95 5.5M 150 245 / 220 6.1 / 4.8
200 320 / 283 8.2 / 6.0

Pentium II ‘97 7.5M 300 11.6 / 6.8
P7 (Merced) ‘98? 14M ? ? ?

CS 740 F’97– 10 –

Other Processors

Processor Year Transistors MHz Spec92 Spec95
MIPS R3000 ‘88 25 16.1 / 21.7

(DecStation 5000/120)
MIPS R5000 3.6M 180 4.1 / 4.4

(Wean Hall SGIs)
MIPS R10000 ‘95 5.9M 200 300 / 600 10.7 / 17.4

(Most Advanced MIPS)
Alpha 21164a ‘96 9.3M 417 500 / 750 11 / 17

600 18.4 / 21.3
(Fastest Available)

Alpha 21264 ‘97 15M 500 30 / 60
(Fastest Announced)

CS 740 F’97– 11 –

Architectural Performance

Metric
• SpecX92/Mhz: Normalizes with respect to clock speed
• But … one measure of good arch. is how fast can run clock

Sampling
Processor MHz SpecInt92 IntAP SpecFP92 FltAP

i386/387 33 6 0.2 3 0.1
i486DX 50 28 0.6 13 0.3
Pentium 150 181 1.2 125 0.8
PentiumPro 200 320 1.6 283 1.4
MIPS R3000A 25 16.1 0.6 21.7 0.9
MIPS R10000 200 300 1.5 600 3.0
Alpha 21164a 417 500 1.2 750 1.8

CS 740 F’97– 12 –

x86 ISA Characteristics

Multiple Data Sizes and Addressing Methods
• Recent generations optimized for 32-bit mode

Limited Number of Registers
• Stack-oriented procedure call and FP instructions
• Programs reference memory heavily (41%)

Variable Length Instructions
• First few bytes describe operation and operands
• Remaining ones give immediate data & address displacements
• Average is 2.5 bytes

CS 740 F’97– 13 –

i486 Pipeline

Fetch
• Load 16-bytes of instruction into prefetch buffer

Decode1
• Determine instruction length, instruction type

Decode2
• Compute memory address
• Generate immediate operands

Execute
• Register Read
• ALU operation
• Memory read/write

Write-Back
• Update register file

CS 740 F’97– 14 –

486 Pipeline Stage Details

Fetch
• Moves 16 bytes of instruction stream into code queue
• Not required every time

– About 5 instructions fetched at once
– Only useful if don’t branch

• Avoids need for separate instruction cache

D1
• Determine total instruction length

– Signals code queue aligner where next instruction begins
• May require two cycles

– When multiple operands must be decoded
– About 6% of “typical” DOS program

CS 740 F’97– 15 –

486 Stage Details (Cont.)

D2
• Extract memory displacements and immediate operands
• Compute memory addresses

– Add base register, and possibly scaled index register
• May require two cycles

– If index register involved, or both address & immediate operand
– Approx. 5% of executed instructions

EX
• Read register operands
• Compute ALU function
• Read or write memory (data cache)

WB
• Update register result

CS 740 F’97– 16 –

486 Data Hazards

Data Hazards
Generated Used Handling
ALU ALU EX–EX Forwarding
Load ALU EX–EX Forwarding
ALU Store EX–EX Forwarding
ALU Eff. Address (Stall) + EX–ID2 Forwarding

CS 740 F’97– 17 –

486 Control Hazards

Jump Instruction Processsing
• Continue pipeline assuming branch not taken
• Resolve branch condition in EX stage
• Also speculatively fetch at target during EX stage

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

CS 740 F’97– 18 –

486 Control Hazards (Cont.)

Branch taken
• Flush instructions in pipe
• Begin ID1 at target.
• Total of 3 cycles for instruction

Branch Not Taken
• Allow pipeline to continue.
• Total of 1 cycle for instruction

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

EX

ID2

(Flushed)

Jump +3 ID1

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

(Flushed)

ID1

(Flushed)

CS 740 F’97– 19 –

Comparison to MIPS

Two Decoding Stages
• Harder to decode CISC instructions
• Effective address calculation in D2

Multicycle Decoding Stages
• For more difficult decodings

• Stalls incoming instructions

Combined Mem/EX Stage
• Avoids load stall without load delay slot

– But introduces stall for address computation

Poorer Branch Performance
• Can’t make use of a delay slot
• Asymmetric performance

CS 740 F’97– 20 –

Pentium Block Diagram

(Microcprocessor Report 10/28/92)

