CS 740, Fall 1997
Assignment 2:
Handling Pipeline Hazards

Assigned: Wed., Sept. 24
Due: Mon., Oct. 6

1. Policy

You may work in a group of up to 3 people in solving the problems for this assignment. You should turn in
a single report for your entire group, identifying all of the group members.

2. Logistics

Any clarifications and revisions to the assignment will be posted on the class bboard and Web page.
For this assignment, you will want to retrieve the file:

/afs/cs.cmu.edu/academic/class/15740-f97/public/asst/asst2/files.tar

You will hand in a hard copy document for this assignment. You should also provide us with a version of
your code filestages.c . Do this by naming your filéast-stages.c , wherelastis the last name of one
of your group members, and copying this file to the directory

/afs/cs.cmu.edu/academic/class/15740-f97/public/asst/asst2/handin

Include as comments near the beginning of this file the identities of all members of your group.
Formatted text is preferred to hand written.

3. Introduction

The purpose of this assignment is to gain a deeper understanding of how pipelined processors are imple-
mented. Our method of doing this will be to create a C program that “simulates” pMIPS, a pipelined
implementation of a subset of the MIPS architecture. Although C is not an ideal language for describing
and simulating hardware designs, one can get a high level view of how the hardware operates by using an
appropriate coding style.

You can pick up the entire set of files by copying and untarring thdfifds.tar . The source files
include the following:

mips.h Macros defining the pMIPS instruction format. These are generally consistent with the MIPS
architecture.

sim.h , sim.c Simulator framework.

stages.h , stages.c A partial implementation of the pipeline stages. You will need to fix and extend
the code in the filstages.c

In addition, there are some files containing utility routines for the simulator, user interface code, plus
subdirectoriesests , demos, andexc containing some sample machine programs.

The code can be compiled to generate two different user interfaces:

mips _tty A batch-oriented interface that prints all kinds of trace information out as it executes.

mips _tk A graphic-user interface based on Tcl/Tk that lets you watch and control the simulator execution.

The GUI version is far more pleasant to use. The batch interface is provided as the fall-back on systems that
do not support Tcl/Tk. Also, the batch version works better for doing systematic testing of your solution.

You may want modify the filamips _tk to include pathnames for the directory in which you install your
code. Also, you can find out which version of Tk is available on your machine by rutkingersion
Change your Makefile accordingly, and give the comntaate mips _tk .

A correctly working version of the simulator has been installed as:
[afs/cs.cmu.edu/academic/class/15740-f97/public/sim/solve_tk

You might find it useful as an aid in debugging your own code. Versions have been generated for most of
the Andrew machine types. See the class WWW pages for a more detailed discussion of platforms.

4. pMIPS Instruction Set

Figure 1 illustrates the subset of the MIPS instruction set implemented by pMIPS. In this figure, the field
names match those in the fileips.h . The notatiorL2 means that the value will be shifted left by two
when computing the effective address, &lCmeans the address of the instruction in the branch delay
slot.

Note that it includes only 7 classes of instructions:

Register Operations Shown inthe chart&sun. These arSLL, ADDUBREAKused to haltthe simulator),
NOROR SLT, SLTU, SUBY andXOR

Immediate data Shown in the format aBunl . These ar@&DDIU, andLUI (Load Upper Immediate).
Load ThelLWinstruction.

Store The SWinstruction.

Branches Shown in the chart aBx. These arEQandBNE

Fixed Jumps Shown in the chart a¥x. These ard andJAL. The particular jump type is encoded in the
Opfield. The jump target is given by concatenating the high order 4 biBRg, 26 bits from the
instruction, and 2 zero bits.

Register Jumps These are]JR andJALR. The particular jump type is encoded in tRen field of the
instruction. (Observe that they use the same opcode as the register operatiod#)LKdield Rs
designates the jump target, while fidgkdl designates the register in which to save the return program
counter. Note that if you write the assembly commanidi $4 °, the assembler will generate
the code for JALR $31, $4 '. The JAL instruction always stores the return program counter in
register 31.

