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Abstract

By optimizing data layout at run-time, we can potentially en-
hance the performance of caches by actively creating spatial |o-
cality, facilitating prefetching, and avoiding cache conflicts and
false sharing. Unfortunately, it is extremely difficult to guarantee
that such optimizations are safe in practice on today’s machines,
sinceaccurately updating all pointersto an object requiresperfect
alias information, which is well beyond the scope of the compiler
for languagessuch as C. To overcomethis limitation, we proposea
technique called memory forwarding which effectively addsa new
layer of indirection within the memory systemwhenever necessary
to guarantee that data relocation is always safe. Because actual
forwarding rarely occurs(it exists as a safety net), the mechanism
can be implemented as an exception in modern superscalar pro-
cessors. Our experimental results demonstrate that the aggres-
sive layout optimizations enabled by memory forwarding can re-
sult in significant speedups—morethan twofold in some cases—by
reducing the number of cache misses, improving the effectiveness
of prefetching, and conserving memory bandwidth.

1. Introduction

Asthe gap between processor and memory speeds continuesto
grow, memory latency is becoming a key performance bottleneck.
In addition, thereis growing concern that the bandwidth to the off-
chip memory hierarchy may also limit performance [5]. The pri-
mary mechanism for reducing both the off-chip latency and band-
width requirements is the on-chip cache hierarchy. While caches
are an important step toward addressing these problems, they face
several well-known limitations. For example, multi-word cache
lines can improve performance by prefetching useful data when
spatial locality is abundant, but they can al so waste bandwidth and
displace useful data when it is not. Caches can suffer pathologi-
cally bad behavior due to either mapping conflicts or false shar-
ing [21, 34]. Prefetching techniques[9, 25, 31] can potentialy
hide cachemisslatency, but only if they can predict accesspatterns
ahead of time, and only if there is sufficient memory bandwidth.

A brute force approach of simply making caches larger is not
likely to solve theseproblems, in part becauseapplication problem
sizesare also increasing rapidly, and also because cache sizes are
constrained by the requirement of low accesslatency and by hard-
ware resource limitations. In addition, recent studies [5, 18] have
shown that the effectiveness of cachesis often low becausea sig-
nificant fraction of cached datais not reused beforeiit is displaced
from the cache. Hence the first problem to addressis managing
existing cachesmore intelligently to improve their effectiveness.
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Cache performance depends on two factors: when data items
are accessed, and where they exist in the address space. There-
fore, software-based techniquesfor improving cache performance
typically do one of two things: they either restructure the compu-
tation, or else they restructure the data layout. The idea behind
restructuring the computation is that given afixed data layout, we
would like to manipulate the ordering of accessessuch that multi-
ple accessesto the same data item (or cacheline) occur close to-
gether in time, thereby enhancinglocality [8, 37]. In contrast, the
idea behind optimizing the data layout is that given that a set of
dataitems are accessed close together in time in the original com-
putation, we would like to actively arrange them in the address
spacesuchthat: (i) we createspatial locality by allocating them at
contiguous addresses (thereby enhancing the effectiveness of long
cache lines and simplifying prefetch address generation); (i) we
avoid cache conflicts by ensuring that they do not reside in sepa-
rate lines which map into the same cache sets; and (iii) we avoid
false sharing by ensuring that items accessed by different proces-
sorsfall within separate cachelines. While both approaches have
received considerable attention in the past, our focusin this study
ison facilitating datalayout optimizations.

Thereare two possibilitiesfor when we manipul ate data layout.
The first approach—which we call static placement—isto assign
an object to its optimized address when it is created [6]. The sec-
ond approachis to move an object (perhaps more than once) after
it has been allocated; we refer to this latter approach as data relo-
cation (or simply relocation). The advantageof static placementis
its simplicity. The advantage of relocation, however, is that it can
adapt to dynamic program behavior. Previous studies have shown
that rel ocation-based optimizations such as copying [23, 33] and
clustering [11] can offer impressive performance gains.

In general, relocation-based data layout optimizations involve
the following three steps:

1. Guaranteeing Correctness. Either the programmer or the
compiler must prove that relocating the data will never
break the program; otherwise, the optimization is unsafe.

2. Estimating the Cost/Benefit Tradeoff: The potential opti-
mization should only be performed if the performance ben-
efit is expected to outweigh the overheadsinvolved in relo-
cating the data. This estimation could be based on some
combination of programmer knowledge, static compiler
analysis, profiling feedback, or run-time information.

3. Generating Relocation Code: Additional code must be in-
serted to perform the actual datarelocation at run-time.



Despite the high performance potential of many relocation-
based optimizations, the key stumbling block which often prevents
them from being used in practice is the first step—i.e. guarantee-
ing correctness. To safely move data, we must guarantee that any
future references to the object will find it at its new location. The
fundamental problem is that updating the precise set of pointers'
to a given object requires perfect aliasing information related to
that object. In general, computing such precise information is be-
yond the capabilities of the compiler,? and is even quite difficult
for the programmer for large programs. In the face of uncertainty,
we must conservatively assumethat rel ocating an object will break
the program—no matter how unlikely this may seem in reality—
and therefore the optimization cannot be performed.

There is one mechanism in modern systems which provides
avery limited form of safe data relocation: the virtual memory
system. The operating system can relocate an entire page of mem-
ory in the physical address space without breaking the program
by simply copying the page and updating its virtual-to-physical
mapping. One cache optimization which exploits this flexibility
is page coloring [22], whereby the operating system attempts to
avoid mapping conflicts in large off-chip caches. Therefore, by
adding a layer of indirection within the memory system, we can
move data safely and transparently without any special language
or compiler support. Unfortunately, the virtual memory system
only provides this flexibility at the granularity of an entire page.
To actively create spatial locality within acacheline, we must have
this flexibility at aword granularity. However, applying standard
virtual memory techniques at such a fine granularity—i.e. setting
the page size to be one word—is not a viable solution, due to the
enormous overheads that this would involve. (Not only would the
number of page table entries and the TLB size grow enormously,
but also the cache tags would have to be maintained at a word
granularity.) Instead, we propose a completely different solution.

1.1. Our Solution: Memory Forwarding

To give software the flexibility to apply relocation-based data
layout optimizations at any time without concern over violating
program correctness, we propose a mechanism called memory for-
warding which guarantees the safety of relocation at aword gran-
ularity. (In our discussion, we define the “word” size to be equal
to the size of a pointer.) The basic idea behind memory forward-
ing isthat when we relocate an object, we store its new addressin
its old location and mark the old location so that hardware recog-
nizesit as a forwarding address. Therefore if the program acci-
dentally accessesthe old address, the hardware will automatically
forward the reference to the object’s new location, thereby always
guaranteeing the correct result. Moreover, our scheme only pays
the run-time overhead of an extra indirection when it is actually
necessary—i.e. when the aternative is to violate program seman-
tics. In the far more common cases of referencesto non-relocated
objects, or references that have been properly updated to point to
the new addresses of relocated objects, our scheme imposes no
performance overhead. The space overhead of our schemeis also
low (a1.5% fixed memory cost on a 64-bit architecture).

