Using Model Checking to Find
Serious File System Errors

Phil Gibbons

15-712 F15

Lecture 7

Using Model Checking to Find Be;

Serious File System Errors
Junfeng Yang, Paul Twohey, Dawson Engler,
Madanlal Musuvathi [OSDI'04]

¢ Junfeng Yang (Columbia, Parrot [SOSP’'13] w/CMU)

e Paul Twohey (Head of Tech @ ClassPass)

e Dawson Engler (Stanford, Mark Weiser Award 2006)

- SigOps innovation award, also won by:
Stefan Savage, Tom Anderson, Mike Burrows

e Madanlal Musuvathi (Microsoft Research)

Today’s Reminders

¢ My office hours
- 4:30-5:30 pm GHC 7221

e Only one paper to read/summarize for Friday
- Read Chandy/Lamport paper

e Should receive feedback on one summary today

File System Stress Tests

“File system errors are some of
the most destructive errors possible.”

¢ Prior file system stress test frameworks (Linux Test
Project, Stress debian package) focus mostly on
non-crash based errors

- Cost of crash-reboot-reconstruct cycle limits stress testing

Use Model Checking

o Formal verification technique that systematically
enumerates the possible states of a system
by exploring the nondeterministic events in the system

- CMU Prof. Edmund Clark won 2007 Turing Award

get_soda get_beer

Figure 2.1: A transition system of a simple beverage vending machine.

e Example Check:
Vending machine delivers a drink only after inserting a coin

Ideally:
Explore & Check All Possible States

Idealized Checking Process

Reality: Must Simplify & Focus Search
(can’t explore ALL states - Bug finding NOT verification)

Some slide images from Yang’s OSDI talk

Use Model Checking

o Implementation-level model checkers: check actual code
(not abstract specification of code)

- E.g., CMC model checker of Engler, Musuvathi, etc [OSDI'02]
can run entire OS inside of it

e Challenges
- Defining the reference model to check against

- Keeping the number of states manageable (State reduction)

- Minimizing exploration time (Prioritizing the search)

e Paper presents File System Checker (FiSC)
- Found serious bugs in JFS, ReiserFS, ext3

Checking Overview

e CMC, an explicit state model checker running Linux kernel

_ _
¢ File system test driver L FS operations
- Creates, removes, renames files c [em Tack
/directories/hard links g ﬁ Disk riw

§ - I libe riw
- Writes to and truncates files a -

: <> intrceplor
- Mounts & unmounts file system |3 (Disks

x

cMC

e Permutation checker (not shown)

- Verifies that file system can recover no matter what order
buffer cache contents are written to disk

o fsck (file system consistency check) recovery checker

- Run on host system; capture disk accesses while repairing and
feed into crash recovery checker

State Exploration & Checking Overview Checking FS Operations are Correct

Current State Next State

Abstract FS | abstract_ mkdir | Abstract FS
—— root

P
fileO dir1

joeNSQR

|enjoe

¢ Pick a state S & iteratively generate each successor state
by applying each possible operation to a restored copy of S

block | actual_mkdir mmdirt
y
B e | —= @)
Abstract FS: model of a file system. Currently

* Check the generated state S for validity tracks topology and file sizes. Can be extended

o If S’ is valid & not explored, insert S’ into state queue Reference model, run in parallel with the actual FS
T r
Checking FS Operations are Correct Basic Setup for Checking New FS
Next State ¢ Input to FiSC: minimum disk & memory sizes FS requires
N - E.g., 2 MB disk and 16 f for ext3
Actual FS | ,, [AbstractFS | g ° i ane T pages oTmEmony Tor e
root = root g e Input to FiSC: Command to make and recover the FS
_ /\ _ /\ 4 - E.g., mkfs & fsck
fileO dir1 fileO dirt)

e Modify FS to expose dirty blocks (if doesn’t already) &
independently manage 2 disks in a reentrant manner