Instruction Fields

6 5 5 5 11
\ Op \ rs \ rt \rd \ Fun
| 116
| 126

Instruction Format
LW Rt, 116(Rs) LW rs| 1t | 116
SW Rt, 116(Rs) I SW s rt] | 116
Fun Rd, Rs, Rt I_d)P rs\ rt \ rd \ th
Funl Rt, Rs, 116 L Fun rs |t | 116
Bx Rs, Rt, DPC+|16L2 IBx rs| rt | li6
Jx DPC[31:28]#126L2 I JIx | 126
JRRs 1OP |rs | O_JR
JALR Rd, Rs lOP s | rd D JALR

Figure 1: Instruction Format for pMIPS

The intention of the implementation is to make it follow the same semantics as with MIPS. This includes
having a one cycle delay slot for both jumps and branches, requiring memory references to be aligned,
etc. Of the instructions listed, all are to be fully implemented excep&tdr (shift left logical). For this
instruction, we ignore the shift amount altogether. Its main use is as a NOP instruction: an instruction word
consisting of all zeros corresponds to the assembly code statesiie0,$0, 0

Note: We will allow the instruction following a load to use the loaded result as an operand. This was not
allowed in MIPS prior to the MIPS R4000.

5. pMIPS Implementation

Figure 2illustrates the structure of the pMIPS implementation. This figure is taken from Fig 6.12 of Hennessy

& PattersonComputer Organization and Design: The Hardware/Software Interfacd edition, Morgan-

Kaufmann Publishers, 1997, an undergraduate version of our textbook. The vertical rectangles in the figure
denotepipe registersa set of registers that hold the state used by the pipeline stages. Note that the program
counterPC is one such pipe register, while the others are labeled by the states between which they sit.
Embedded within the stages are additional state elements: the instruction memory in IF, the register file in

ID, and the data memory in MEM. To keep things simple, the instruction data memories are distinct. In the
actual processor, there are indeed separate instruction and data caches, but these both access a common main
memory. Also shown are the major functional units: an adder in IF to increment the program counter, an
adder in EX to compute branch targets, and an ALU in EX to compute data values and effective addresses.

Figure 3 shows a simplified version of the pipeline structure. The rounded rectangles denote the logic of
each of the pipeline stages, while the arcs denote the signal connections.

A pipe register has a current state and a next state. Each pipeline stage takes the current state of one or more
pipe registers and generates the next state of one or more pipe registers. One cycle of the pipeline consists
of two phases: during the@peratephase the pipe stages compute new values for the registers, while during
theupdatephase, the pipe registers store these values and deliver them as inputs to the next stage.

Note that there is no explicit write-back stage WB. Instead, the write-back logic is incorporated into the
decode stage ID, to avoid a conflict at the register file.

The version of the pipeline provided to you has serious deficiencies. In particular, there are no interlocks,
stalls, or forwarding. Therefore both data and control hazards are handled incorrectly. Furthermore, none
of the jumps are implemented. They would be handled as illegal instructions. Otherwise, the design should
be correct.Please notify us if you find any bugs in the code

6. Simulator Operation

The simulator is a “behavioral” simulator, meaning that it mimics the actions of the pipeline stages without
modeling their detailed circuit structure.

Each pipe register is implemented by a data structure maintaining two statemnt andnext . Each

pipe stage is implemented by a procedure that updates the next state fields of a pipe register (or two, in case
of IF) based on the current states of one or more pipe registers. One cycle is simulated by invoking each of
these stage procedures, and then for every pipe register copying the next state to the current state.

Extra features are included to facilitate implementing pipeline stalls. In particular, it is possible to set a
pipe register to eithestall or bubbleon the next update phase. When the register is set to stall, the current
state will not be changed the next time the pipe registers are updated. When the register is set to bubble,

-« 23X o

] elepg N3N] —elepd X3]
N\
\
N\
/ pre— /
N\ \
N 9T
erep '
BNIM
T) erep
Kiowaw X aum [€
elRq n /
elep W ‘ Jo1s1681
[pesy Ssaippy |« N ynsal 0 C EIEp M Aowaw
pesy sialsibay E— =] uononasul
«—] Z la1sibal m -
T erep pesy 5
(peay T Ja1siBal P E Ssalppy
\ peay
\
N
\
\
unses N — 17
PPy elepy X4
pPpv
aMm/N3N W3N/X3 X3/ai a4l

o =23 X o

Figure 2: Detailed pMIPS Pipeline Organization (From Hennessy & Patterson)

Branch Flag & Target

PC IF/ID ID/EX EX/MEMJ MEM/WB
|- ID EX MEM
Instr. Reg. Data
Mem. File Mem.
Next PC Write Back Reg. & Data

Figure 3: Simplified pMIPS Pipeline Organization

the current state will be set to all 0's the next time the pipe registers are updated. The various signals in the
stages are encoded such that this will effectively create a NOP in the pipeline.

7. GUI Version of the Simulator

The GUI version of the simulator is generated from the source files with the command:
make mips_tk

When you invoke this program with a code file (in the *.O’ format described below) as a command line
argument, two windows will appear on your machine as illustrated in Figures 4 and 5. The first provides the
overall control for the simulator as well as displaying the state of the pipeline and the registers. The second
provides a listing of the code and tracks the instructions as they progress through the pipeline.