With memory forwarding support, the decision of whether to

1 We usetheterm “ pointers’ loosely to refer to any mechanismfor gen-
erating an address pointing to the object in question.
2Thisis especially true for heap-allocated objects in languageslike C.

apply arelocation-based optimization reduces solely to evaluating
its cost/benefit performance tradeoffs. In effect, memory forward-
ing enables software to optimistically speculatethat when it relo-
cates an object, it has successfully updated al pointersto that ob-
ject to point to its new location. If the speculation fails, then there
is arecovery cost (i.e. dereferencing the forwarding address), but
the execution still proceeds correctly. Therefore, asin all forms of
speculation, one is gambling that the speculation is correct often
enough that the benefit outweighsthe cost. Another feature of our
mechanism which helps improve these odds is that software can
optionally specify that dereferencing aforwarding addresswill in-
vokeauser-level trap that enables softwareto update the offending
pointer to point to the object’s new address. Hence software can
learn from its mistakesto avoid repeating them.

1.2. Related Work

It isinteresting to note that the work which is most closely re-
lated to our study occurred well over adecadeagoin the context of
architectures that directly supported the Lisp programming envi-
ronment [29, 32]. Performance concernswere quite different back
then: main memory wasrelatively small and expensive, and cache
miss |latencies were less problematic because the gap between mi-
croprocessor and memory speeds was dramatically smaller. (In
fact, anumber of microprocessor-based systemsdid not even have
caches) Therefore the primary concern in optimizing memory
performance back then was minimizing the overall space require-
ments of a program, so that it would fit into main memory and
avoid paging to disk. Two aspects of the Lisp environment made
this challenging: the need to perform automatic garbage collec-
tion, and the rel ative spaceinefficiency of the ubiquitouslist struc-
tures in the language. In addition, another aspect of the Lisp lan-
guagewhich resulted in specialized hardware support wasthe need
to determine object datatypes at run-time.

Although the performance goals which inspired specialized
hardware and software support in these Lisp machines are quite
different from our goal of improving cache performance, there
are nonethel essa number of interesting overlaps between our sup-
port and some features of these earlier machines. \We now discuss
the connections between this previous work and our study from
three different perspectives: tagged memory, garbage collection,
and data layout optimizations.

Tagged Memory: To make objects self-descriptive with re-
spect to their types, anumber of Lisp architectures[29, 32] associ-
ated atag with each memory location. Aswe will seelater in Sec-
tion 2.1, our memory forwarding scheme also requires a form of
tagged memory to distinguish forwarding addresses from normal
data. A key difference, however, isthat the tagsin Lisp machines
provided much more functionality than in our case, and therefore
they required more overhead. For example, the SPUR architec-
ture [32] added eight bits of tag to each 32 bits of memory (a25%
overhead), whereas our scheme only requires one tag bit per 64
bits of memory (a 1.5% overhead) in amodern 64-bit architecture.

A fact that is even more relevant to our study is that a form
of memory forwarding (using tagged memory) has appeared in
previous Lisp machines, albeit for a very different purpose. The
concept of an invisible pointer (which is similar to our forwarding
address) was proposed twenty-four years ago by Greenblatt [15],
and the Symbolics 3600 [29] used one of its tags to implement



a forwarding pointer. The motivation behind these mechanisms
was threefold: to enable the insertion of an item into a cdr-coded
list [2], to facilitate incremental garbage collection, and to imple-
ment overlapping arrays. In contrast, our focusisonimproving the
cache performance of programs written in C, and therefore none
of these issues apply. In essence, what we are doing is taking a
very old mechanism and adapting it to a completely new purpose
within the context of modern out-of-order superscalar processors.

Garbage Collection: A common feature among these Lisp
machinesisthat they support someform of automatic garbage col-
lection. Garbage collection algorithms involve phases where they
identify two classes of data items: those that can be reclaimed,
and those that can be relocated. A data item can be reclaimed
when it can no longer be accessed through any pointers that are
still active, and a data item can be relocated if all pointers to the
old location can be updated to point to the new location. In both
cases, the key challenge is identifying all pointers which point
to the given location. In languages such as Lisp, ML, and Java,
where the use of pointers is either restricted or disallowed alto-
gether, one can solve this problem in practice. In contrast, in lan-
guagessuch as C and C++ which do not restrict pointer usage, one
generally cannot determine which pointers point to agiven object,
and therefore automatic garbage collection (and datarelocation) is
extremely difficult. Finally, it is interesting to note that a form of
memory forwarding isusedin copying garbagecollectors[10, 28],
whereby the forwarding addresses are used to preserve data con-
sistency during the distinct phaseswhen collection takes place.

Data L ayout Optimizations: An important topicin Lisp re-
search is how to represent list structures compactly. List com-
paction can be performed either separately or during garbage col-
lection. Most of the list compaction techniques designed for
Lisp[1, 2, 16] involve either moving or copying the original list to
anew, denser set of locations. Aswe discussed above, datareloca-
tion in Lisp doesnot posethe safety problemsthat we encounter in
C. However, our memory forwarding support gives us the flexibil-
ity to exploit some of these samelist compaction techniques—e.g.,
atechnique called list linearization [13]—for the sake of improv-
ing spatial locality in C programs.

1.3. Objectives of This Study

This paper makes the following contributions. First, we pro-
pose a solution to the problem of safely relocating data at a fine
granularity to improve the cache performance of programswritten
in languages such as C which do not support garbage collection.
Although the concept of memory forwarding was proposed over
two decadesago in the context of Lisp machines, to the best of our
knowledge, we are the first to propose that it be adapted to facil-
itate a broad class of data layout optimizations to improve cache
performance. Second, we discuss how memory forwarding can be
implemented within modern out-of-order superscalar processors
(which are quitedifferent from the processorsin which other forms
of forwarding have been implemented in the past). Third, we sug-
gest a number of optimizations which can benefit from memory
forwarding. Finally, we quantitatively evaluate the benefits and
overheads of our scheme by using it to apply a number of differ-
ent run-time locality optimizationsto a collection of non-numeric
applications running on a modern superscalar processor.

(a) Before datarelocation
byte address forwarding bit

(b) After datarelocation
byte address forwarding bit
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Figure 1. Example of data relocation with memory forwarding.
(A memory word is 8 bytes, and addresses are in decimal.)

The remainder of this paper is organized as follows. We be-
ginin Section 2 with an overview of memory forwarding and how
it can be used. Section 3 discusses issues related to implement-
ing memory forwarding in a modern processor. Sections4 and 5
present our experimental methodology and experimental results,
respectively, to demonstrate the usefulness of the mechanism. Fi-
nally, we concludein Section 6.

2. Memory Forwarding

We now discuss the basic concepts behind memory forward-
ing, anumber of applications of this mechanism, and some issues
related to its performance.

2.1. Basic Concepts

Memory forwarding enables aggressive yet safe data reloca-
tion. Aswe mentioned earlier in Section 1.1, the basic ideais to
store the new address of an object into its old memory location,
and to mark this old location as a forwarding address. Whenever
aforwarding addressis accessed, the hardware will automatically
dereferencethat location to find the object at its new location.

