Naiad: A Timely Dataflow System

Phil Gibbons
15-712 F15

Lecture 13

Naiad: A Timely Dataflow System
[SOSP’13 best paper]

e Derek Murray (Google)
e Frank McSherry (Free agent*) |
* Rebecca Isaacs (Google)
e Michael Isard (Free agent)
e Paul Barham (Google)

e Martin Abadi (Google)

* “Doing less of what I used to do, and more of
what I'd rather be doing.”

Today’s Reminders

¢ Discuss Project Ideas with Phil & Kevin
- Office Hours: Kevin on Tues, Phil on Wed

- Sign up for a slot: 11-12:30 or 3-4:20 this Friday

[Slides from SOSP’13 talk]

Naiad:
A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martin Abadi

Microsoft Research

Batch
Drocessing

I I

Timely dataflow

< 1s batch updates
A

Outline

Revisiting dataflow

How to achieve low latency

Evaluation

< 100ms interactive queries

Dataflow

Stage

Connector

Dataflow: parallelism

Vertex

Dataflow: iteration

Batching

(synchronous)

Vv
]
v ¥

~x Requires coordination
v Supports aggregation

VsS.

Streaming

Vv ¥
]
AR

v" No coordination needed
% Aggregation is difficult

Batch iteration

Streaming iteration

Timely dataflow

Supports asynchronous and
fine-grained synchronous execution

How to achieve low latency

Programming model
Distributed progress tracking protocol

System performance engineering

Programming model

2 x| C.OPERATION(X, V, 2)

=t

2 x1 C.ONCALLBACK(u, V)

Messages

B.SENDBY(edge, message, time)

C.ONREcv(edge, message, time)

Messages are delivered asynchronously

Notifications

C.SENDBY(, _, time) DANOTIF;(AT(tlme

No more messages at time or;, D.ONRECV(_, _, time) ¥(time)

Notifications support batching

Programming frameworks
input.SelectMany(x => x.Split())
.Where(x => x.StartsWith("#"))
.Count(x => x);

LINQ GraphLINQ BLOOM
AllReduce Frameworks
Differential dataflow BSP (Pregel)

Timely dataflow API

Distributed runtime

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Progress tracking

C.ONRECV(,, _, t)

—

C.SENDBY(, _, t) t'>t

— —

Progress tracking

C.NOTIFYAT(t)

Problem: C depends on its own output

B.SENDBY(, _, (1, 7))

A.SENDBY(, _, 1) C-NOTIf\I/IAT(t) '

\NO A

Advances |
loopreeiatey _ _ _ _ _ _ _ _ ___ |

D.SENDBY(1, 6)

Solution: structured timestamps in loops

Graph structure leads to an order on events

Graph structure leads to an order on events

(1,6) . (1,6) | _
1. Maintain the set of outstanding events

2. Sort events by could-result-in (partial) order

3. Deliver notifications in the frontier of the set
I N N =

ONNOTIFY(t) is called after o

all calls to ONREcV(, , 1))

(1, 6)

C.SENDBY(,, _, (1, 5))

DONRECV(. . (1, 5)) Optlmlzgtlons
________ make doing
| EONNoTIFY(1) - this practical

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver natifications promptly

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver notifications promptly

System performance engineering

Performance engineering

Microstragglers are the primary challenge

Garbage collection O(1-10s)
TCP timeouts O(10-100 ms)
Data structure contention O(1 ms)

For detail on how we handled these, see paper (Sec. 3)

How to achieve low latency

Programming model

Asynchronous and fine-grained synchronous execution

Distributed progress tracking protocol

Enables processes to deliver notifications promptly

System performance engineering

Mitigates the effect of microstragglers

Outline

Revisiting dataflow

How to achieve low latency

Evaluation

System design

Control

64 x 8-core 2.1 GHz AMD Opteron
16 GB RAM per server
Gigabit Ethernet

® 0 00
@ ®© 0O
@ ®© 0 O
@ © @ O
| _Progress tracker |

® 6 06 O
@ @ 0 ©
@ @ @ @
@ © @ @
[_Progres vacker]
Limitation:

Fault tolerance via checkpointing/logging (see paper)

Iteration latency

Iteration latency

(ms)

O A N W

64 x 8-core 2.1 GHz AMD Opteron
16 GB RAM per server
Gigabit Ethernet

95th percentile: 2.2 ms

1

0 20 40 60 80
Number of computers

lterative machine learning

Interactive graph analysis

PageRank
Applications
Word count PP

AllReduce Frameworks
Differential dataflow BSP (Pregel)

BLOOM

Timely dataflow API

Distributed runtime

Twitter graph 64 x 8-core 2.1 GHz AMD Opteron
42 million nodes 16 GB RAM per server