Memory
Data
Bus

CS 740 F’97– 21 –

Pentium Pipeline

Fetch & Align Instruction

Decode Instr.
Generate Control Word

Decode Control Word
Generate Memory Address

Access data cache or
calculate ALU result

Write register result

Decode Control Word
Generate Memory Address

Access data cache or
calculate ALU result

Write register result

U-Pipe V-Pipe

CS 740 F’97– 22 –

Superscalar Execution

Can Execute Instructions I1 & I2 in Parallel if:
• Both are “simple” instructions

– Don’t require microcode sequencing
– Some operations require U-pipe resources
– 90% of SpecInt instructions

• I1 is not a jump
• Destination of I1 not source of I2

– But can handle I1 setting CC and I2 being cond. jump
• Destination of I1 not destination of I2

If Conditions Don’t Hold
• Issue I1 to U Pipe
• I2 issued on next cycle

– Possibly paired with following instruction

CS 740 F’97– 23 –

Branch Prediction

Branch Target Buffer
• Stores information about previously executed branches

– Indexed by instruction address
– Specifies branch destination + whether or not taken

• 256 entries

Branch Processing
• Look for instruction in BTB
• If found, start fetching at destination
• Branch condition resolved early in WB

– If prediction correct, no branch penalty
– If prediction incorrect, lose ~3 cycles

» Which corresponds to > 3 instructions
• Update BTB

CS 740 F’97– 24 –

Superscalar Terminology

Basic
Superscalar Able to issue > 1 instruction / cycle
Superpipelined Deep, but not superscalar pipeline.

E.g., MIPS R5000 has 8 stages
Branch predication Logic to guess whether or not branch will be taken,

and possibly branch target

Advanced
Out-of-order Able to issue instructions out of program order
Speculation Execute instructions beyond branch points, possibly

nullifying later
Register renaming Able to dynamically assign physical registers to

instructions
Retire unit Logic to keep track of instructions as they complete.

CS 740 F’97– 25 –

Superscalar Execution Example

Assumptions
• Single FP adder takes 2 cycles
• Single FP multipler takes 5 cycles
• Can issue add & multiply

together

• Must issue in-order

v: add.d $f10, $f2, $f4

w: mul.d $f10, $f10, $f6

x: add.d $f12, $f10, $f8

y: add.d $f4, $f4, $f6

z: add.d $f10, $f4, $f8

v

w

x

y

(Single adder, data dependence)
(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =

9 cycles

+

w

z

$f12

z

CS 740 F’97– 26 –

Adding Advanced Features

Out Of Order Issue
• Can start y as soon as adder available
• Must hold back z until $f10 not busy & adder available (WAR Hazard)

With Register Renaming

v: add.d $f10, $f2, $f4

w: mul.d $f10, $f10, $f6

x: add.d $f12, $f10, $f8

y: add.d $f4, $f4, $f6

z: add.d $f10, $f4, $f8

v

w

x

y
z

v: add.d $f10a, $f2, $f4

w: mul.d $f10a, $f10a, $f6

x: add.d $f12, $f10a, $f8

y: add.d $f4, $f4, $f6

z: add.d $f10, $f4, $f8

v

w

x

y

z

CS 740 F’97– 27 –

Pentium Pro (P6)

History
• Announced in Feb. ‘95
• Delivering in high end machines now

Features
• Dynamically translates instructions to more regular format

– Very wide RISC instructions
• Executes operations in parallel

– Up to 5 at once
• Very deep pipeline

– 12–18 cycle latency

PentiumPro Block Diagram

– ## –

Microprocessor Report
2/16/95

CS 740 F’97– 29 –

PentiumPro Operation

Translates instructions dynamically into “Uops”
• 118 bits wide
• Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
• Uop executed when

– Operands available
– Functional unit available

• Execution controlled by “Reservation Stations”
– Keeps track of data dependencies between uops
– Allocates resources

CS 740 F’97– 30 –

Branch Prediction

Critical to Performance
• 11–15 cycle penalty for misprediction

Branch Target Buffer
• 512 entries
• 4 bits of history

• Adaptive algorithm
– Can recognize repeated patterns, e.g., alternating taken–not taken

Handling BTB misses
• Detect in cycle 6
• Predict taken for negative offset, not taken for positive

– Loops vs. conditionals

CS 740 F’97– 31 –

Processor Comparisons

Microprocessor Report 12/30/96

CS 740 F’97– 32 –

Challenges for Processor Design

Diminishing Returns on Cost vs. Performance
• Superscalar processors require instruction level parallelism
• Many programs limited by sequential dependencies

Getting Design Correct Difficult
• Verfication team larger than design team

• Devise tests for interactions between concurrent instructions
– May be 80 executing at once

Instruction Sets Get in the Way (especially x86)
• Not enough registers
• Too many memory references
• (Apparently) Intel is going to new instruction set for Merced

– IA-64, joint with HP
– Will dynamically translate existing x86 binaries