There are three implications of this mechanism in terms of
memory storage. First, the minimum unit of data that can be re-
located is the width of a pointer—which we refer to as a “word”
throughout this paper—since otherwise there would not be enough
space to store the forwarding address.” Note that it is possibleto
relocate byte-sized objects—this simply meansthat enough neigh-
boring bytes must be moved at the sametime to comprise an entire
word. Second, a chunk of data that is relocated must be word-
aligned, so that the alignment of the forwarding addressis prede-
termined. Notethat this still allows usto perform byte-sized loads
and stores to forwarded objects—the byte offset into the new lo-
cation is simply assumed to be the same as it was at its original
address. We consider these first two restrictions to be quite mi-
nor, especially given that our only option for safe relocation today
is page-sized, page-aligned chunks of data. Finally, to enable the
hardware to distinguish forwarding addresses from regular data,
we attach a one-bit tag (called a forwarding bit) to each word in
memory. For a 64-bit architecture, this resultsin aspace overhead
of only 1.5%, and thereforeis reasonably efficient.

Figure 1 shows a simple example of how the memory contents
and forwarding bits are modified upon data relocation. Assume

2 One could imagine creating a more el aborate scheme for compressing
the size of forwarding address pointers (e.g., by restricting the distance
between the old and new address to something that fit within its former
size), but this would involve additional complexity and fancier tag storage,
so we do not consider such an approach further.



that we have a 64-bit architecture, and that we would liketo relo-
catefive 32-bit elementsfrom addresses0800-0816 to addresses
5800-5816 (these addressesareindecimal notation). Figure 1(a)
shows the memory contents and forwarding bits before relocation
(note that none of the forwarding bits have been set). To relocate
a word, we first copy it to its new location, and then we simul-
taneously write its new address into its old location and set the
corresponding forwarding bit at the sametime. Figure 1(b) shows
the state of memory after therelocation. Noticethat to relocate the
32-bit subword at address 0816, we must also relocate the 32-bit
subword at address 0824 (which containsthe value 5) along with
it. After the relocation, a 32-bit load of the subword at address
0804 will beforwarded to address 58 04—which is computed by
adding theforwarding address (58 00) to the byte offset within the
word (4)—thereby returning the correct value of -47.

To simplify our discussion throughout the remainder of the pa-
per, we now define two terms which we will use frequently:

Initial address: The address of the first location accessed by a
memory reference. For example, in Figure 1(b), the initial
addressof awrite to word 0816 is0816 itself.

Final address: The address of the last location accessed by a
memory reference. For example, in Figure 1(b), the final
address of a write to word 0816 is 5816. When datais
not forwarded, the final address equalstheinitial address.

In addition to preserving the correctness of pointer derefer-
ences, another concern with data relocation is preserving the cor-
rectness of pointer comparisons. In the presence of memory for-
warding, it is possible that two pointers with distinct initial ad-
dresses may in fact point to the same object (i.e. share the same
final address). Hence to preserve correctness, explicit pointer
comparisons® should be performed with respect to their final ad-
dresses. Although our memory forwarding hardware doesnot per-
form this check automatically, the compiler can easily insert ad-
ditional instructions (described later in Section 3) to look up the
final addresses for these comparisons. We implemented such a
compiler pass, and the resulting software overhead is included in
our performance results. As we will see later in Section 5, this
overhead does not present a problem.

2.2. Applications of Memory Forwarding

While the act of dereferencing a forwarding address clearly
does not improve performance on its own, the advantage of mem-
ory forwarding support is that it enables awide range of datalay-
out optimizationswhich can enhance cache performance. Not only
are these optimizations useful for mitigating the impact of mem-
ory latency, they can also be used to conserve memory bandwidth.
We now briefly describe some of these potential optimizations.

Improving Spatial Locality: A straightforward method of
actively improving spatial locality is to take data items which are
accessed close together in time, but which are scattered sparsely
throughout the address space, and pack them into adjacent mem-
ory locations. This form of data packing makes cache lines much
more effective, and it can potentially reduce the number of capac-
ity, compulsory, and conflict misses. Not only does this improve

“41n reality, we only need to worry about cases where the pointers po-
tentially point to the same type of rel ocatable object.

(a) Before list Ilnearlzatlon

Figure 2. Example of list linearization with memory forwarding,
assuming that cache lines and list elements are 32 and 16 bytes
long, respectively. (Addresses are in decimal.)

performance, it can also reduce memory bandwidth consumption,
which in turn can help reduce power consumption (which is be-
coming an increasingly important concern).

A good example of atechnique which uses packing to enhance
spatial locality is list linearization. As we will see later in Sec-
tion 5, this technique can offer dramatic performance improve-
ments. List linearization has been an important techniquefor com-
pacting lists in Lisp programs, and can eliminate as much as half
of the spaceconsumption[13]. Theideabehindlist linearizationis
to relocate the nodes of alinked list so that they residein contigu-
ous memory locations. Depending on whether the list structure
continues to change over time, the linearization process can be
invoked either just once, or else periodically to adapt to the chang-
ing structure. Although list linearization can potentially offer large
performance gains, it is very difficult to safely use this optimiza-
tion in practice for general C programs due to the possibility of
pointers outside of the linked list itself pointing to list elements.
Fortunately, with memory forwarding support, we can apply list
linearization at any time without worrying about whether all po-
tential pointersto list elements have been properly updated.

Figure 2 shows an example of list linearization with memory
forwarding. Before linearization, the four nodes of the list (i.e.
nodes A, B, C, and D) are scattered throughout memory such that
they reside in four separate cache lines, as shown in Figure 2(a).
List linearization packs the four nodesinto a contiguous memory
region starting at location 8000, as shown in Figure 2(b). Asa
result, the four relocated nodesoccupy only two cachelines, rather
than four, thereby potentially eliminating half of the cache misses
dueto thislist aswecontinueto revisit it. Note that the forwarding
addressesand forwarding bits have been set properly such that we
will still maintain correct execution evenif a stray pointer accesses
alist element at its old address. However, we expect that most
accessesto thelist will find it directly at its new address, thereby
enjoying the enhanced spatial locality.

Increasing Prefetching Effectiveness:  Theeffectivenessof
prefetching for non-numeric applicationsis largely limited by the
difficultiesin generating prefetch addressesearly enough[25]. For
example, consider the linked list in Figure 2(a), and assume that
we need to prefetch three nodes ahead to hide the entire miss la-
tency. Therefore, we would want to prefetch node D as soon as
we arrive at node A. However, the problem is that we do not know



the address of node D until we have dereferenced nodes 2, B, and
C—this is known as the pointer-chasing problem [25]. In con-
trast, after the list is linearized, we can trivialy prefetch node D
at node A by simply prefetching the next cacheline, thus avoid-
ing any pointer chasing. (We referred to this technique as data
linearization prefetching in an earlier publication [25].)

