Scale and Performance
in a Distributed File System

Phil Gibbons
15-712 F15

Lecture 9

Scale and Performance

in a Distributed File System
SigOps HoF paper [SOSP'87, TOCS 1988]

¢ John Howard (Project Lead, retired from Sun)

e Michael Kazar (CTO Avere, IEEE Info Storage Sys Award)
Co-founded Transarc (commercial AFS, acquired by IBM)

e Sherri Menees [Nichols] (community activist, Redmond WA)
¢ David Nichols (Microsoft, start-up became Live Meeting)

¢ M. Satyanarayanan (CMU, ACM & IEEE Fellow)

¢ Robert Sidebotham (Google, inventor of volumes)

e Michael West (IBM, deceased)

Today’s Reminders

o Office Hours
- TA Kevin Hsieh as office hours 2-4 Tues

e Summaries

- Everyone should be able to see each other’s summaries 2 days
after

e Projects
- Should be formed by Wed so can start brainstorming ideas

- Week after that: we will post possible project ideas

- OK (encouraged) to overlap project idea with current research
under advisor

Andrew v.1

e Morris, Satyanarayanan, Conner, Howard, Rosenthal, Smith
“Andrew: A Distributed Personal Computing Environment”
[CACM 1986]

- started in 1983

¢ Prototype had 400 users, 100 workstations, 6 servers

e Cache whole file locally: contact server (Vice) only on
file open/close

¢ Each directory had a single server site for updates

¢ File location: Navigate server directory
with stub directories pointing to other servers

Why Whole File Caching

 Workload locality makes caching attractive
e Servers only contacted on opens/closes

e Most files read in their entirety:
- Can use efficient bulk data transfer protocols

¢ Disk caches retain contents across (frequent) reboots

o Simplifies cache management

Qualitative Observations on v.1

e Commands were noticeably slower than w/local files

“The performance was so much better than that of the heavily
loaded timesharing systems...that our users willingly suffered!”

¢ Performance anomaly
— Apps used the “stat” primitives to test for presence of files or
obtain status info before opening them - many client-server
interactions

o Difficult to operate & maintain
- Use of dedicated process per client on each server: excessive
context switches, page faults, resource exhaustion

- Kernel RPC support: network-related resource exhaustion
- Stub directories: difficult to migrate directories between

Benchmark

“Although we do not demonstrate any statistical similarity between
these file references and those observed in real systems,...”

MakeDir Constructs a target subtree that is identical in structure to the
source subtree.
Copy Copies every file from the source subtree to the target subtree.

ScanDir Recursively traverses the target subtree and examines the status of
every file in it. It does not actually read the contents of any file.

ReadAll Scans every byte of every file in the target subtree once.
Make Compiles and links all the files in the target subtree.

servers

Performance Observations on v.1
o Avg file-cache hit ratio 81%; status-cache hit ratio 82%
Table II. Distribution of Vice Calls in Prototype

Call distribution
TestAuth GetFileStat Fetch Store SetFileStat ListDir All others

Table I. Stand-alone Benchmark Performance
Machine type

Benchmark phase Sun2 IBM RT/25 Sun3/50
. Qverall 1054 (5) 798 (20) 482 (8)
70 files, MakeDir 16 (1) 13 (1) 10 (0)
200 KB Copy 40 (1) 37(2) 31(2)
total ScanDir 70 (4) 51 (9) 44 (5)
ReadAll 106 (2) 132 (8) 51 (0)

I Make 822 (2) 566 (11) 346 (1)

TestAuth: validates cache entries

GetFileStat: status info about files not in cache

Server Total calls (%) (%) %) (%) (%) (%) (%)
cluster0 1,625,954 64.2 28.7 3.4 14 0.8 0.6 0.9
clusterl 564,981 64.5 22.7 3.1 3.5 2.8 1.3 2.1
cmu-0 281,482 50.7 33.5 6.6 1.9 1.5 36 2.2
cmu-1 1,527,960 61.1 29.6 3.8 11 14 18 1.2
cmu-2 318,610 68.2 19.7- 3.3 2.7 2.3 16 2.2
Mean 61.7 26.8 4.0 2.1 1.8 18 1.7

(6.7) (5.6) (1.5) (1.0) (0.8) {L.1) 0.6)

