MapReduce & Spark

Phil Gibbons
15-712 F15

Lecture 12

MapReduce: Simplified Data Processing

on Large Clusters
[0SDI'04]

o Jeffrey Dean (Google)
- NAE member, ACM Infosys Award, Mark Weiser Award

- Google Translate, BigTable, Spanner, GoogleBrain

e Sanjay Ghemawat (Google)
- ACM Infosys Award, Mark Weiser Award

- GFS, BigTable, Spanner

Today’s Reminders

e Emerald Therapeutics
- SV start-up company (co-founded by 2 CMU alums) that
straddles the fields of computer science and biotechnology

- 6 pm today in DH 2302: “Building cross platform desktop apps
using web technologies: The Emerald Integrated Science
Environment”

¢ Discuss Project Ideas with Phil & Kevin
- Sign up for a slot: 11-12:30 or 3-4:20 next Friday

Major Contributions

¢ A simple & powerful interface that enables automatic
parallelization & distribution of large-scale computations

 An implementation of this interface that achieves high
performance on large clusters of commodity PCs

“Programmers without any experience with parallel &
distributed systems can easily [in 30 mins]
utilize the resources of a large distributed system.”

Programming Model

e Map: (k1,v1) -> list(k2,v2)
¢ [Shuffle: group-by k2]

e Reduce: (k2,list(v2)) -> list(v2)

Fault Tolerance

* When map-worker fails?
- Map-tasks re-assigned; Reduce-tasks informed

- Completed map-tasks re-executed

e When reduce-worker fails?
- Reduce-tasks re-assigned

- Completed reduce-tasks are already in global file system

¢ When master fails?
- Currently: abort MapReduce computation

o Semantics on failure?

- When map & reduce are deterministic, semantics equivalent
to sequential execution (rely on atomic file renaming)

Implementation

Ol D fork

» assign
adsign reduce

map

(5) remote read

©wite "ot
file 0

output

file 1

worker

(4) local write

ORI

Tnput Map Intermediate files Reduce Output
files phase (on local disks) phase files

o Input split pieces typically 16-64MBs
o Buffer then write to local disk, partitioned into R regions
o Reduce-workers use RPC to remotely read from disks then sort

Other Issues

e Locality: Schedule map task (near) where data resides

e Task Granularity: M & R constrained by
- Master makes O(M+R) scheduling decisions, keeps O(MR) state

- R separate output files
- Often make R a small multiple of number of machines

e Stragglers:

- Causes: Error correction on bad disk, multi-tenancy, bug in
initialization code that disabled processor caches

- Solution: Fire off back-up tasks for remaining in-progress tasks
- Why is duplicating work NOT a problem?

Refinements

o User-defined partitioning functions

”

o User-defined combiner function for “partial reducing
in map tasks

o Skip bad records that cause deterministic crashes

o Input/output types, Side-effects, Local execution,
Status info, Counters, etc

Experience

¢ Big success: Widely used within Google

- Large-scale machine learning, clustering for Google News
& Froogle, popular queries reports, large-scale graph
computations, etc.

e Complete rewrite of production indexing system for
Google web search (20 TBs of crawled webpages)

- Indexing code is simpler, smaller, easier to understand

- Keep conceptually unrelated computations separate—
makes easier to change indexing process

- Ease of elasticity

e Setup: 1800 machines (two 2GHz Xeons, 4GBs memory)
2000 Doe 20000 Hoee 200007 Done
2 15000] 15000
Z 10000+ 10000 10000 -

2 so0 500 5000

= Al
500 1000 sbo 1000 T sbo 1000

20000+ 20000 20000

£ 15000 15000 15000

< 100004 10000 10000 -

g

I o =i " opa
sbo 1000 500 1000 Vs 1000

20000 20000 20000

& 15000 15000 - 15000 |

€ o000 10000 - 10000 -

£ somq 5000+ so00]

-

H [rrmn [IS P
500 1000 fs 100 500 1000
Seconds Secamds Seconds

(a) Normal execution (b) No backup tasks (c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

Today

ChErbEp

Welcome to Apache™ Hadoop®!

E

What Is Apache Hadoop?

