Dynamo: Amazon’s Highly Available
Key-value Store

Phil Gibbons
15-712 F15

Lecture 15

Dynamo: Amazon’s Highly
Available Key-value Store [sOsP'07]
e Giuseppe DeCandia (Midokura) ! 1
e Deniz Hastonrun (Facebook) |
e Madan Jampani (Open Networking Lab)

e Gunavardhan Kakulapati (founded Bidstalk) % -
e Avinash Lakshman (founded Hedvig) !
e Alex Pilchin (Architech)

e Swaminathan Sivasubramanian (GM NoSQL @Amazon)
e Peter Vosshall (VP @ Amazon)

e Werner Vogels (CTO @ Amazon)

Today’s Reminders

e Projects
- Good discussions last Friday with all groups

- 3 page project proposals due Friday October 30

Contributions

“The main contribution of this work for the research
community is the evaluation of how different techniques can
be combined to provide a single highly-available system.”

“The paper is mainly about the lessons learned.”

System Assumptions & Requirements

e Query Model & ACID Properties

- Key-value queries; State stored as blobs; No schema;
Ops on single data item; Objects < 1 MB

- Sacrifice consistency, isolation

o Efficiency
- Commodity HW

- Stringent latency SLAs (e.g., 99.9% within 300 millisecs)

e Trust
- Non-hostile environment, no authentication

e Scale
- 100s hosts

Design Considerations
“One of the main design considerations for Dynamo is to
give services control over their system properties, such as durability

and consistency, and to let services make their own tradeoffs
between functionality, performance and cost-effectiveness.”

¢ Conflict resolution after disconnection
— When: During reads in order to ensure writes never rejected

- Who: Application, fall back to “last write wins” at data store
¢ Incremental scalability in storage hosts
o Exploit heterogeneity in hosts

e Symmetry: Each node has same responsibilities as its peers

* Decentralization of control

Service-oriented Architecture

Client Requests

Yy) e

Aggregator
Services

e ag
4,\/b

Requost Routing]

[Services
e B S ;
-"tj P :‘E,)J'Ut)J — [:DJ

Hgg’ Yoo

" Dynamo instances Other datastores

.

“The choice for 99.9% [SLA] over an even higher percentile has
been made based on a cost-benefit analysis which demonstrated a
significant increase in cost to improve performance that much.”

Zero-Hop DHT

o Distributed Hash Tables (DHTSs)
such as Chord [Stoica et al, Sigcomm’01] are based on
consistency hashing [Karger et al, STOC'97]

/ Key K
1 Nodes B, C

and D store
keys in
range (A,B)
; including
e Why use DHTs?

e Zero-hop: Each node maintains enough routing info locally
to route directly to destination node

Partitioning, Replication, Versioning

e Each storage node assigned multiple positions on ring,
across data centers

e Replication in successor nodes around the ring

/ Key K

write

. @ r l handled by Sx
@ D1 ([Sx,1])
/ Nodes B, C

write
/ and D store l handled by Sx
keys in
® © =&
T including D2 ([Sx,2])
K g K.
i 4 wrile write
@ @ handled by Sy / \handred by Sz
D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])
¢ Data versioning \ / roconcited
and writton by
Sx

- Vector clocks capture version causality
D5 ([Sx,3L.[Sy.1][Sz.1])

- Truncate clocks if get too long

Replica Synchronization

e Node maintains Merkle tree for each key range it hosts

Top Hash

o

L L |
Hash Hash |
0 1
man LHET man 3
Hash [Hash Hash Hash
o0 o1 -0 11
ey Pashyia) raniL3) naaniie)
Data
1 12 & 7] ol

Execution of get() & put() Operations

¢ Client can route request directly to coordinator OR
to node based on load info, who will send to coordinator

e Quorum system: need R nodes to read, W to write
- R+W > N, where N is replication factor

¢ Return all versions that are causally unrelated (by VCs)
- Also do read repair of stale versions

¢ For availability, use “sloppy quorum”

@ / Key K
- Send to first N healthy nodes @

- Hinted handoff: If B is down, send to Nodes B, O

E instead with hint that belongsto B | . andDstore
keys in
- E sends to B when B recovers @ @ e
K.

