
MapReduce & Spark
Phil Gibbons
15-712 F15
Lecture 12

2

Today’s Reminders
• Emerald Therapeutics

– SV start-up company (co-founded by 2 CMU alums) that straddles the fields of computer science and biotechnology
– 6 pm today in DH 2302: “Building cross platform desktop apps using web technologies: The Emerald Integrated Science Environment”

• Discuss Project Ideas with Phil & Kevin
– Sign up for a slot: 11-12:30 or 3-4:20 next Friday

3

MapReduce: Simplified Data Processing on Large Clusters
[OSDI’04]

• Jeffrey Dean (Google)
– NAE member, ACM Infosys Award, Mark Weiser Award
– Google Translate, BigTable, Spanner, GoogleBrain

• Sanjay Ghemawat (Google)
– ACM Infosys Award, Mark Weiser Award
– GFS, BigTable, Spanner

4

Major Contributions
• A simple & powerful interface that enables automatic parallelization & distribution of large-scale computations
• An implementation of this interface that achieves high performance on large clusters of commodity PCs

“Programmers without any experience with parallel & distributed systems can easily [in 30 mins] utilize the resources of a large distributed system.”

5

Programming Model

• Map: (k1,v1) -> list(k2,v2)
• [Shuffle: group-by k2]
• Reduce: (k2,list(v2)) -> list(v2)

6

Implementation

o Input split pieces typically 16-64MBs
o Buffer then write to local disk, partitioned into R regions
o Reduce-workers use RPC to remotely read from disks then sort

7

Fault Tolerance
• When map-worker fails?

– Map-tasks re-assigned; Reduce-tasks informed
– Completed map-tasks re-executed

• When reduce-worker fails?
– Reduce-tasks re-assigned
– Completed reduce-tasks are already in global file system

• When master fails?
– Currently: abort MapReduce computation

• Semantics on failure?
– When map & reduce are deterministic, semantics equivalentto sequential execution (rely on atomic file renaming)

8

Other Issues
• Locality: Schedule map task (near) where data resides
• Task Granularity: M & R constrained by

– Master makes O(M+R) scheduling decisions, keeps O(MR) state
– R separate output files
– Often make R a small multiple of number of machines

• Stragglers:
– Causes: Error correction on bad disk, multi-tenancy, bug in initialization code that disabled processor caches
– Solution: Fire off back-up tasks for remaining in-progress tasks
– Why is duplicating work NOT a problem?

9

Refinements
• User-defined partitioning functions
• User-defined combiner function for “partial reducing”in map tasks
• Skip bad records that cause deterministic crashes
• Input/output types, Side-effects, Local execution, Status info, Counters, etc

10

Performance
• Setup: 1800 machines (two 2GHz Xeons, 4GBs memory)

11

Experience
• Big success: Widely used within Google

– Large-scale machine learning, clustering for Google News & Froogle, popular queries reports, large-scale graph computations, etc.
• Complete rewrite of production indexing system for Google web search (20 TBs of crawled webpages)

– Indexing code is simpler, smaller, easier to understand
– Keep conceptually unrelated computations separate—makes easier to change indexing process
– Ease of elasticity

12

Today

HDFS is widely-usedYARN is reasonably popular
Hadoop MapReduce is performance strawman:Large gains vs. MR not even worth noting

13

Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
Isard, Budiu, Yu, Birrell, Fetterly[EuroSys’07]

E.g., Gravitational Lens Query: Find all objects in U that have neighboring objects within 30 arc seconds (N) s.t. at least 1 neighbor has a color similar to the primary object’s color

DryadLINQ [OSDI’08]: Dryad programs written using LINQ
14

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
[NSDI’12 best paper]