The Apache™ Hadoop® profect develops open-source software for reliable, scalable, distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availabilty, the fibrary itsel is
designed to detect and handie fallures at the appllcation layer, so delivering a highiy-avallable service on top of a cluster of computers, each of which may be prone to fallures.

The project includes these modules:

+ Hadoop Common: The common utilties that support the other Hadoop modules,
+ Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
+ Hadoop YARN: A framework for job scheduling and cluster resource management.

+ Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

HDFS is widely-used
YARN is reasonably popular

Hadoop MapReduce is performance strawman:
Large gains vs. MR not even worth noting

Dryad: Distributed Data-
Parallel Programs from
Sequential Building Blocks

Isard, Budiu, Yu, Birrell, Fetterly
[EuroSys’07]

E.g., Gravitational Lens Query:
Find all objects in U that have
neighboring objects within 30 arc
seconds (N) s.t. at least 1 neighbor
has a color similar to the primary
object’s color

DryadLINQ [OSDI'08]: Dryad

programs written using LINQ ok M e

Spark: Key Idea

s e spark

Features:
* In-memory speed w/fault tolerance via lineage tracking
« Bulk Synchronous

Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

+ Arestricted form of shared memory, based on coarse-grained
deterministic transformations rather than fine-grained updates
to shared state: expressive, efficient and fault tolerant

: : Lineage Tracking

Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for
In-Memory Cluster Computing
[NSDI'12 best paper]
e Matei Zaharia (MIT) £ O\
e Mosharaf Chowdhury (to Michigan)
e Tathagata Das (Databricks)

e Ankur Dave (UC Berkeley)
¢ Justin Ma (UC Berkeley)
e Murphy McCauley (UC Berkeley)

e Mike Franklin (UC Berkeley, ACM FeIIow)'.;/1
o Scott Shenker (UC Berkeley, NAE)

¢ Ion Stoica (UC Berkeley, ACM Fellow,
PhD@CMU)

[Slides from NSDI'22 Talk]

Resilient Distributed Datasets

A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

UC Berkeley Iab

Motivation

MapReduce greatly simplified “big data” analysis
on large, unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)

» More interactive ad-hoc queries

Response: specialized frameworks for some of
these apps (e.g. Pregel for graph processing)

Motivation

Complex apps and interactive queries both need
one thing that MapReduce lacks:

Efficient primitives for data sharing

In MapReduce, the only way to share data
across jobs is stable storage = slow!

Examples
HDFS HDFS HDFS HDFS
Input

result1

result 2

result 3

Slow due to replication and disk I/O,
but necessary for fault tolerance

Goal: In-Memory Data Sharing

one-time
processing

Input

[10-100x faster than network/disk, but how to get FT?]

Challenge

How to design a distributed memory abstraction

that is both fault-tolerant and efficient?

Challenge

Existing storage abstractions have interfaces

based on fine-grained updates to mutable state
» RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes
for fault tolerance

» Costly for data-intensive apps

» 10-100x slower than memory write

Solution: Resilient Distributed
Datasets (RDDs)

Restricted form of distributed shared memory
» Immutable, partitioned collections of records
» Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails

RDD Recovery

one-time
_____processing g

Generality of RDDs

Despite their restrictions, RDDs can express

surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t

Tradeoff Space

Network Memory

Fine band:mdth band:mdth
K-V i Best for !
stores, @D +» transactional |
. databases, i workloads i
Granularity RAMCloud ! !

of Updates E I Best for batch
! ' w workloads

HDFS © ! RDDs @
Coarse i i

Low High

Write Throughput

Spark Programming Interface

DryadLINQ-like APl in the Scala language
Usable interactively from Scala interpreter

Provides:
» Resilient distributed datasets (RDDs)
» Operations on RDDs: transformations (build new RDDs),
actions (compute and output results)
» Control of each RDD’s partitioning (layout across nodes)
and persistence (storage in RAM, on disk, etc)

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

Tlines = spark.textFile(*hdfs://...")
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 270 sec for on-disk data)

Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error™))
map(_.split(\t’)(2))