Reducing Cache Conflicts: Data copying [23] was orig-
inally proposed to reduce conflict misses within tiled (or
“blocked”) numeric applications. Sinceagiventileisreused many
times after it is brought into the cache, it is particularly problem-
atic if different elements within the tile conflict with each other.
To avoid this problem, the data copying optimization first copies
atile to a contiguous set of addressesin atemporary array before
using it; since these locations do not conflict with one another,
the problem is eliminated. Another technique called data color-
ing [11] was proposed as a method of reducing conflict missesin
pointer-based datastructures. Theideaisto partition the cacheinto
logically separate regions (or colors). By relocating data structure
elements which are accessed close together in time to separate re-
gions of the cache, conflict misses can be avoided. Memory for-
warding can help facilitate both copying and coloring techniques
by guaranteeing that they are safe.

Reducing False Sharing: In cache-coherent shared-memory
multiprocessing systems, false sharing [21, 34] occurs when two
or more processors access distinct data items which happento fall
within the same cache line (which is the unit of coherence), and
at least one accessis awrite. False sharing can hurt performance
dramatically asthe line ping-pongs between processorsdespite the
fact that no real communication is taking place. By relocating
those unrelated dataitems to distinct cachelines, false sharing can
be avoided. Memory forwarding would be especialy helpful in
avoiding false sharing in irregular shared-memory applications,
where proving that dataitems can be safely relocated is difficult.

In summary, memory forwarding enables a broad range of
relocation-based optimizations; we have presented just a partial
list of such optimizations. We would also like to emphasize that
these optimizations are applicable not only to caches but also to
the other levels of the memory hierarchy. For example, we can
apply data relocation to improve the spatial locality within pages
(and hence on disk) for out-of-core applications.

2.3. Performance | ssues

A relocation-based optimization will improve overall perfor-
manceif two conditionshold: (i) the new datalayout actually pro-
videsbetter memory performancethan the original layout; and (ii)
the gain in the memory performance outweighs the optimization
overhead. This overhead includes the extra execution time due
to actually relocating the data, and may also include forwarding
overhead if any references actually need to be forwarded after the
relocation. While the overhead of relocating the data may seem
to be a concern at first glance, our experimental results indicate
that it is usually not a problem becauserelocation isinvokedinfre-
quently and modern processors can execute multiple instructions
per cycle. In addition, we find that the performance overhead of
forwarding is negligible in many cases because most data refer-
ences are updated properly and do not need to be forwarded. We

R =Read_FBit(word* A): Read the forwarding bit of the
word at address A into register R.

R =Unforwarded_Read(word* A): Read the value stored
in the word at address A into register R, with forward-
ing disabled. If the word's forwarding bit is set, thisis a
forwarding address; otherwisethisisaregular datavalue.

*A =Unforwarded Write(register word R, bit B):*
Write the value of register R into the word at address A
and set the word's forwarding bit to B atomically, with
forwarding disabled.

¢1f an instruction of the underlying ISA cannot have three operands,
we can have two separate instructionsfor Unforwarded Write(R,0)
andUnforwarded Write(R,1).

Figure 3. Proposed instruction set extensions to support mem-
ory forwarding. (C syntax is used to improve readability.)

observethat thereal performance concernis ensuring that the reor-
ganized data layout actually delivers higher memory performance
than the original layout.

3. Implementation I ssues

We now discussthe support that we need from the instruction
set, the hardware, and the software to implement memory forward-
ing in modern superscalar processors.

3.1. Extensionsto the Instruction Set Architecture

To exploit memory forwarding, the machine must have some
way to manipulate the forwarding information—i.e. the forward-
ing addressesand the forwarding bits. Rather than taking a purely
hardware-based approach, we proposeto extend the underlying in-
struction set architecture (ISA) by adding afew instructionswhich
will allow software to manipulate the forwarding information di-
rectly. The advantages of this approach are its programmability
and flexibility. In addition, we expect the software overhead to be
low since forwarding information changesrelatively infrequently.

Figure 3 shows our proposed ISA extensions, which consist
of three new instructions. Read_FBit alows software to check
whether a given location contains a forwarding address or actua
data. Unforwarded_Read and Unforwarded_Write alow
software to manipulate memory with the forwarding mechanism
disabled. For example, in Figure 1(b), anorma Read (i.e. with
the forwarding mechanism enabled) of the word at address 0808
will get theforwarded valueof 0, but an Unforwarded_Read of
thesameword will get 5808, whichistheforwarding address. An
Unforwarded_Write must changetheword and itsforwarding
bit atomically in order to preserve data consistency.

To demonstrate how software can make use of these new in-
structions, Figure 4(a) showstwo proceduresfor relocating a data
object of sizen_words from src to tgt, andthen storing tgt as
the forwarding addressinto src. ProcedureRelocate () loops
until aclear forwarding bit isread so that tgt will be appendedat
the end of the forwarding chain (if any). Figure 4(b) showsa pro-
cedurecalled ListLinearize () (whichwewill usefrequently
later in our experiments) which calls Relocate () to perform
list linearization. The parameter head_handle isthe address of
the list head. Note that the address of the list head (rather than
its value) is passed into ListLinearize () because we want




(a) Data Relocation
/I src = address of the object beforerelocation
/I tgt = address of the object after relocation
/I n_words = number of wordsto relocate
void Relocate(word* src, word* tgt, int n.words) {
boolean relocated;
relocated = Read_FBit(src);
while (relocated) {
/I loop until the final addressis reached
src = Unforwarded Read (src) ;
relocated = Read_FBit(src);

actualRelocate (src, tgt, nwords) ;

¥

void actualRelocate (word* src, word* tgt, int nwords) {
/I relocate each word in the object
for (; nwords > 0; --n-words) {
word temp;
/I save the content of src
temp = Unforwarded_Read (src) ;
/I setup the forwarding address and forwarding bit
*src = Unforwarded Write(tgt, 1);
/I copy theoriginal contentof src to tgt
*tgt = Unforwarded Write(temp, 0);
/I prepare for the next word
src += 1; tgt += 1;
}
}

(b) List Linearization
/I a pool of spacefor data relocation
extern char* memory_pool;
/I head_handle = addressof thelist head pointer
void ListLinearize(node ** head-handle) {
node ** handle, *tgt;
/I start fromthelist head
handle = head-handle;
while (*handle) {
/I grab space from the pool
tgt = (node*)memory_pool;
/I increment the pool pointer
memory.-pool += sizeof (node) ;
/I relocate the node pointed-toby handle totheaddressstoredin tgt
Relocate (*handle, tgt, sizeof (node) /sizeof (word)) ;
/I append the rel ocated nodeto the linearized list
*handle = tgt;
/I preparefor next node
handle = &(tgt—next);
}
}

Figure 4. Procedures using the proposed ISA extensions to
implement (a) data relocation and (b) list linearization.

to modify the list head to point to the new locations after the re-
location is performed. (This effect was illustrated earlier in Fig-
ure 2(b), where the value of head is changedto 8000 after the
linearization.) By doing so, the next time that the list is accessed
viathe list head, the new locations will be accessed directly with-
out touchingthe old locations. Finally, notethat in Figure 4(b), the
new locations for the relocated nodes are all ocated from a pool of
contiguous memory, thereby creating spatial locality.