Performance Observations on v.1

Table III. Prototype Benchmark Performance

Overall benchmark time Time per TestAuth call
Relative Relative

Load units Absolute (s) (%) Absolute (ms) (%)
1 1789 (3) 100 87 (0) 100

2 1894 (4) 106 118 (1) 136

5 2747 (48) 154 259 (16) 298

8 5129 (177) 287 670 (23) 770

10 7326 (69) 410 1050 (13) 1207

Recall: Absolute stand-alone = 1054 (s)

Significant performance gains possible if:

+ Reduce the frequency of cache validity checks (TestAuth)

« Reduce the number of server processes

» Require clients rather than servers to do pathname traversals
- Balance server usage by reassigning users

Changes to Name Resolution &
Low-Level Storage Representation

e Each Vice file or directory identified by Fid
- (32-bit volume #, 32-bit vnode #, 32-bit uniquifier)
- Vnode = BSD inode

¢ Volume Location Directory replicated on each server

e Can migrate files between servers w/o invalidating
locally cached directory contents

Cache Management Changes

e Cache contents of directories & symbolic links

e On open, assume cached entries are valid

- Server does Callback to client cache before allowing others to
update the file

e Pros:
- Reduces load on servers

- Enables pathnames resolved locally

e Cons:
- Client caches & Servers must maintain callback state

- Such state may become inconsistent

Volume

¢ Collection of files forming a partial subtree name space
¢ Glued together at Mount Points (invisible to name space)
* Resides within a single disk partition on a server

e On-the-fly (atomic) migration:
- Create a Clone (copy-on-write snapshot)

Construct machine-independent rep of Clone

- Regenerate at remote site

Any updates during migration patched using incremental clone

e User assigned a volume; each volume has a quota

o Read-only volume replicas improve availability & efficiency
12

Volumes

¢ Provide a level of operational transparency not supported
by other file systems

- From an operation standpoint, system is a flat space of named
volumes

¢ Quite valuable: Volume quotas & Ease of migration

e Backup mechanism is simple, efficient, non-disruptive
- Read-only clone transferred in background to staging machine

— 24 hours of backup in read-only subtree in user’'s home dir

File Consistency

* Writes to an open file by a client process are visible to all
other local processes immediately but invisible non-locally

e Writes become visible on file close
- Changes visible to any new open, invisible to already open

o All other file ops are visible everywhere on op completion

* No implicit locking: apps have to do own synchronization

Communication & Server
Process Structure

* Single server process to service all its clients
- ~5 Lightweight processes (LWPs) within a process

- LWP bound to a client only for duration of a single server op

* RPC code no longer in kernel
- Later argue that other AFS code SHOULD be in kernel

Scalability Improvements

Table VI. Andrew Benchmark Times

Overall time Time for each phase
(in seconds) (in seconds)
Relative
Load units Absolute (%) MakeDir Copy ScanDir ReadAll Make
1 949 (33) 100 141 85(28) 64(3) 179(14) 608 (16)
2 948 (35) 100 14 (1) 82 (16) 65 (9) 176 (13) 611 (14)
5 1050 (19) 111 17 (1) 125 (30) 86 (0) 186 (17) 637 (1)
8 1107 (5) 117 22 (1) 159 (1) 78 (2) 206 (4) 641 (6)
10 1293 (70) 136 34 (9) 209 (13) 76 (5) 200 (7) 715 (81)
15 1518 (28) 160 45 (3) 304 (5) 81 (4) 192 (7) 896 (12)
20 1823 (42) 192 68 (1) 433 (45) 77 (4) 192 (6) 1063 (64)

)

£y

Prototype
ST Rassd Andrew e Systom

Relative Benchmark Time.
3

S

0 2 4 6 8 10 12 14 16 18 20

Utilization Improvements

= 100
8 Benchmark
S
o 90
N
5 80
o
370
@
% 60
50 Andrew CPU Utilization
— =— = Andrew Disk Utilization
40
30
- -0
20 -7
10

16 18 20
Load Units

Also showed improved actual utilization during work hours

AFS vs. NFS

800

41300 . 5 eor R e
H o 3 % e
§ 1200 o Androw ook Cache e H] e
: 3 hmires Wik y £ a0 / o Andrew Cold Cacho
£ yico . v & Andrew Warm Cache
H E 70 o o NFS
g 1 v
> 1000 £ 60 %
;
g 900 § . 7
£
§
2
H
aQ