I) O

Membership & Failure Detection

e Explicit command for adding or removing nodes from ring

e Gossip-based protocol propagates membership changes
- Each node contacts a random peer every second

- Seed nodes help avoid logical partitions

e Local view of failures suffices

Latency Optimization

e Coordinator for a write is the node that replied fastest
to the previous read operation

¢ Also, increases chance of “read-your-writes” consistency

Read/Write Latency

1000

— 3 9 Writes
-=--99 9 Reads
....... Avg. writes

-,-j ’\»:;;\Iv,“d: ‘:’-. ;fi zmbﬁ; .('{u:‘:' :ﬁ 5":.“"«.”}‘:%‘&5?” "‘"‘é :t"“*

e

Client latencies in milliseconds
(log scale)
Q
o
£
=
b
kS

Timeline
(hourly plot of latencies during our peak seson in Dec. 2006)

Couple hundred nodes with (3,2,2) configuration

Popular Configurations

* Business-logic-specific reconciliation
- E.g., Shopping cart

o Timestamp-based reconciliation: “last write wins”
- E.g., Customer session information

¢ High performance read engine
- E.g., Product catalog, Promotional items

Availability/Performance trade-off
- Typical services use N=3 replicas

- Common to use N=3, R=2, W=2

Benefits of Buffering Writes

(=]
(=3
o

—diract BDB wiitss
e yiffred Wiites

—_

_;_L
O N R D ®
S o o & &

)
e ————-.

(msec)

[==]
o
o
—
—

@
(=]
3

'
o

99 .9th percentile response times

Timeline

Fraction of Nodes Out-of-Balance

=== fraction of nodes cut-ot-
o batamce o
= request load

» A A A &
ERVAVAVAWN A -
S WA .
NV v V7

Request Load [scaled down by a
constant),

Fraction of nodes out-of-balance

A X re=i 1
i / R -«
LK) N 1} 1]
! - -y 3 4 A A A oy TT
Wi w '
e u Y]
a - L} 1] - n
Timeline

load deviation threshold = 15%

Divergent Versions

 Good metric for consistency: number of divergent versions
seen by the application in production environment

- From failures

- From concurrent writes to a single data item

o Shopping cart service: 99.94% of requests saw 1 version
- Blame robots

Partitioning & Placement Strategies
ke}/k? @ . key;M@

/1

Strategy 1 Strategy 3

— =Stratogy 1
el Strategy 2
—a— Strategy 3

5000 10000 15000 20000 25000 30000 35000

Size of metadata maintained at each node (in abstract units) _
18

Server-driven vs. Client-driven
Coordination

e Server-driven: Load balancer assigns each client read
request to a random node that acts as coordinator

¢ Client-driven: Client caches membership state (refresh by
polling random node every 10 secs). Coordinates reads
locally. Sends write requests to preference list. Avoids
extra network hop of going to random node

99.9th 99.9th
percentile | percentile | Average | Average
read write read write
latency latency latency latency
(ms) (ms) (ms) (ms)
Server-
driven 68.9 68.5 3.9 4.02
Client-
driven 30.4 30.4 1.55 1.9

Background vs. Foreground Tasks

¢ Use admission control on background tasks

¢ Feedback mechanism determines admitting rate

Dynamo Techniques & Advantages

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size is
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoff availability and

durability guarantee
when some of the
replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and Gossip-based Preserves symmetry
failure detection membership protocol | and avoids having a
and failure detection. centralized registry

for storing

membership and
node liveness
information.

Discussion

¢ Availability (in 2 years of production runs)
- Applications have received successful responses (without
timing out) for 99.9995% of requests

- No data loss event

o Key feature: Tunable (N,R,W)
- Requires tuning to get right

o Scalability challenge
- Each node has a full routing table for all data

- Could introduce hierarchical extensions to Dynamo

Wednesday’s Papers

Memory Coherence in

Shared Virtual Memory Systems
Kai Li and Paul Hudak

SigOps HoF paper

Scaling Distributed Machine Learning

with the Parameter Server
Mu Li, David Andersen, Jun Woo Park, Alexander Smola,
Amr Ahmed, Vanja Josifovski, James Long,
Eugene Shekita, Bor-Yiing Su

OosDI'14