Viewing the control panel in Figure 4 from top to bottom, we find the following regions:

Run Controls A set of buttons that control the simulator activity:

Quit Exits the simulator

Go Starts (or restarts) the simulator. Simulation continues until either an exception condition is
encountered, or th&top button is pressed.

Stop Stops the simulation.
Step Simulates for one clock cycle.
Reset Empties the pipeline and resets the program counter to O.
Speed Control Controls how fast the simulator will execute. The control is logarithmic—at the extreme

left the simulator runs at 0.1 cycles per second, while at the extreme right it runs at 1000 cycles per
second. The default value is 1 cycle per second.

Mode Selection Controls the simulation mode. These are:

Wedged This is the only mode your initial simulator can actually perform. It lacks any mechanism
for handling control or data hazards.

Run Controls
il G FTe. ! | esed Speed

e (1% ey 12} s Control
=
.
Wodged | Saal s Forward | <\ 00
Paprebine: Fbigjealisss Selection
WEmn [er|0e QM0 0000me] - | 0
Exc GPC AllMala Asala hog Wist
MEW Dut [B0F| e ommmojommme] - [o Current
SMEM Slage Stme
MAEWS i [Rar.| 0 i a3) B 0 D 83 B | a | u Pipe
Exc BPC AllMala Beata Mog WSt Sse Bos Rp'
Ext dut_ [w0F | Do 0mm o 0l 000 mo [egister
Ex Sfagge \
EXmn [hOF| =S 0000000 0 D0 BIEE Next
Ewc BPC sdailn BeAin State
ROF:| —- |a0ana 0] am o0
MR - | Q00000
Exc BPC sl
ROF| —- | 00000000
i Register
PCOUL [DODOD0RA Vaues
Figtster Fil
] E E|feferere T 1] E
E i i E E e LB Lc
Le 0 n 20 H

Figure 4: Main Control Panel for MIPS Simulator

Stall This (should) be the version that handles hazards Wygtéhe pipeline appropriately until the
hazard can be resolved.

Forward This (should) be the version that handles hazards by forwarding whenever possible.

Pipeline State This region displays the state of all of thige registersoriented with the PC on the bottom
up to the MEM/WB register on the top.

Each register is represented by two rows of boxes. The upper row indicates the current state of the
register and is named after the primary stage which uses it. The lower row indicates the next state of
the register and is named after the stage which updates it. For example, the figure shows a box around
pipe register EXIMEM. This register is updated by the EX stage and used (primarily) by the MEM
stage. The top row, label@dEM In , indicates the current state of the register, while the lower row,
labeledEX Out indicates the next state of the register.

Thepipeline stageare indicated in blue: each stage takes input from the current state of the preceding
pipe register, and computes the next state of the pipe register following the stage.

Register State These are shown as 4 rows of 8 registers each, with the values displayed in hexadecimal. A
blank entry is one that has never been updated. Its value is 0. The most recently updated register is
indicated in blue.

The fields of the pipeline registers are as follows:

PC The program counter register (hex).

Exc The exception status for the stage. As an instruction progresses through the pipeline, its condition can
go fromAOK meaning everything is fine, to some exceptional condition. Once the exception reaches
the WB stage, the simulator will halt.

SPC Indicates which instruction is at this stage in the pipeline (hex). This information would not normally
be maintained by the hardware. It is included here to aid debugging. A bubble in a stage is indicated
by ----

Adata This is the data read from the A port of the register file (hex).

Bdata This is the data read from the B port of the register file (hex).

Mop Indicates the memory operation to be performed, eitRefréad), 'W (write), or ’-’ (none).
Wdst The destination register for write back (decimal).

Ssrc Identifies the source register for a store operation (decimal). You'll notice that this information is not
currently used by the simulator, but you might find it useful in implementing some of the forwarding.

Bch Indicates whetherY) or not (N) a branch will be taken.

To help visualize forwarding there are three colors defined, correspondingAdate (pink) andBdata

(green) fields of the EX stage, and tBeata (blue) field of the MEM stage. During normal operation, these
operands are taken from the corresponding field of the ID/EX or EX/MEM pipeline register, as indicated
by the dashed arrows in Figure 2. In the event of bypassing, however, these operands may be supplied from
other locations. The color moves to indicate the label of the source field.

