
Naiad: A Timely Dataflow System
Phil Gibbons
15-712 F15
Lecture 13

2

Today’s Reminders
• Discuss Project Ideas with Phil & Kevin

– Office Hours: Kevin on Tues, Phil on Wed
– Sign up for a slot: 11-12:30 or 3-4:20 this Friday

3

Naiad: A Timely Dataflow System
[SOSP’13 best paper]

• Derek Murray (Google)
• Frank McSherry (Free agent*)
• Rebecca Isaacs (Google)
• Michael Isard (Free agent)
• Paul Barham (Google)
• Martin Abadi (Google)

* “Doing less of what I used to do, and more of what I'd rather be doing.”

Naiad: A Timely Dataflow System
Derek G. Murray

Michael Isard
Frank McSherry

Paul Barham
Rebecca Isaacs
Martín Abadi

Microsoft Research

4

[Slides from SOSP’13 talk]

Batch processing Stream processing Graph processing

Timely dataflow

In ⋈

#x

@y

z?

⋈max

⋈

In ⋈

#x

@y

z?

⋈max

⋈

< 1s batch updates

< 1ms iterations

< 100ms interactive queries

Outline
Revisiting dataflow

How to achieve low latency

Evaluation

Dataflow
Stage

Connector

Dataflow: parallelism

B C

Vertex

Edge

Dataflow: iteration Batching Streamingvs.

 Requires coordination
 Supports aggregation  No coordination needed

 Aggregation is difficult

(synchronous) (asynchronous)

Batch iteration

 

Streaming iteration

 


Timely dataflow

Supports asynchronous andfine-grained synchronous execution

 – timestamp
How to achieve low latency
Programming model

Distributed progress tracking protocol

System performance engineering

Programming model

B C D

C.OPERATION(x, y, z)

C.ONCALLBACK(u, v)2×

2×
Messages

B C D

B.SENDBY(edge, message, time)

C.ONRECV(edge, message, time)


Messages are delivered asynchronously

Notifications

B C D

D.NOTIFYAT(time)

D.ONNOTIFY(time)
Notifications support batching

C.SENDBY(_, _, time)


No more messages at time or earlierD.ONRECV(_, _, time)

Programming frameworks

Timely dataflow API
Distributed runtime

FrameworksLINQ GraphLINQ
Differential dataflow BSP (Pregel)

BLOOM
AllReduce

input.SelectMany(x => x.Split()).Where(x => x.StartsWith("#"))
.Count(x => x);

How to achieve low latency
Programming model
Asynchronous and fine-grained synchronous execution
Distributed progress tracking protocol

System performance engineering

How to achieve low latency
Programming model
Asynchronous and fine-grained synchronous execution
Distributed progress tracking protocol

System performance engineering

Progress tracking
E.NOTIFYAT(t)

A B C D E

C.ONRECV(_, _, t)
C.SENDBY(_, _, tʹ) tʹ ≥ t

Epoch t is complete
Progress tracking

A
B C

D
E

Problem: C depends on its own output

C.NOTIFYAT(t)

A
B C

D
E

C.NOTIFYAT((1, 6))

D.SENDBY(1, 6)

A.SENDBY(_, _, 1)
E.NOTIFYAT(?)

B.SENDBY(_, _, (1, 7))

FAdvances timestampAdvances loop counter

E.NOTIFYAT(1)

Solution: structured timestamps in loops

C.NOTIFYAT(t)

(1, 6)

Graph structure leads to an order on events

A
B C

D
E

(1, 5)

(1, 6) (1, 6)
1⊤

F

(1, 6)

Graph structure leads to an order on events

A
B C

D
E

(1, 5)

(1, 6) (1, 6)
1⊤

F
ONNOTIFY(t) is called afterall calls to ONRECV(_, _, t)

1. Maintain the set of outstanding events
2. Sort events by could-result-in (partial) order
3. Deliver notifications in the frontier of the set

D.ONRECV(_, _, (1, 5))
C.SENDBY(_, _, (1, 5))

E.ONNOTIFY(1)

E.NOTIFYAT(1)

Optimizations make doing this practical

How to achieve low latency
Programming model
Asynchronous and fine-grained synchronous execution
Distributed progress tracking protocol
Enables processes to deliver notifications promptly
System performance engineering

How to achieve low latency
Programming model
Asynchronous and fine-grained synchronous execution
Distributed progress tracking protocol
Enables processes to deliver notifications promptly
System performance engineering