3.2. Hardwar e Support

We now discuss the hardware modifications necessary to sup-
port memory forwarding. The key insight which helps us keep
the hardware simple is that references which actually require for-
warding are expected to occur rarely (if ever). The forwarding
mechanism is simply a safety net which alows us to continue to
preserve program correctness in case the unexpected happens. In

other words, we can treat forwarding as an exception. We will de-
sign the hardware to be fast in the common case—i.e. a normal,
non-forwarded reference—and we are less concerned about the
performance penalty when forwarding is actually invoked, since
that is rare. Hence a legitimate option is to use a processor’s nor-
mal exception handling mechanism to implement forwarding.

One hardware requirement that was mentioned earlier in Sec-
tion 2.1 is that we need tagged memory. A number of sys-
tems which supported tagged memory have been built in the
past [29, 32]. One difference with our scheme (as discussed ear-
lier) is that we require less tag storage overhead than previous
schemes; otherwise, it is quite similar. We now discuss the more
novel features of our hardware support in greater detail.

Dereferencing Forwarding Addresses:  In the presence of
memory forwarding, the data referencing mechanism must be able
to follow forwarding chains of arbitrary lengths. More specifi-
cally, when amemory word is accessedby adatareference, itsfor-
warding bit istested. If thishbit is set, then the original dataaddress
will be replaced by the contents of the word just accessed (which
contains a forwarding address), and a new memory access using
the forwarding addresswill be launched. This process repeats un-
til aclear forwarding bit isread (we will discusshow cyclesmight
be handled |ater in Section 3.2), at which point the data reference
can proceed as usual. One option isto implement this dereferenc-
ing mechanism purely within hardware; another is to implement it
using a software-based exception handler (where the exception is
triggered by accessingaword with its forwarding bit set). With the
ISA extensionsthat we propose, it would be straightforward for a
software handler to chase the forwarding pointer chain. Although
the forwarding bit cannot be tested until the memory location is
brought into the primary cache, thisisno different from the delays
associated with checking ECC or parity bits.

Data Dependence Speculation:  One consequence of mem-
ory forwarding is that we do not know the final data address of a
given reference until the reference is nearly completed. This de-
layed generation of the final address poses a potential problem in
out-of-order superscalar machines. These machines normally al-
low aload accessto proceed before an earlier store, provided that
the load and store are to different addresses. If either addressis
unknown, the conservative approachisto delay theload until both
addresses are resolved. With memory forwarding, since the final
address of astoreis not known until the store actually completes,
this delay would cause the conservative approach to never execute
aload ahead of an earlier store.

Fortunately, there is a solution to this problem. A technique
called data dependence speculation [12, 30] allows aload to spec-
ulatively execute before an earlier store, even if the store address
is unknown. If it turns out that the load was not dependent on
the store, then the speculation succeeds; otherwise, atrue depen-
dence has been violated, and the effects of the incorrect specu-
lation must be undone. Recent out-of-order superscalar proces-
sors [19, 20, 24] have already implemented some form of data
dependence speculation. With support for data dependence specu-
lation, we can specul atethat thefinal addressof areferencewill be
the same asits initial address (i.e. we do not expect the reference
to be forwarded), and therefore the delayed final-address genera-
tion will not degrade performance in the common case where the



referenceisnot forwarded after all. If forwarding doesoccur, then
our speculation would only beincorrect in the case where the load
and store had different initial addresses but the samefinal address.
In our experiments, we observed that incorrect data dependence
speculation almost never occurred; hence it appears to be a very
effective solution to supporting memory forwarding.

Handling Forwarding Cycles: A forwarding cycle is cre-
ated when software erroneously inserts an address more than once
into a forwarding chain. The hardware must have some mech-
anism for detecting and breaking forwarding cycles; otherwise,
the machine could be stalled forever chasing the forwarding chain.
Detecting forwarding cycles accurately is an expensive operation;
for each hop, the hardware would have to match the current for-
warding addressagainst al previousforwarding addressesderefer-
enced by the same data reference. Because of this high cost—and
also because we expect forwarding cycles to be extremely rare—
we would prefer that the hardwareinstead perform afast but pos-
sibly inaccurate check for a cycle during normal execution, and
only perform accurate cycle detection when it is necessary. One
possibility is to predetermine a limit on the number of forward-
ing hops that are alowed for a given data reference. We simply
maintain a counter (which could be implemented either in hard-
ware or in software) to keep track of the number of forwarding
hops performed so far, and when this count exceedsthe limit, we
raise an exception. The corresponding software exception handler
will then perform an accurate cycle check. If it is afalse alarm,
then we will reset the counter and resume execution; otherwise,
the execution will be aborted.

Providing User-Level TrapsUpon Forwarding:  In addi-
tion to the system-level exception handlers which might be pro-
vided to support the dereferencing of forwarding addresses and
the detection of forwarding cycles, it may aso be useful to pro-
vide a lightweight user-level trapping mechanism that would be
invoked upon accessing a forwarded location. Such a mechanism
would be useful for allowing the application to tune its own per-
formance in the following two ways. First, one could write a pro-
filing tool to gather forwarding-related statistics for the purpose of
improving the performance of a future execution of the program.
For example, one might record which instructions experiencedfor-
warding for the sake of eliminating that forwarding in future runs
of the program. Second, a user-level trap handler could be used
to optimize away forwarding (and thereby improve performance)
on-the-fly. For example, one could write a tool that updates stray
pointers on-the-fly to point directly to their correct final addresses,
thereby avoiding the need to invoke the forwarding mechanism
again. (Note that one must have application-specific knowledge
in order to do this) A mechanism similar to informing memory
operation traps [17] could be used for this purpose.

3.3. Softwar e Support

Having discussed the hardware support for memory forward-
ing, we now focus on itsimpact on software.

Initialization of Forwarding Bits: The forwarding bit of a
memory word must already be clear when it is used by a program
for thefirst time. To guaranteethis, the operating system must per-
form an Unforwarded_Write (0, 0) operation on al words

in aregion of memory to initialize it before making that memory
availableto an application.

Deallocating Forwarded Data: When an object is deallo-
cated, all memory reachableviathe chain of forwarding addresses
for that object should be deallocated aswell. A simple way to ac-
complish thisis to create a wrapper memory-deallocation routine
whichfirst deallocatesall of the memory allocated on the forward-
ing chain, and then callsthe original memory-deallocation routine,
which can be either a system-provided procedure (e.g., free ()
inCanddelete() in C++) or auser-defined procedureif the
program performsits own memory management.

Memory Alignment: Sincethe minimal granularity of mem-
ory forwarding is aword, software must ensure that two different
objects which are being relocated to two different destinations do
not share the same word, since we cannot store two different for-
warding addressesin that same word. In other words, relocatable
objects must be word-aligned. Enforcing this alignment can be
accomplished either by specifying the alignment to the memory
allocator for dynamically-allocated objects, or else by tuning the
alignment option in the compiler if some relocatable objects are
statically alocated. In some compilers—e.g., the MIPS C com-
piler that we used in our experiments—aggregate objects are al-
ready aligned to word boundariesby default.