• Matei Zaharia (MIT)
• Mosharaf Chowdhury (to Michigan)
• Tathagata Das (Databricks)
• Ankur Dave (UC Berkeley)
• Justin Ma (UC Berkeley)
• Murphy McCauley (UC Berkeley)
• Mike Franklin (UC Berkeley, ACM Fellow)
• Scott Shenker (UC Berkeley, NAE)
• Ion Stoica (UC Berkeley, ACM Fellow,PhD@CMU)

Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

 A restricted form of shared memory, based on coarse-grained
deterministic transformations rather than fine-grained updates
to shared state: expressive, efficient and fault tolerant

Spark: Key Idea
Features:
• In-memory speed w/fault tolerance via lineage tracking
• Bulk Synchronous Resilient Distributed Datasets

A Fault-Tolerant Abstraction forIn-Memory Cluster Computing
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,Michael Franklin, Scott Shenker, Ion Stoica
UC Berkeley

UC BERKELEY

[Slides from NSDI’12 Talk]

Motivation
MapReduce greatly simplified “big data” analysis on large, unreliable clusters
But as soon as it got popular, users wanted more:

»More complex, multi-stage applications(e.g. iterative machine learning & graph processing)
»More interactive ad-hoc queries

Response: specialized frameworks for some of these apps (e.g. Pregel for graph processing)

Motivation
Complex apps and interactive queries both need one thing that MapReduce lacks:

Efficient primitives for data sharing

In MapReduce, the only way to share data across jobs is stable storage  slow!

Examples
iter. 1 iter. 2 . . .

Input

HDFSread HDFSwrite HDFSread HDFSwrite

Input

query 1
query 2
query 3

result 1
result 2
result 3

. . .

HDFSread

Slow due to replication and disk I/O,but necessary for fault tolerance

iter. 1 iter. 2 . . .
Input

Goal: In-Memory Data Sharing

Input

query 1
query 2
query 3

. . .

one-timeprocessing

10-100× faster than network/disk, but how to get FT?

Challenge
How to design a distributed memory abstraction that is both fault-tolerant and efficient?

Challenge
Existing storage abstractions have interfaces based on fine-grained updates to mutable state

»RAMCloud, databases, distributed mem, Piccolo
Requires replicating data or logs across nodes for fault tolerance

»Costly for data-intensive apps
»10-100x slower than memory write

Solution: Resilient Distributed Datasets (RDDs)
Restricted form of distributed shared memory

» Immutable, partitioned collections of records
»Can only be built through coarse-graineddeterministic transformations (map, filter, join, …)

Efficient fault recovery using lineage
»Log one operation to apply to many elements
»Recompute lost partitions on failure
»No cost if nothing fails Input

query 1
query 2
query 3

. . .

RDD Recovery

one-timeprocessing

iter. 1 iter. 2 . . .
Input

Generality of RDDs
Despite their restrictions, RDDs can express surprisingly many parallel algorithms

»These naturally apply the same operation to many items
Unify many current programming models

»Data flow models: MapReduce, Dryad, SQL, …
»Specialized models for iterative apps: BSP (Pregel), iterative MapReduce (Haloop), bulk incremental, …

Support new apps that these models don’t

MemorybandwidthNetworkbandwidth

Tradeoff Space

Granularityof Updates

Write Throughput

Fine

Coarse
Low High

K-V stores,databases,RAMCloud Best for batchworkloads

Best fortransactionalworkloads

HDFS RDDs

Spark Programming Interface
DryadLINQ-like API in the Scala language
Usable interactively from Scala interpreter
Provides:

»Resilient distributed datasets (RDDs)
»Operations on RDDs: transformations (build new RDDs), actions (compute and output results)
»Control of each RDD’s partitioning (layout across nodes) and persistence (storage in RAM, on disk, etc)

Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

Block 1

Block 2

Block 3

Worker

Worker
Worker

Master

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

tasks
results

Msgs. 1

Msgs. 2

Msgs. 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in <1 sec (vs 20 sec for on-disk data)Result: scaled to 1 TB data in 5-7 sec(vs 170 sec for on-disk data)