Performance engineering
Microstragglers are the primary challenge
Garbage collection O(1–10 s)
TCP timeouts O(10–100 ms)
Data structure contention O(1 ms)
For detail on how we handled these, see paper (Sec. 3)

How to achieve low latency
Programming model
Asynchronous and fine-grained synchronous execution
Distributed progress tracking protocol
Enables processes to deliver notifications promptly
System performance engineering
Mitigates the effect of microstragglers

Outline
Revisiting dataflow

How to achieve low latency

Evaluation

System design

Limitation:
Fault tolerance via checkpointing/logging (see paper)

S S S S
Progress tracker

S S S S
Progress tracker

Data

Control

64  8-core 2.1 GHz AMD Opteron16 GB RAM per serverGigabit Ethernet

Iteration latency

0
1
2
3

0 20 40 60 80Iter
atio

n la
ten

cy
(ms

)

Number of computers

64  8-core 2.1 GHz AMD Opteron16 GB RAM per serverGigabit Ethernet

Median: 750 μs

95th percentile: 2.2 ms

Timely dataflow API
Distributed runtime

FrameworksLINQ GraphLINQ
Differential dataflow BSP (Pregel)

BLOOM

ApplicationsWord count
Iterative machine learningPageRank
Interactive graph analysis

AllReduce

PageRank

1

10

100

0 20 40 60 80

Iter
atio

n le
ngt

h (s
)

Number of computers

Pregel (Naiad)
GraphLINQ

GAS (Naiad)
GAS (PowerGraph)

Twitter graph42 million nodes1.5 billion edges
64  8-core 2.1 GHz AMD Opteron16 GB RAM per serverGigabit Ethernet

32K tweets/s

10 queries/s

Interactive graph analysis

In ⋈

#x

@y

z?

⋈max

⋈

Query latency

1
10

100
1000

30 35 40 45 50

Que
ry l

ate
ncy

 (m
s)

Experiment time (s)

32  8-core 2.1 GHz AMD Opteron16 GB RAM per serverGigabit Ethernet

Max: 140 ms99th percentile: 70 msMedian: 5.2 ms

[End of slides from SOSP’13 talk]

41

Could-Result-In
• Timestamp

– (epoch, sequence of loop counters)
• Pointstamp

– (timestamp, location), location is either edge or vertex
• Path Summary for ࢒૚ to ࢒૛

– Loop coordinates that its vertices remove, add, increment
– Ψ[݈ଵ, ݈ଶ] transforms a timestamp at ݈ଵto a timestamp at ݈ଶ

• Pointstamp (࢚૚, (૚࢒ could-result-in pointstamp (࢚૛, (૛࢒
– Ψ ݈ଵ, ݈ଶ ଵݐ ≤ ଶݐ
– OK to notify pointstamp p iff no p’ could-result-in p

F

42

Distributed Implementation
• Workers communicate using shared queues

– Have no other shared state
– Single thread of control within a vertex

• Optimizing broadcast updates
– Track progress on per stage/connector-basis not vertex/edge
– Accumulate updates in buffer by summing their deltas
– Accumulate at process level & cluster level
– Optimistic UDP update packup
– Wake workers in parallel

43

Micro-straggler Mitigation
• Networking

– Disable Nagle’s algorithm; Reduce delayed ack timeout to 10ms; Reduce min transmission time from 300ms to 20ms
– Future: Try Datacenter TCP & RDMA over InfiniBand

• Data structure contention (in .NET concurrent queues)
– Reduce clock granularity to 1 ms

• Garbage collection
– Trigger GC less frequently; Avoid object allocation; Use value types (single pointer)

44

Microbenchmark Performance

45

Graph Algorithms

46

Streaming Acyclic Computation

Naiad: 482K tweets/s (None); 273K (Logging)Kineograph: 185K tweets/s in 90 s avg latency; reduced ingestion rate in 10 s avg latency

47

Streaming Iterative Graph Analytics

In ⋈

#x

@y

z?

⋈max

⋈

48

Naiad
• Timely Dataflow

– Structured loops
– Stateful vertices consume/produce records w/o coordination
– Notifications for vertices when input or iteration is done

“We believe that separating systems design into a common platform component and a family of libraries or domain-specific languages is good for both users and researchers.”

F

49

Wednesday’s Paper

Spanner: Google’s Globally-Distributed DatabaseJames Corbett, Jeffrey Dean, Michael Epstein, et al.
OSDI’12 best paper