Preserving Outcomes of Pointer Comparisons. The
compiler is responsible for replacing all pointer comparisons that
could be affected by relocation with explicit code to look up and
compare final addresses. Pointer analysistechniques[14, 36] can
help the compiler avoid inserting these more costly comparisons
by ignoring caseswhere pointers cannot point to rel ocated objects.

4. Experimental Framework

To evaluate the potential performance benefits of memory for-
warding, we modeled it in a modern processor and used it to en-
ableanumber of relocation-based optimizations which we applied
to a collection of non-numeric applications. We choseto focus on
non-numeric applications because compilers are mostly unable to
guarantee the safety of data relocation in these applications. The
goals of the optimizations that we applied were improving spa-
tial locality and prefetching effectiveness. Since current compiler
technology does not support these optimizations (mainly because
their safety cannot be proven), we added these optimizations to
the applicationsmanually. Table 1 describesthe eight applications
used in our experiments along with the optimizations that we ap-
plied. All applicationswere run to completion in our simulations.

We added our proposed | SA extensionsto the underlying MIPS
ISA by making use of a few machine instruction sequences that
never appear in ordinary programs (e.g., loading avalueinto areg-
ister which is hardwired to the value zero). We modeled the full
performanceeffects of maintaining and dereferencing the forward-
ing addresses. The " Space Overhead” column shows the amount
of virtual memory space for accommodating relocated data; this
amount (ranging from 0.5MB to 14.9MB) does not present aprob-
lem in modern machines, and the simulation results include the
impact of this overhead on performance.

We implemented data dependence speculation in our simu-
lator. An ambiguous data dependence is stored in a table until



Table 1. Application characteristics. Note: “Inst. Grad.” is the number of instructions actually graduated. The “combined” miss
rate is the fraction of loads which suffer misses in both the 16KB D-cache and the 512KB L2 cache, using 32B cache lines. “Space
Overhead” is the amount of virtual memory space used for forwarding addresses.

Optimizations Insts. [ Load Miss Rate [ Space
Name Description Source Input Data Set Applied Grad. || D-Cache | Combined | Overhead
BH Barnes-Hut's N-body force Olden[7] 4K bodies Subtree clustering 1472M 2.57% 0.18% 1.7MB
calculation algorithm
Compress Compresses and decompresses SPEC95 A file of 150K Array 546M 10.20% 0.46 % 0.5MB
filein memory characters merging
Eqgntott Trandation of boolean SPEC92 int pri 3.eqn Packing of hash 1914M 5.22% 0.63% 0.5MB
equationsinto truth tables table elements
Hedlth Simulation of the Columbian Olden max. level =5 List 213M 30.66% 16.73% 4.7MB
health care system max. time = 500 linearization
MST Finds the minimum spanning Olden 1K nodes List linearization 302M 8.67% 5.35% 12.0MB
tree of agraph
Radiosity Virtual image rendering using IRISA [27] A scene consisting of 10 List 4552M 3.72% 0.26% 0.6MB
hierarchical radiosity lightly furnished rooms linearization
SMV A symbolic model checker CMU [26] The “dme2.smv” file List 302M 8.78% 3.75% 2.2MB
providedin the package linearization
VIS A verificationand synthesis TheVIS A reduction of the 8 queens List 432M 12.81% 2.53% 14.9MB
system for finite-state group [3] problem to combinational linearization
hardware systems equivalence checking
Table 2. Simulation parameters. hierarchy (including tag, bank, and bus contention), etc. Table 2
| Pipeline Perameters | showsthe parameters used in our model! for the bulk of our experi-
Issue Width 4 ments. Five line sizes—ranging from 32B to 512B—were used in
Functional Units 2 Integer, 2 FP, . ith fi . f miss|
2 Memory, 2 Branch Oyr experi me_nts, aong with five corres_pondl ng sets of miss laten-
Reorder Buffer Size 64 cies (longer lines havelonger transfer times).
Integer Multply Soydes We compiled our applicationswith -02 optimization using the
nteger Divide cycles : .
AT Otfer Tnteger Toyde standard MIPS C compllers and_ the SU_I F compller _[35] under
FP Divide 15 cycles IRIX 5.3. For the experimentswhich required theinsertion of soft-
":TI %qlrl]af GFEOOt 2(2) CY°'|°£ ware prefetchesinto the source code, we used the SUIF compiler;
ther cycles . .
Branch Prediction Scheme 2-hit Counters otherwise, the MIPS compiler was used.
| Memory Parameters | 5. Experimental Results
LineSizes 32/64/128/256/512 bytes . . .
I-Cache T6KE, direct-mapped, 2 banks We now present results from our simulation studies. We start
D-Cache 16KB, direct-mapped, 2 banks by evaluating the performance of a number of aggressive locality

Data Victim Buffer
Miss Handlers (MSHRS)
Unified S-Cache

8 32-byteentries
32for dataand 2 for inst.
512K B, 2-way set-associative, 4 banks

the two final data addressesinvolved in the dependenceare deter-

mined. If the dependenceisincorrectly specul ated, then the simu-

lator will then re-execute al instructions after (and including) the
instruction which had violated the dependence. We replaced the
memory deallocation calls in the applications by calls to our own
memory deallocator which first checkswhether thereis any mem-

ory residing in forwarding chains which must be freed. We wrote
acompiler passin SUIF [35] that automatically determined which
pointer comparisons needed to be replaced by final address com-

parisons. The overhead of executing these replaced comparisons
isincluded in our simulations.

We performed detailed cycle-by-cyclesimul ations of our appli-
cations on adynamically-schedul ed, superscal ar processor similar
to the MIPS R10000 [38]. Our simulator models the rich details
of the processor including the pipeline, register renaming, the re-
order buffer, branch prediction, branching penalties, the memory

optimizations enabled by memory forwarding (which we simply
refer to as locality optimizations). Next, we study the impact of

Primary-to-Secondary 12/18/30/54/102 cycles (plus these optimizations on prefetching effectiveness. We then examine
Miss Latencies any delaysdue to contention) the details of individual applications, explaining the optimizations
Primary-to-Memory 75/93/129/201/345 cycles (plus . L. .

Miss Latencies any delays due to contention) that we applied to each application. Finally, we study the perfor-
Primary-to-Secondary Bandwidth 16 bytes/cycle mance impact of forwarding overhead for one of the applications.

Secondary-to-Memory Bandwidth 8 bytes/cycle

5.1. Performance of L ocality Optimizations

Figure 5 shows the performance of our locality optimizations
for various cache line sizes. Seven of our eight applications are
included in Figure 5. We will show the performance of SMv sep-
arately, later in Section 5.4, sinceit is the only application that is
affected by forwarding overhead. For each applicationin Figure5,
we show three line sizes, each of which hastwo cases: the bar on
the left (N) is the original case where no locality optimization is
applied, and the bar on the right (L) is the case with locality opti-
mizations. For al applicationsexcept BH, the threeline sizes used
are 32B, 64B, and 128B. For BH, weinstead useline sizes of 32B,
256B, and 512B, because the optimization applied to BH (subtree
clustering) requires acacheline containing at |east two tree nodes,
and this requires cache lines longer than 128B (this optimization
will not be turned on for lines shorter than 256B, and that is why
the N and the L barsareidentical for the 32B line sizein BH).

