
Using Model Checking to FindSerious File System Errors
Phil Gibbons
15-712 F15
Lecture 7

2

Today’s Reminders
• My office hours

– 4:30-5:30 pm GHC 7221
• Only one paper to read/summarize for Friday

– Read Chandy/Lamport paper
• Should receive feedback on one summary today

3

Using Model Checking to FindSerious File System Errors
Junfeng Yang, Paul Twohey, Dawson Engler,Madanlal Musuvathi [OSDI’04]

• Junfeng Yang (Columbia, Parrot [SOSP’13] w/CMU)

• Paul Twohey (Head of Tech @ ClassPass)

• Dawson Engler (Stanford, Mark Weiser Award 2006)
– SigOps innovation award, also won by: Stefan Savage, Tom Anderson, Mike Burrows

• Madanlal Musuvathi (Microsoft Research)

BestPaper

4

File System Stress Tests
“File system errors are some of the most destructive errors possible.”

• Prior file system stress test frameworks (Linux TestProject, Stress debian package) focus mostly on non-crash based errors
– Cost of crash-reboot-reconstruct cycle limits stress testing

5

Use Model Checking
• Formal verification technique that systematically enumerates the possible states of a system by exploring the nondeterministic events in the system

– CMU Prof. Edmund Clark won 2007 Turing Award

• Example Check: Vending machine delivers a drink only after inserting a coin
6

Use Model Checking
• Implementation-level model checkers: check actual code (not abstract specification of code)

– E.g., CMC model checker of Engler, Musuvathi, etc [OSDI’02] can run entire OS inside of it
• Challenges

– Defining the reference model to check against
– Keeping the number of states manageable (State reduction)
– Minimizing exploration time (Prioritizing the search)

• Paper presents File System Checker (FiSC)
– Found serious bugs in JFS, ReiserFS, ext3

7

Ideally: Explore & Check All Possible States

Reality: Must Simplify & Focus Search(can’t explore ALL states – Bug finding NOT verification)
Some slide images from Yang’s OSDI talk 8

Checking Overview
• CMC, an explicit state model checker running Linux kernel
• File system test driver

– Creates, removes, renames files/directories/hard links
– Writes to and truncates files
– Mounts & unmounts file system

• Permutation checker (not shown)
– Verifies that file system can recover no matter what order buffer cache contents are written to disk

• fsck (file system consistency check) recovery checker
– Run on host system; capture disk accesses while repairing and feed into crash recovery checker

9

State Exploration & Checking Overview

• Pick a state S & iteratively generate each successor stateby applying each possible operation to a restored copy of S
• Check the generated state S’ for validity
• If S’ is valid & not explored, insert S’ into state queue

10

Checking FS Operations are Correct

11

Checking FS Operations are Correct

12

Basic Setup for Checking New FS
• Input to FiSC: minimum disk & memory sizes FS requires

– E.g., 2 MB disk and 16 pages of memory for ext3
• Input to FiSC: Command to make and recover the FS

– E.g., mkfs & fsck
• Modify FS to expose dirty blocks (if doesn’t already) & independently manage 2 disks in a reentrant manner
• Modify FS to call into model checker to indicate StableFSchanges

– StableFS = state the FS *should* recover to after crash
Time To Do: 1-2 weeks

13

Checking More Thoroughly
• Downscale

– Small disks: make minimum size allowed
– Small FS topologies: typically 2-4 nodes
– Small virtual memory: few pages

• Canonicalization
– Only write two different values to data blocks
– Renaming files/directories to sequential numbering
– Zeroing freed memory & unused disk blocks
– Removing time fields, generation numbers, etc

• Expose choice points
– FS calls choose(n), for n different alternatives

14

Choice Points

15

Checkers
• Generic Checks

– Deadlock, NULL pointer, Paired functions, Memory leak
– No silent failures: if resource alloc fails, then sys call should fail

• Consistency Checks
– System calls map to actions
– Changed buffers marked dirty
– Buffer consistency
– Double fsck (replay journal vs. entire disk)
– Recoverable disk write ordering (permutation checker)

16

Basic Crash Recovery Check
“A classic recovery mistake is to incorrectly handlea crash that happens during recovery.”

17

Progress Before Run Out of Memory?

18

FS Errors Found by FiSC

19

Recovery Write Ordering Bug

20

Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior
Xi Wang, Nickolai Zeldovich, Frans Kaashoek, Armando Solar-Lezama [SOSP’13 best paper]

(slides & video of talk is on SOSP’13 webpage)

21

Optimization-Unstable Code

22

Examples of Undefined Behavior in C

23

Problem: Unstable Code

24

Compilers Often Discard Unstable Code

25

STACK (Static Checker for Unstable Code) Found 160 New Bugs

26

Friday’s Paper
Distributed Snapshots:Determining Global States of Distributed Systems

Mani Chandy & Leslie Lamport [TOCS’85]

27

Quote for the Day

“There are only two hard problems in distributed systems:
2. Exactly-once delivery

1. Guaranteed order of messages
2. Exactly-once delivery”