Fil tawty/btank. O [
Dend) Eod i D 03 L1 .)
Meed (OO T
fwf MDIND] rap ™~ CodeFile
Do 100004 L] . 1L i & dhowld 1ok ke Tk
Deein] EBADRDODL La 2, 1 58 £ 1 Plpe Stage
mld =AEmMEE § Laﬁ.-p o R
Dmid EBADEOODY W La . 3 52 e 3
Malo 24MEMM E Li Te.4 £ 82— 4
Deid] 14DiDIE D boe cil, r1. % & Shouold ba tsksn
m3d =MmMOL F Li T 1 P a— 1
DB B3] [e2 L1 3. B # Should akip
3o B4MMI Li T 3 # Bhaould akip
Dl B3l L1 3,4 # Fheuld akip
Ddd B4 0oL 11 4. 1 £ id a— 1
[s T] bag rd, . [ndd & Should b tskan
Do B4R afddiv rded. 3 £ i a4
Dol Dol Cu) 0] D0 braak D # Shauld ba akipped
Dmdd B4R 00 02 afdin pded. 2 £ - b
Dmddd [n)] 0] DO braak D
Dzdo (MIE)OA] 00D THp

Figure 5: Code Window for MIPS Simulator

8. Object Code

The simulator reads in an ASCII version of object code. We denote these object code files with the suffix
*.0’. Each line consists of an address, the instruction (both in hexdecimal) optionally followed by text,
containing, for example, an assembly code version of the instruction. The simulator executes using the
hexadecimal coded instruction. You can’t change the code by simply editing the assembly code comments
in the .O file.

Using a MIPS machine, you can generate this code automatically. First, creatéle. Then assemble
this file to get ao file. Finally, disassemble this code using the progdisn, e.g., with the command:

dis -h test.o > test.O

We have noticed that some SGI machines create disassembled code that is incompatible with our simu-
lator. It is safer to use a ELSTATION to generate theO files. The machines reached by tedtirgg to
unix.andrew.cmu.edu will suffice. Although you must generate .O files on a MIPS machine, the
simulator can run on any machine. You only have to use the MIPS machine to generate the test code.

The code is displayed in a window such as that shown in Figure 5. At the top is an entry box where you can
specify the file name and load a file by pressingltbad button. Each line of code is displayed giving its
location, the hexadecimal code, and any text that appeared on that line in the .O file. Also indicated is the
pipeline stage for any instruction being executed.

Subdirectoriegests , demos, andexc contain some sample code files. Three files in tésts
subdirectorybtest.O ,dtest.O ,andjtest.O containtestcasesto stress control hazards, data hazards,
and jump instructions respectively. The fourth filecurse.O , is provided to test the proper working of
recursion. Note, however, that the tests are not exhaustive. You will need to generate additional tests to
make sure your implementation is correct. Temnos andexc subdirectories contain the demonstration
examples used in the class lectures.

9. Your Task

For this assignment you have four tasks:

1. Implement the four jump instructions.
2. Implement the proper handling of hazardstall mode
3. Implement the proper handling of hazard$drward mode

4. Generate test code that will test all instruction types and all hazard pitiesib

All of the “hardware” maodifications involve changing only the code in thedfiteyes.c . You may change
your own versions of the other files, e.g., to print out stuff while debugging, but your simulation should run
properly with the original versions, sinstages.c is the only file you will be allowed to hand in.

9.1. Jump Instructions

These instructions should be implemented in a manner consistent with the rest of the design. Think of

the different procedures provided as blocks of hardware that you want to keep as simple as possible. One
approach is to view jumps as branches that are always taken. The only difference is that the jump targets
must be computed according to the MIPS convention, and that instrud#dr® andJAL must save the

value ofDPG-4 in a registerRd for JALR and $31 forJAL).

You can implement these instructions by making appropriate changes to the prodedexestage .

Note that these instructions introduce new forms of control and data hazards, e.g., on their register arguments
as well as (possibly) register 31. Still, you can test your implementation by executing code with enough
nop’s inserted to guard against any hazards.

9.2. Hazard Handling in Stall Mode

This mode should be followed when the global variadite _mode is set toS_STALL. It should rely only
on stalling. This includes the handling of branch hazards—only instructions that will definitely be executed
should be fetched.

You can implement this version by inserting appropriate code into the procddustall _check . At

the end this procedure there is some code that will do the actual stalling for you: you only need to tell it
whento stall. You can stall at the IF, ID or EX by setting the appropriate variable to 1. The three variables
involved arestall _if ,stall _id andstall _ex.

All the information you need to do a succesful job is provided to you: you can get the current pipe-register
state by means of the global variablds_in , ex_in etc., and the computed next state is available via
arguments to the procedure. Both current and next state will be valid, since all the stages have already
computed their outputs by the tinde _stall _check is called.