HadoopRDD FilteredRDD MappedRDD
- -)
S (! (e
= i~ =

Fault Recovery Results

"
~
)

119 Failure happens

[}
N
o

e (s)

m
[y
o
o

81
57 56 58 58 57 59 57 59

(ERRRRRENT

1 2 3 4 5 6 7 8 9 10
Iteration

©
o

S
o O

Iteratrion ti

N
o

o

Example: PageRank

1. Start each page with arank of 1
2. On each iteration, update each page's rank to
b3 rank; / |neighbors;|

i€neighbors

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

Tinks
ranks

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmap {
(Cur1, (1links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceBykey(_ + _)
}

Optimizing Placement

(Links | LRankso} Tinks & ranks repeatedly joined

(url, neighbors)J (url, rank)

\l join Can co-partition them (e.g. hash

Contribs, both on URL) to avoid shuffles

g

?

educe
[Ranks, J
join

Contribs,

Can also use app knowledge,
e.g., hash on DNS name

Tinks = Tinks.partitionBy(
reduce new URLPartitioner())

/.

PageRank Performance

200 - 171
J & Hadoop
150
i Basic Spark
100 72

Spark + Controlled

50 Partitioning

Time per iteration (s)

Implementation

Runs on Mesos [NSDI 11]
to share clusters w/ Hadoop

=opark=FHadoop =M=

Can read from any Hadoop

input source (HDFS, S3, ...) | H H H

No changes to Scala language or compiler
» Reflection + bytecode analysis to correctly ship code

www.spark-project.org

Programming Models
Implemented on Spark

RDDs can express many existing parallel models
» MapReduce, DryadLINQ
» Pregel graph processing [200 LOC]
» Iterative MapReduce [200 LOC]
» SQL: Hive on Spark (Shark)

All are based on
coarse-grained
operations

Enables apps to efficiently intermix these models

Open Source Community

15 contributors, 5+ companies using Spark,
3+ applications projects at Berkeley

User applications:
» Data mining 40x faster than Hadoop (Conviva)
» Exploratory log analysis (Foursquare)
» Traffic prediction via EM (Mobile Millennium)
» Twitter spam classification (Monarch)
» DNA sequence analysis (SNAP)
».o..

Related Work

RAMCloud, Piccolo, GraphLab, parallel DBs

» Fine-grained writes requiring replication for resilience

Pregel, iterative MapReduce
» Specialized models; can’t run arbitrary / ad-hoc queries

DryadLINQ, FlumeJava
» Language-integrated “distributed dataset” API, but cannot
share datasets efficiently across queries

Nectar [OSDI 10]

» Automatic expression caching, but over distributed FS

PacMan [NSDI 12]
» Memory cache for HDFS, but writes still go to network/disk

Conclusion

RDDs offer a simple and efficient programming
model for a broad range of applications

Leverage the coarse-grained nature of many
parallel algorithms for low-overhead recovery

Try it out at www.spark-project.org

[End of slides from NSDI'a22 Talk]

machine Graph
learning processing

(2013)

Spark Core

Cluster Managers Data Sources

HDFS, S3, Tachyon
Mesos, AWS, Yamn Cassandra, Hana

Tachyon: Memory-speed data sharing among jobs in different frameworks
(e.g., Spark & Hadoop). Keeps in-memory data safe even when job crashes

e

Sl Graph View
Representation

GraphX: Tables & Graphs are views of
same physical data, exploit semantics mm=r
of view for efficient operation Table View

A Brave New World
Spark Timeline

Research idea in 2009
Open source release in 2011

R
Hortonworks

Into Apache Incubator in 2013 cloudera
In all major Hadoop releases in 2014 oracLe Pivotal I

1000+ companies using Spark in 2015

Pipeline of research breakthroughs (publications in best
conferences) fuel continued leadership & uptake

Start-up (Databricks), Open Source Developers, and Industry
partners (IBM, Intel) make code commercial-grade

Fast Path for impact via Open Source:
Pipeline of Research Breakthroughs that make it into
widespread commercial use in under 2 years

Monday’s Paper

Naiad: A Timely Dataflow System
Derek Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, Martin Abadi

SOSP’13 best paper