Each bar in Figure 5 represents execution time normalized to
the N case of the 32B line size, and is broken down into four cat-
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Figure 5. Performance of locality optimizations for various cache line sizes (N = not optimized, L = locality optimized).

egories explaining what happened during all potential graduation
dots® The bottom section (busy) is the number of slots when
instructions actually graduate, the top two sections are any non-
graduating slots that areimmediately caused by the oldest instruc-
tion suffering either aload or store miss, and the inst stall section
isall other slotswhere instructions do not graduate. Note that the
load stall and storestall sectionsare only afirst-order approxima-
tion of the performance |loss due to cache stalls, since these delays
also exacerbate subsequent data dependence stalls. In addition,
there is a percentage in parentheses below each pair of bars rep-
resenting the speedup of the optimized over the unoptimized case
for the given line size.

Our first observation from Figure 5 is that performance gen-
erally degrades when line size increases, especialy for the unop-
timized cases. This trend is due to a lack of spatial locality in
these applications, which meansthat longer lines offer little perfor-
mance advantage. Fortunately, our locality optimizations (which
are enabled by memory forwarding) improve the spatia locality
of these application significantly. Aswe seein Figure 5, the op-
timized cases outperform the unoptimized casesfor the sameline
sizesin al applications except Compress, and the speedupsin-
crease along with line size. The performance improvement can
be dramatic—with 128B lines, Health and VIS enjoy more
than twofold speedups. Among our optimizations, list lineariza-
tion is particularly powerful since it improves the performance of
Health, MST, Radiosity, and VIS substantialy. It isinter-
esting to note that in Health, the absolute performance of the
optimized cases increases along with line size. This is due to
the prefetching benefits of long cache lines after spatial locality
is greatly improved. Compress isan exceptional case where the
locality gets worse in the optimized case for 32B and 64B lines.
We also observe from Figure 5 that the instruction overhead of
these locality optimizations is usually low, which suggests that
these optimizations could be invoked even more frequently dur-
ing the execution to further improve the data layout.

While execution time is the most important performance met-
ric, further insight can a so be gained by examining the impact on
total cache misses. Figure 6(a) showsthe number of load D-cache
misses in the unoptimized and optimized cases for different line
sizes. Each bar is normalized to the N case of the 32B line size,
and is divided into two categories indicating how a D-cache miss
isserviced. A partial missis a D-cache miss that combines with
an outstanding miss to the same line, and therefore does not nec-

5The number of graduation slotsis the issuewidth (4 in this case) mul-
tiplied by the number of cycles. We focus on graduation rather than issue
slots to avoid counting specul ative operationsthat are squashed.
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Figure 6. Additional performance metrics for the impact of lo-
cality optimizations (N = not optimized, L = locality optimized).
The y-axes are normalized to the N cases of the 32B line size.

essarily suffer the full misslatency. A full miss, on the other hand,
does not combinewith any accessand therefore suffersthefull la-
tency. Figure 6(a) clearly demonstrates that the improved spatial
locality offered by locality optimizations reduces the miss count
substantially, with more than a 35% reduction in missesin 11 out
of the 21 cases (seven applications with three line sizes each). In
many cases, both partial misses and full misses are reduced, and
hencethe total miss penalty decreasesaccordingly.

Figure 6(b) shows another useful performancemetric: thetotal
amount of bandwidth consumed by our applications. Each bar in
Figure 6(b) denotesthe total number of bytestransferred between
the primary and secondary caches (the bottom section), and the
amount transferred between the secondary cache and main mem-
ory (the top section). Again, each bar is normalized to the N case
of the 32B line size. It is clear from Figure 6(b) that locality op-
timi zations reduce the bandwidth consumptionin nearly all cases,
and achieve a bandwidth reduction of twofold or more in a few
cases. Thuswe seethat these optimizations deliver not only higher
performance, but also reduced bandwidth consumption.

5.2. Impact on the Effectiveness of Prefetching

We now turn our attention to the interaction between our |o-
cality optimizations and the effectiveness of prefetching. Based
on a profile of each application, we added software prefetches
for a few static loads that suffer significantly from cache misses.
Prefetches are inserted at the earliest points in the program where
the prefetch addressesare known (thisis donein an identical fash-
ion for both the original and locality optimized cases). We assume
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Figure 7. Performance impact of locality optimizations on
prefetching. (N = not optimized, L = locality optimized, NP
= prefetching without locality optimizations, L P = prefetching
with locality optimizations).

that asingle prefetch instruction can prefetch one or more consec-
utive cachelines (i.e. block prefetching is supported). For both the
unoptimized and optimized cases, we experimented with a range
of prefetch block sizes, and we report the results with the block
sizethat performed the best for each case.

Figure 7 shows how prefetching performs both with (LP) and
without (NP) locality optimizations. For the sake of comparison,
theN and L casesfrom Figure5 arealsoincludedin Figure7. The
cacheline size isfixed at 32B. We observe from Figure 7 that the
performance of prefetching isimproved by locality optimizations
in five applications, and two of them (VIS and Health) enjoy
speedups of over 40%. We note that four of these five applica-
tionsoperate heavily on linked lists, and previousresearch [25] has
shown that prefetching linked lists—especially those that are short
and traversed within small loop bodies—is particularly difficult
becauseof the pointer-chasing problem. AswecanseeinFigure7,
the list linearization optimization is quite successful in alleviating
this problem. With the exception of VIS (which experiences con-
siderable prefetching overhead), in the remaining four out of five
applicationswhere the locality is substantially improved, combin-
ing locality optimizations and prefetching (LP) performs better
than either technique alone (most noticeably in Health). There-
fore, it appearsthat prefetching and our locality optimizations are
complementary in nature.

5.3. Case Studies
Having studied the overall performance, we now look at the
individua applicationsin more detail.

Health, M ST, Radiosity, and VIS: We apply the same lo-
cality optimization to all four of these applications: list lineariza-
tion. The structure of the linked lists used in these applicationsis
modified throughout the program execution, and therefore list lin-
earization is invoked periodically. To make our discussion more
concrete, we use VIS asarepresentative example. VIs isalarge
application, consisting of more than 150,000 lines of C code. This
program makesextensive use of agenericlist library which imple-
ments many common list operations. Our optimizations are local-
ized within this library. We optimize the locality of list processing
as follows. We add a counter field to the head record of each list
to count how many insertion or deletion operations have been per-
formed on the list since the last time that the list was linearized.
The list linearization procedure ListLinearize ()—shown
earlier in Figure 4(b)—is invoked whenever the list’s counter ex-
ceeds a threshold, which was arbitrarily set to 50 in our experi-
ments. The counter is reset after each linearization. Despite the
simplicity and usefulness of this optimization, performing it with-
out the support of memory forwarding is dangerousdueto the fact
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Figure 8. Locality optimization for Eqntott (objects in the
same shaded region are allocated to contiguous memory).
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Figure 9. Example of the subtree clustering applied to BH
(nodes in the same shaded region are in the same cache line).

that most functions in this library return pointersto list elements,
which can be scattered across any of the over hundred source files
of VIS. Theprogram behaveincorrectly if after alist islinearized,
it is later accessed using a pointer to the middle of the list that
existed before the linearization. Fortunately, memory forwarding
allows us to simply ignore this hazard, thereby safely resulting in
an over twofold performance gain with 128B lines.