18 18 o 2 4 6 8 10 12 14 16 18
Load Units Load Units

+ Single server experiments
- Some NFS clients terminated prematurely in final phase

- Lost RPC reply packets at high network load
- ReadAll at load 15 & 18: NFS=211-215 vs. AFS=48

NFS

e Once file open, remote site treated like local disk
- Return to server for each new page accessed (does prefetch)

- Caches file pages locally in memory

* No transparent file location facility; mounted individually
¢ Client & server components are in kernel

e Caches inodes locally in memory
- Performs validity check on file open

- Suppressed for directory inodes if checked in last 30 seconds

* File consistency is messier

AFS vs. NFS Latency

Table XIV. Latency of NFS and Andrew

Time (milliseconds)

File size
(bytes) Andrew cold Andrew warm NFS Stand-alone
3 160.0 (34.6) 16.1 (0.5) 15.7 (0.1) 5.1(0.1)

1,113 148.0 (17.9)
4,334 202.9 (29.3)
10,278 310.0 (53.5)
24,676 515.0 (142.0) 15.9 (0.9)

“Low latency is an obvious advantage of remote-open FS"”

o SMALL file sizes studied
- Benchmark: avg size is 3 KBs

¢ Network Traffic: At load 1, NFS is 3x AFS

AFS vs. NFS: By Workload

Workload NFS AFS AFS/NFS
1. Small file, sequential read Ng - Lnet Ng - Lpet 1

2. Small file, sequential re-read NiLynem Ng=:Lynem 1
3. Medium file, sequential read N - Lnet Np - Lnet 1

4. Medium file, sequential re-read N - Lmem N - Limem 1
5. Large file, sequential read Np, - Lnet Ny, + Luet 1
6. Large file, sequential re-read Nyp, - Luet Ny, + Laisk %
7. Large file, single read Lnet Np, - Luet Ny,
8. Small file, sequential write Ng - Lper Ng - Lpet 1

9. Large file, sequential write Ny, - Let Ny, - Lyet 1
10. Large file, sequential overwrite Ny, - Lypet 2- Ny, - Lpet 2
11. Large file, single write Lnet 2Ny, Lnet 2. Ny,

o File sizes N;,N,,,, N;; N, > Local memory

¢ Cold Cache; Latencies: L,.; > Lgisk > Limem

From [Operating Systems: Three Easy Pieces]
21

Jim Morris Reflects in AFS at 25

Why WWW beat Global AFS

 Kernel mods were deadly.
- Forgot Window Manager Lesson

« Consistency was overrated.
- “Read-only” Web was useful.
- File close is arbitrary check-point.
« URL was obvious, but crucial.
« HTTP & Browser blindsided us.
* WWW was a paradigm shift.
AFS was incremental. Carvegie bicton

Performance Conclusions

e Scales much better than NFS
- Claim: Scales to 500-700 clients

- “We are certain that further growth will stress our skill,
patience, and ingenuity.”

e Small-scale performance is nearly on par
* NFS in kernel, AFS was not

- “There is thus untapped potential for improved performance in
Andrew, whereas we see no similar potential in NFS.”

e Supports well-defined consistency semantics,
security, operability

Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache
Consistency

Cary Gray & David Cheriton
[SOSP’'89]

“This paper pioneered through its analysis of the Leases mechanism,
which has become one of the most widely-used mechanisms for
managing distributed caches. The paper is particularly striking for its
careful analysis of the semantics of leases, its detailed experiments,
and its thoughtful discussion of fault-tolerance issues.”

- SigOps HoF citation

Leases

 Time-based mechanism that provides efficient consistent
access to cached data in distributed systems

- Lease grants holder control over writes to the covered data until
lease expires

— Leaseholder can approve request from server to give up lease

 Non-Byzantine failures affect performance, not correctness
- If can't communicate, wait for its leases to expire

- On recovery, honor leases granted before crash

o Assumes write-through caches

¢ Leases of short duration (10s) provide good performance
- Longer term if accessed repeatedly with little write-sharing

- AFS went from lease term=0 to effectively a lease term=infinity

Wednesday’s Paper
The Design and Implementation of a
Log-Structured File System

Mendel Rosenblum & John Ousterhout
[TOCS 1992]

SigOps Hall of Fame paper

