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Today’s Reminders
• My office hours

– 4:30-5:30 pm GHC 7221
• Only one paper to read/summarize for Friday

– Read Chandy/Lamport paper
• Should receive feedback on one summary today
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Using Model Checking to FindSerious File System Errors
Junfeng Yang, Paul Twohey, Dawson Engler,Madanlal Musuvathi [OSDI’04]

• Junfeng Yang (Columbia, Parrot [SOSP’13] w/CMU)

• Paul Twohey (Head of Tech @ ClassPass)

• Dawson Engler (Stanford, Mark Weiser Award 2006)
– SigOps innovation award, also won by: Stefan Savage, Tom Anderson, Mike Burrows 

• Madanlal Musuvathi (Microsoft Research)

BestPaper
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File System Stress Tests
“File system errors are some of the most destructive errors possible.”

• Prior file system stress test frameworks (Linux TestProject, Stress debian package) focus mostly on non-crash based errors
– Cost of crash-reboot-reconstruct cycle limits stress testing
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Use Model Checking
• Formal verification technique that systematically   enumerates the possible states of a system by exploring the nondeterministic events in the system

– CMU Prof. Edmund Clark won 2007 Turing Award

• Example Check: Vending machine delivers a drink only after inserting a coin
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Use Model Checking
• Implementation-level model checkers: check actual code (not abstract specification of code)

– E.g., CMC model checker of Engler, Musuvathi, etc [OSDI’02] can run entire OS inside of it
• Challenges

– Defining the reference model to check against
– Keeping the number of states manageable (State reduction)
– Minimizing exploration time (Prioritizing the search)

• Paper presents File System Checker (FiSC)
– Found serious bugs in JFS, ReiserFS, ext3

7

Ideally: Explore & Check All Possible States

Reality: Must Simplify & Focus Search(can’t explore ALL states – Bug finding NOT verification)
Some slide images from Yang’s OSDI talk 8

Checking Overview
• CMC, an explicit state model checker running Linux kernel
• File system test driver

– Creates, removes, renames files/directories/hard links
– Writes to and truncates files
– Mounts & unmounts file system

• Permutation checker (not shown)
– Verifies that file system can recover no matter what order buffer cache contents are written to disk

• fsck (file system consistency check) recovery checker
– Run on host system; capture disk accesses while repairing and feed into crash recovery checker
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State Exploration & Checking Overview

• Pick a state S & iteratively generate each successor stateby applying each possible operation to a restored copy of S
• Check the generated state S’ for validity
• If S’ is valid & not explored, insert S’ into state queue 
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Checking FS Operations are Correct
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Checking FS Operations are Correct
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Basic Setup for Checking New FS
• Input to FiSC: minimum disk & memory sizes FS requires

– E.g., 2 MB disk and 16 pages of memory for ext3
• Input to FiSC: Command to make and recover the FS

– E.g., mkfs & fsck
• Modify FS to expose dirty blocks (if doesn’t already) & independently manage 2 disks in a reentrant manner
• Modify FS to call into model checker to indicate StableFSchanges

– StableFS = state the FS *should* recover to after crash
Time To Do: 1-2 weeks
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Checking More Thoroughly
• Downscale

– Small disks: make minimum size allowed
– Small FS topologies: typically 2-4 nodes
– Small virtual memory: few pages

• Canonicalization
– Only write two different values to data blocks
– Renaming files/directories to sequential numbering
– Zeroing freed memory & unused disk blocks
– Removing time fields, generation numbers, etc

• Expose choice points
– FS calls choose(n), for n different alternatives
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Choice Points
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Checkers
• Generic Checks

– Deadlock, NULL pointer, Paired functions, Memory leak
– No silent failures: if resource alloc fails, then sys call should fail

• Consistency Checks
– System calls map to actions
– Changed buffers marked dirty
– Buffer consistency
– Double fsck (replay journal vs. entire disk)
– Recoverable disk write ordering (permutation checker)
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Basic Crash Recovery Check
“A classic recovery mistake is to incorrectly handlea crash that happens during recovery.” 
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Progress Before Run Out of Memory?
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FS Errors Found by FiSC
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Recovery Write Ordering Bug
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Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior
Xi Wang, Nickolai Zeldovich, Frans Kaashoek, Armando Solar-Lezama [SOSP’13 best paper]

(slides & video of talk is on SOSP’13 webpage)
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Optimization-Unstable Code
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Examples of Undefined Behavior in C
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Problem: Unstable Code
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Compilers Often Discard Unstable Code
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STACK (Static Checker for Unstable Code) Found 160 New Bugs
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Friday’s Paper
Distributed Snapshots:Determining Global States of Distributed Systems

Mani Chandy & Leslie Lamport [TOCS’85]
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Quote for the Day

“There are only two hard problems in distributed systems:
2. Exactly-once delivery 

1. Guaranteed order of messages 
2. Exactly-once delivery”