Eqgntott: The most interesting data structure in Egntott isa
hash table which stores pointers to a record of type PTERM. A
PTERM record in turn contains a pointer to an array of short in-
tegers. The original layout of this data structure is shown in Fig-
ure8(a). We optimizethelocality by (i) relocating a PTERM record
and its short integer array into a single chunk of memory, and (ii)
putting these chunksinto contiguousmemory locationsin increas-
ing order of the hash index. The optimized layout is shown in
Figure 8(b). This relocation optimization is invoked only oncein
the program, immediately after the hash table is constructed.

BH: InBH, an octree is constructed and then traversed at each
time step of the N-body force calculation. The octree is con-
structed in a depth-first order, but the traversal order isfairly ran-
dom. We improve the locality of the traversal by clustering non-
leaf nodes of the tree. We do not cluster leaf nodes since they are
actually linked together by alist and accessed via list traversals.
Subtree clustering [11] attempts to pack nodes of a subtree into a
cacheline, in the most balanced form. Locality will be improved
if the next node to be visited—which can be any of the children
of the current node—is already in the current cacheline. Figure 9
illustrates this optimization using a binary tree. Figure 9(a) shows
the original memory layout of the tree, which was created using a
pre-order traversal, and Figure 9(b) shows the memory layout af -
ter subtree clustering. Sinceanon-leaf nodein BH is 78B long, we
need cachelines of 256B or longer to do meaningful clustering.

Compress: The most relevant data structures in Compress
are two hash tables, namely htab and codetab, which areim-
plemented using arrays. Indicesto htab are computed through
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Figure 10. Performance results for SMV. (N = not optimized,
L = locality optimized with realistic forwarding, Perf = locality
optimized with perfect forwarding). The line size is fixed at 64B.

hashing, but codetab always shares the same index values
as htab. Therefore, spatia locality might be improved if
codetab [i] could be next to htab[i] in the memory. We
achieve this by copying the two tablesinto asingle larger table T
suchthat htab [i] and codetab [1] occupy adjacent elements
in T. However, as we have already seen in Figure 5, performance
isin fact degraded by this optimization for 32B and 64B lines due
to worselocality thanin the original code.

5.4. Impact of Forwarding Overhead

In each of the applicationsthat we have studied so far, we were
successful enough at updating the appropriate pointers to point to
arelocated object’s new |ocation that the forwarding mechanism
was almost never invoked. (At the same time, we would like to
point out that without memory forwarding support, we would not
have been able to apply these optimizations because they were not
provably safe.) As a result, the performance of dereferencing a
forwarding address did not matter in these cases. To quantify the
impact of forwarding overhead in a case where it does matter, we
now focus on sMv, which is the only application we studied that
experiences significant forwarding after datarel ocation.

SMV is amodel checking program which makes extensive use
of Binary Decision Diagrams (BDDs) [4]. The BDD nodes are
connected both through a hash table and through binary trees. The
hash table is organized as an array of buckets pointing to linked
lists. Since more cache misses occur during hash table accesses
than binary tree accesses, we attempted to improve locality by lin-
earizing the lists stored in the hash table. Unfortunately, since our
optimized code is not able to update the tree pointers to point to
arelocated object’s new address, forwarding does occur whenever
relocated BDD nodes are accessed via the tree pointers.

Figure 10 shows our performance results for sSMv. In addition
to the cases without (N) and with (L) locality optimization, as
shown in earlier graphs, we also show a case with locality opti-
mization and perfect forwarding (Perf). We say that memory for-
warding isperfect if all referencesto relocated objectsaccessthem
directly at their new addresses, and hence no forwarding is actu-

ally required. While thislatter caseis not achievable, it represents
a useful bound on performance. As we see in Figure 10(a), the
performance of schemelL is degraded by forwarding in two ways.
First, the act of dereferencing forwarding addresses incurs extra
time. Second, when forwarding occurs, both the old and new loca-
tions of relocated data are accessed, thereby degrading cache be-

havior. With perfect forwarding, there is no forwarding overhead
and the performance does improve. However, the improvement is
only marginal dueto the fact that we cannot optimize the layout to
accelerate both the hash table and tree access patterns.

To provide further insight into the source of the forwarding
overhead, Figure 10 presents three additional performance met-
rics. Figure 10(b) shows the impact of the schemes on the num-
ber of load and store data cache misses. Aswe seein this figure,
scheme L suffers a noticeable increase in misses. Figure 10(c)
showsthat 7.7% of loads and 1.7% of stores require one forward-
ing hop under scheme L. Finally, Figure 10(d) shows the average
number of CPU cycles needed to complete a load or store under
each scheme. Each bar in Figure 10(d) is divided into two sec-
tions explaining the reason for the stall. The forwarding section
represents the time spent dereferencing forwarding addresses, and
the ordinary section includes cache hit and miss latencies. The
ordinary sections of schemeL increase due to the cache pollution
effects of touching the forwarding pointers, as mentioned earlier.
Aswe seein Figure 10(d), both the latency of dereferencing afor-
warding address and its resulting cache pollution effects play sig-
nificant roles in the overall performance degradation. A profiling
tool based on user-level traps (as discussed earlier in Section 3.2)
could potentially identify cases such as this where forwarding oc-
curstoo frequently.

6. Conclusions

As changes in technology continue to alter the landscape of
what constitutes a major performance bottleneck, it is sometimes
worth re-examining old architectural ideas that have fallen out of
fashion to see whether they can be adapted to serve completely
new purposes. In this paper, we have examined such a technique:
memory forwarding. Although the original concept was proposed
to facilitate garbage collection in early Lisp machines, we have
demonstrated that memory forwarding can be adapted to address
the entirely modern problem of enhancing cache performance. In
addition, we have shown that it is quite feasible to implement
this mechanism within modern out-of-order superscalar proces-
sors, largely because forwarding can be treated as an exception.

By liberating aggressiverel ocation-based datalayout optimiza-
tions from concerns over violating program correctness, memory
forwarding can enable impressive performance gains: we observe
over twofold speedupsin two applications. These optimizations
are useful not only for hiding memory latency, but also for re-
ducing memory bandwidth consumption. Although one must still
exercise caution not to use forwarding carelessly, a user-level trap
mechanism can help identify and avoid caseswhere pointers have
not been updated successfully. In summary, memory forwarding
is a powerful tool which makesa large class of optimizations that
were promising in theory useful in practice. Its applicability ex-
tends beyond caches to the rest of the memory hierarchy (e.g.,
disks), and we advocatethat it be supported in future processors.
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