Pa g e Ra 1] k 1.5 billion edges Gigabit Ethernet

Interactive graph analysis

——— o ———

32K tweets/s

100
O
S
g’ g\ Pregel (Naiad)
% 10 ‘o._~
g --..--__.____-.
g GAS (PowerGraph)
1
0 20 40 60 80
Number of computers
32 x 8-core 2.1 GHz AMD Opteron
16 GB RAM per server
Query Iatency Gigabit Ethernet
Max: 140 ms

__1000
w
E
S 100
c
7]
=
> 10
@
S
o

1

30 35 40 45 50

Experiment time (s)

10 queries/s :@ (@)
Conclusions

Low-latency distributed computation enables Naiad to:

« achieve the performance of specialized frameworks
« provide the of a generic framework

The timely dataflow APl enables parallel innovation

Now available for download:
http://github com/MicrosoftResearchSVC/naiad/

[End of slides from SOSP’13 talk]

Could-Result-In

e Timestamp
- (epoch, sequence of loop counters)

e Pointstamp
- (timestamp, location), location is either edge or vertex

e Path Summary for [, to [,
- Loop coordinates that its vertices remove, add, increment

- W[, l,] transforms a timestamp at [;to a timestamp at [,

¢ Pointstamp (t¢,,l,) could-result-in pointstamp (¢,,1,)
- YLD <t

- OK to notify pointstamp p iff no p’ could-result-in p

Micro-straggler Mitigation

¢ Networking
- Disable Nagle’s algorithm; Reduce delayed ack timeout to
10ms; Reduce min transmission time from 300ms to 20ms

— Future: Try Datacenter TCP & RDMA over InfiniBand

e Data structure contention (in .NET concurrent queues)
- Reduce clock granularity to 1 ms

e Garbage collection

- Trigger GC less frequently; Avoid object allocation; Use value
types (single pointer)

Distributed Implementation

e Workers communicate using shared queues
- Have no other shared state

- Single thread of control within a vertex

e Optimizing broadcast updates
- Track progress on per stage/connector-basis not vertex/edge

Accumulate updates in buffer by summing their deltas

- Accumulate at process level & cluster level

Optimistic UDP update packup

Wake workers in parallel

Microbenchmark Performance
i P T P g o
T el Ideal - - - - E | 9otmstnperconties —— <
S g | NET Sockol -~ - b= r Quartiles —— S
2 Nalad 2 — B
g 40 iR 3
5 2
s o 2 I
gl g 05 3
@ 9 ! L L L 1 L L= 0 L 1 1 1 L Il 2
< "0 10 20 0 4 50 60 0 10 20 30 40 50 &0 0 10 20 30 40 50 &0
Number of compulers Number of computers Number of compulers
(a) All-to-all exchange throughput (§5.1) (b) Global barrier latency (§5.2) (c) Progress tracking optimizations (§5.3)
g s T — — 3 £ s .
2 45 - wordCount ---a SATd B WCC = - - _3-4
g oF WCG - o - & 4 § 14[WordCount oy 3~ % -4
@ r -t = -x”
B of A {4 & 13} _.F
£ af et 18 ¥ I
. 2or - 1 5 a2fl -
£ 150 s 1 Z i ¥
E Lo 4 s b Ry -]
] ‘2,,- 1 2 Migaek L oE ¥
g ol L L L L L 2 1 L il L
@0 10 20 30 40 50 60 0 {0 20 30 40 50 B0
Number of computers Number of computers
(d) Strong scaling (§5.4) (e) Weak scaling (§5.4)

Graph Algorithms

Algorithm | PDW DryadLINQ SHS Naiad

PageRank | 156,982 68,791 836,455 4,656
SCC 7,306 6,294 15903 729
WCC 214,479 160,168 26210 268
ASP 671,142 749,016 2,381,278 1,131

Table 1: Running times in seconds of several graph
algorithms on the Category A web graph. Non-Naiad
measurements are due to Najork et al. [34].

Streaming Iterative Graph Analytics

1000 T

w
E
» 100
£
@
2
2 i0
8 L
T B o
Fresh -....... 1s delay
1 L L 1
30 35 40 45 50

Time from start of trace (s)

Streaming Acyclic Computation

Fraction of responses

Response latency (s)

(c) k-Exposure response time (§6.3)

Naiad: 482K tweets/s (None); 273K (Logging)
Kineograph: 185K tweets/s in 90 s avg latency;

reduced ingestion rate in 10 s avg latency

Naiad

e Timely Dataflow
— Structured loops

- Stateful vertices consume/produce records w/o coordination

- Notifications for vertices when input or iteration is done

“We believe that separating systems design into a common
platform component and a family of libraries or domain-
specific languages is good for both users and researchers.”

PageRank Iterative machine learning
Applications

Word count . -
Interactive graph analysis

LINQ GraphLINQ g ooM
AlReduce Frameworks
Differential dataflow BSP (Pregel)

Timely dataflow API

Wednesday’s Paper

Spanner: Google’s Globally-Distributed Database
James Corbett, Jeffrey Dean, Michael Epstein, et al.

OSDI’'12 best paper

