
Scale and Performance in a Distributed File System
Phil Gibbons
15-712 F15
Lecture 9

2

Today’s Reminders
• Office Hours

– TA Kevin Hsieh as office hours 2-4 Tues
• Summaries

– Everyone should be able to see each other’s summaries 2 days after
• Projects

– Should be formed by Wed so can start brainstorming ideas
– Week after that: we will post possible project ideas
– OK (encouraged) to overlap project idea with current research under advisor

3

Scale and Performance in a Distributed File System
SigOps HoF paper [SOSP’87, TOCS 1988]

• John Howard (Project Lead, retired from Sun)
• Michael Kazar (CTO Avere, IEEE Info Storage Sys Award)Co-founded Transarc (commercial AFS, acquired by IBM)
• Sherri Menees [Nichols] (community activist, Redmond WA)
• David Nichols (Microsoft, start-up became Live Meeting)
• M. Satyanarayanan (CMU, ACM & IEEE Fellow)
• Robert Sidebotham (Google, inventor of volumes)
• Michael West (IBM, deceased)

?? ??
4

Andrew v.1
• Morris, Satyanarayanan, Conner, Howard, Rosenthal, Smith“Andrew: A Distributed Personal Computing Environment”[CACM 1986]

– started in 1983
• Prototype had 400 users, 100 workstations, 6 servers
• Cache whole file locally: contact server (Vice) only on file open/close
• Each directory had a single server site for updates
• File location: Navigate server directory with stub directories pointing to other servers

5

Why Whole File Caching
• Workload locality makes caching attractive
• Servers only contacted on opens/closes
• Most files read in their entirety:

– Can use efficient bulk data transfer protocols
• Disk caches retain contents across (frequent) reboots
• Simplifies cache management

6

Qualitative Observations on v.1
• Commands were noticeably slower than w/local files

“The performance was so much better than that of the heavily loaded timesharing systems…that our users willingly suffered!”
• Performance anomaly

– Apps used the “stat” primitives to test for presence of files or obtain status info before opening them – many client-server interactions
• Difficult to operate & maintain

– Use of dedicated process per client on each server: excessive context switches, page faults, resource exhaustion
– Kernel RPC support: network-related resource exhaustion
– Stub directories: difficult to migrate directories between servers

7

Benchmark
“Although we do not demonstrate any statistical similarity between these file references and those observed in real systems,…”

70 files, 200 KB total
8

Performance Observations on v.1
• Avg file-cache hit ratio 81%; status-cache hit ratio 82%

– TestAuth: validates cache entries
– GetFileStat: status info about files not in cache

9

Performance Observations on v.1

Recall: Absolute stand-alone = 1054 (s)
Significant performance gains possible if:
• Reduce the frequency of cache validity checks (TestAuth)
• Reduce the number of server processes
• Require clients rather than servers to do pathname traversals
• Balance server usage by reassigning users

10

Cache Management Changes
• Cache contents of directories & symbolic links
• On open, assume cached entries are valid

– Server does Callback to client cache before allowing others to update the file
• Pros:

– Reduces load on servers
– Enables pathnames resolved locally

• Cons:
– Client caches & Servers must maintain callback state
– Such state may become inconsistent

11

Changes to Name Resolution &Low-Level Storage Representation
• Each Vice file or directory identified by Fid

– (32-bit volume #, 32-bit vnode #, 32-bit uniquifier)
– Vnode = BSD inode

• Volume Location Directory replicated on each server
• Can migrate files between servers w/o invalidatinglocally cached directory contents

12

Volume
• Collection of files forming a partial subtree name space
• Glued together at Mount Points (invisible to name space)
• Resides within a single disk partition on a server
• On-the-fly (atomic) migration:

– Create a Clone (copy-on-write snapshot)
– Construct machine-independent rep of Clone
– Regenerate at remote site
– Any updates during migration patched using incremental clone

• User assigned a volume; each volume has a quota
• Read-only volume replicas improve availability & efficiency

13

Volumes
• Provide a level of operational transparency not supported by other file systems

– From an operation standpoint, system is a flat space of named volumes
• Quite valuable: Volume quotas & Ease of migration
• Backup mechanism is simple, efficient, non-disruptive

– Read-only clone transferred in background to staging machine
– 24 hours of backup in read-only subtree in user’s home dir

14

Communication & ServerProcess Structure
• Single server process to service all its clients

– ~5 Lightweight processes (LWPs) within a process
– LWP bound to a client only for duration of a single server op

• RPC code no longer in kernel
– Later argue that other AFS code SHOULD be in kernel

15

File Consistency
• Writes to an open file by a client process are visible to allother local processes immediately but invisible non-locally
• Writes become visible on file close

– Changes visible to any new open, invisible to already open
• All other file ops are visible everywhere on op completion
• No implicit locking: apps have to do own synchronization

16

Scalability Improvements

17

Utilization Improvements

Also showed improved actual utilization during work hours

Benchmark

18

NFS
• Once file open, remote site treated like local disk

– Return to server for each new page accessed (does prefetch)
– Caches file pages locally in memory

• No transparent file location facility; mounted individually
• Client & server components are in kernel
• Caches inodes locally in memory

– Performs validity check on file open
– Suppressed for directory inodes if checked in last 30 seconds

• File consistency is messier

19

AFS vs. NFS

• Single server experiments
• Some NFS clients terminated prematurely in final phase

‒ Lost RPC reply packets at high network load
• ReadAll at load 15 & 18: NFS=211-215 vs. AFS=48

20

AFS vs. NFS Latency

“Low latency is an obvious advantage of remote-open FS”
• SMALL file sizes studied

– Benchmark: avg size is 3 KBs
• Network Traffic: At load 1, NFS is 3x AFS

21

AFS vs. NFS: By Workload

• File sizes ࢙ࡺ, ,࢓ࡺ ࡸࡺ ; ࡸࡺ > Local memory
• Cold Cache; Latencies: ࢚ࢋ࢔ࡸ > ࢑࢙࢏ࢊࡸ > ࢓ࢋ࢓ࡸ

From [Operating Systems: Three Easy Pieces]
22

Performance Conclusions
• Scales much better than NFS

– Claim: Scales to 500-700 clients
– “We are certain that further growth will stress our skill, patience, and ingenuity.”

• Small-scale performance is nearly on par
• NFS in kernel, AFS was not

– “There is thus untapped potential for improved performance in Andrew, whereas we see no similar potential in NFS.”
• Supports well-defined consistency semantics, security, operability

23

Jim Morris Reflects in AFS at 25

24

Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache Consistency
Cary Gray & David Cheriton[SOSP’89]

“This paper pioneered through its analysis of the Leases mechanism, which has become one of the most widely-used mechanisms for managing distributed caches. The paper is particularly striking for its careful analysis of the semantics of leases, its detailed experiments, and its thoughtful discussion of fault-tolerance issues.” – SigOps HoF citation

25

Leases
• Time-based mechanism that provides efficient consistent access to cached data in distributed systems

– Lease grants holder control over writes to the covered data until lease expires
– Leaseholder can approve request from server to give up lease

• Non-Byzantine failures affect performance, not correctness
– If can’t communicate, wait for its leases to expire
– On recovery, honor leases granted before crash

• Assumes write-through caches
• Leases of short duration (10s) provide good performance

– Longer term if accessed repeatedly with little write-sharing
– AFS went from lease term=0 to effectively a lease term=infinity

26

Wednesday’s Paper
The Design and Implementation of a Log-Structured File System

Mendel Rosenblum & John Ousterhout[TOCS 1992]
SigOps Hall of Fame paper