To guide your implementation, we have indicated where your code should be located by provided comment
dividers, named®TART STALL MODBNdEND STALL MODRII your stall-mode code should be
located between those two dividers. In addition, you are neither allowed to create any static variables

nor to change/create any global variablesThere is no need to create or modify new global state to come

up with a correct solution.

10

9.3. Hazard Handling in Forwarding Mode

For forwarding mode, you will need to use the following mechanisms:

e Use forwarding (i.e., bypassing) whenever possible to handle data hazards without incurring any
delays.

¢ Add stalls to handle any data hazards for which forwarding alone does not suffice.

e Handle branches by assuming they will not be taken, and canceling any instructions that should not
have been fetched in the event the branch is taken. The way to do this is to call the procedure
sim _cancel _stage from withindo_stall _check . Remember that the instruction in the delay
slot should be executed in either case.

¢ You may handle jumps either in the same way as branches (always mispredicting!) or by stalling.

This mode should be followed when the global variadite _mode is set toS_ FORWARDYou can imple-

ment this version by inserting appropriate code into the procedlore=x stage , do_memstage , and
do_stall _check . In the latter, the code will be similar to that of the stalling mode, although you'll need
to stall in fewer cases. For the code within the EX and MEM pipeline stages you will implement three
“multiplexors” at locations marked in Figure 2. The A and B muxes in the EX stage can overriddatae
andBdata operands coming from the ID/EX pipeline register. The S mux in the MEM stage can override
theBdata operand coming from the EX/MEM pipeline register. Your code should implement the control
for these multiplexors by setting the variabdaux, bmux andsmux appropriately.

To guide your implementation, we have indicated where your code should be located by provided comment
dividers, namedSTART FORWARD MO&i END FORWARD MODBHE your forward-mode code

should be located between those dividers. In addition, you are neither allowed to create any static
variables nor to change/create any global variables, except for amux, bmux and smuigain, there is

no need to create new global state to come up with a correct solution.

9.4. Testing

The test cases intest.O , dtest.O , andjtest.O , andrecurse.O are a good start, but they are not
comprehensive. You should carefully analyze all the different instruction types, all their possible pipeline
interactions, and generate test code that will exercise these interactions. Note that you need not consider
every possible instruction for all possible data values. Instead you can group instructions into classes and
try them for representative data values.

Writing lots of test code by hand and then running them on the GUI interface is not a good idea—it is
very time consuming and hard to get reliable results. Instead, you should set up a systematic “test bench,”
consisting of a semi-automatic way to generate, simulate, and evaluate test cases. Using a scripting language
such as Perl or Tcl can be very useful for this task. Refer to the lecture discussion on microtests as one
possible approach.

For this problem you should hand in the following:

e Show us how you tested your 4 new jump instructions.

e A description of your testing methodology for data hazards. You should document your testing
methodology by creating table(s) of all the different hazard types, as well as an indication of how you
test that this hazard is handled properly. Look at the lecture slides for the sort of table we expect to
see here.

11

e The results of running your code against these tests.

e A description of your testing methodology for control hazards. You should try to devise a systematic
way to tabulate possible control hazards, e.g., instructions that should or should not be executed within
some distance of a branch or jump.

e The results of running your code against these tests.

Remember that you must also handle hazards induced by a load instruction followed by an instruction
requiring the loaded result. Be especially careful to test hazards involving register O.

9.5. Additional Guidelines

e Itis important that you do not change any global state other than the mux signals, nor create any new
global state.

e Forthe hazard handling, please make siliref your code is located between the appropriate comment
dividers.

e Althoughit may be tempting, do not rearrange what gets computed in what stage, or add any additional
pipeline state.

e Remember that each stage must obey the protocol of taking pipe register current state and computing
pipe register next state that will feed into the next stage. With forwarding, you will find that the EX
and MEM stages access the current state dfipie pipe registers.

e The stall logic is implemented by a separate procedorstall _check thatis called between the
operate phase of the stages and the update phase of the pipe registers. This procedure can therefore
make use of both the current and next statet of all the pipe registers, but its only effect should be to
cancel or stall some of the pipeline stages.

¢ Your implementation will require writing around 100 lines of code.

10. HandIn

1. Your versiorstages.c (electronic handin only).
2. A description of how you implement the jump instructions.

3. Adescription of your stall-mode hazard handling mechanism. Document thigéicoadinder which
you stall stages. Don't just show the code!

4. A description of your forward-mode hazard handling mechanisms. Document thdamndnder
which you stall or cancel stages and forward data.

5. Documentation of your testing methodology (see above).

12