RDDs track the graph of transformations that built them (their lineage) to rebuild lost data
E.g.: messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

Fault Recovery

HadoopRDD FilteredRDD MappedRDD

Fault Recovery Results
119

57 56 58 58
81

57 59 57 59

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10

Iter
atr

ion
 tim

e (s
)

Iteration

Failure happens

Example: PageRank
1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

Σi∈neighbors ranki / |neighborsi|
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {

ranks = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}.reduceByKey(_ + _)
}

Optimizing Placement
links & ranks repeatedly joined
Can co-partition them (e.g. hash both on URL) to avoid shuffles
Can also use app knowledge, e.g., hash on DNS name
links = links.partitionBy(

new URLPartitioner())

reduce
Contribs0

join

join
Contribs2

RanksRanks0(url, rank)
LinksLinks

(url, neighbors)

. . .
Ranks2

reduce

Ranks1

PageRank Performance
171

72
23

0
50

100
150
200

Tim
e p

er i
tera

tion
 (s) Hadoop

Basic Spark
Spark + ControlledPartitioning

Implementation
Runs on Mesos [NSDI 11]to share clusters w/ Hadoop
Can read from any Hadoop input source (HDFS, S3, …)

Spark Hadoop MPI
Mesos

Node Node Node Node

…

No changes to Scala language or compiler
» Reflection + bytecode analysis to correctly ship code

www.spark-project.org

Programming Models Implemented on Spark
RDDs can express many existing parallel models

»MapReduce, DryadLINQ
»Pregel graph processing [200 LOC]
» Iterative MapReduce [200 LOC]
»SQL: Hive on Spark (Shark) [in progress]

Enables apps to efficiently intermix these models

All are based oncoarse-grained operations

Open Source Community
15 contributors, 5+ companies using Spark,3+ applications projects at Berkeley
User applications:

»Data mining 40x faster than Hadoop (Conviva)
»Exploratory log analysis (Foursquare)
»Traffic prediction via EM (Mobile Millennium)
»Twitter spam classification (Monarch)
»DNA sequence analysis (SNAP)
» . . .

Related Work
RAMCloud, Piccolo, GraphLab, parallel DBs» Fine-grained writes requiring replication for resilience
Pregel, iterative MapReduce» Specialized models; can’t run arbitrary / ad-hoc queries
DryadLINQ, FlumeJava» Language-integrated “distributed dataset” API, but cannot share datasets efficiently across queries
Nectar [OSDI 10]» Automatic expression caching, but over distributed FS
PacMan [NSDI 12]» Memory cache for HDFS, but writes still go to network/disk

Conclusion
RDDs offer a simple and efficient programming
model for a broad range of applications
Leverage the coarse-grained nature of many
parallel algorithms for low-overhead recovery
Try it out at www.spark-project.org

[End of slides from NSDI’12 Talk]

Spark Stack continued innovations

Tachyon: Memory-speed data sharing among jobs in different frameworks
(e.g., Spark & Hadoop). Keeps in-memory data safe even when job crashes
GraphX: Tables & Graphs are views of
same physical data, exploit semantics
of view for efficient operation

Spark Timeline
• Research idea in 2009
• Open source release in 2011
• Into Apache Incubator in 2013
• In all major Hadoop releases in 2014
• 1000+ companies using Spark in 2015
• Pipeline of research breakthroughs (publications in best

conferences) fuel continued leadership & uptake
• Start-up (Databricks), Open Source Developers, and Industry

partners (IBM, Intel) make code commercial-grade

A Brave New World

Fast Path for impact via Open Source:
Pipeline of Research Breakthroughs that make it into

widespread commercial use in under 2 years

41

Monday’s Paper

Naiad: A Timely Dataflow SystemDerek Murray, Frank McSherry, Rebecca Isaacs,Michael Isard, Paul Barham, Martin Abadi
SOSP’13 best paper