abstract = marsha dirt Q

actual FS, record the rQO/ @ RRdirty =4 « Modify FS to call into model checker to indicate StableFS

topology and file sizes, blocks) © changes

throw away details - StableFS = state the FS *should* recover to after crash
Generic, implemented by FiSC Time To Do: 1-2 weeks

n

Checking More Thoroughly

e Downscale
— Small disks: make minimum size allowed

- Small FS topologies: typically 2-4 nodes

- Small virtual memory: few pages

e Canonicalization
- Only write two different values to data blocks

- Renaming files/directories to sequential numbering
- Zeroing freed memory & unused disk blocks

- Removing time fields, generation numbers, etc

¢ Expose choice points
- FS calls choose(n), for n different alternatives

Checkers

e Generic Checks
— Deadlock, NULL pointer, Paired functions, Memory leak

- No silent failures: if resource alloc fails, then sys call should fail

e Consistency Checks
- System calls map to actions

- Changed buffers marked dirty

- Buffer consistency

- Double fsck (replay journal vs. entire disk)

- Recoverable disk write ordering (permutation checker)

Choice Points

Choice point = can abstractly do

multiple actions, practically does one
Want to explore all actions
struct block* read_block (int i) { .
struct block *b; return twice,
if (b = cache_lookup(i))) 1sttime return 0O,
if (fisc_choose(2) == 0) E==» 2" time return 1
return b;

return disk_read (i); if there are N
} possible actions,

call fisc_choose(N)
return 0, 1, ..., N-1

Basic Crash Recovery Check

“A classic recovery mistake is to incorrectly handle
a crash that happens during recovery.”
Obtain a crashed disk image D
Run fsck, recording all writes

Simulate a crash during recovery

— Apply prefix to D

—Re-run fsck

— Compare to Stable FS

Repeat until all the prefixes are tried
Effective®©, Speed® (redundant crashes)

Progress Before Run Out of Memory? FS Errors Found by FiSC
xt3 | ReiserFS | JFS Error Type | VFS | ext2 | ext3 | JFS | Reiser | total

States Data loss N/A|NA| 1 8 il 10

Total 10800 630 4500

Expanded States 2419 142 905 Falseclean | N/A | N/A | 1 | 1 2

State Transitions 35978 11009 14387 Security 2 2 1 3+2

Time

with Memoization 650 893 3774 Crashes 1 10 1 12

without Memoization | 7307 29419 | 4343 Other 1 1 1 3
Total 2 2 5 21 2 32
32 in total, 21 fixed, 9 of the remaining 11

confirmed

Towards Optimization-Safe Systems:

Recovery Write Ordering Bug
Analyzing the Impact of Undefined Behavior

Under Normal operation: Xi Wang, Nickolai Zeldovich, Frans Kaashoek,
— Changes must first be flushed to log before Armando Solar-Lezama [SOSP’13 best paper]

they can reach the actual FS
All FS seem to get this right (slides & video of talk is on SOSP’13 webpage)

During Recovery:
— Changes must first be flushed to the actual
FS before the log can be cleared

Found this type of bug in all FS, total 5

Optimization-Unstable Code

Example: compiler discards sanity check

char *buf - s

char *buf_end = iae}

unsigned int off = /* read from untrusted input */;
if (buf + off >= buf_end)

return; /* validate off: buf+off too Large®/
if (buf + off < buf)
return; /* validate off: overflow, buf+off wrapped around */

/* access buffe..off-1] */

Problem: Unstable Code

Unstable code: compilers discard code due to undefined behavior

i%'(p + 100 < p) e — nop
return; nop

» Security checks discarded
» Weakness amplified
» Unpredictable system behavior

Examples of Undefined Behavior in C

Meaningless checks from real code: pointer p; signed integer x

Pointer overflow: if (p + 100 < p)
Signed integer overflow: if (x + 100 < x)
Oversized shift: if (1(1 << x))
Null pointer dereference: *p; if (p)

Absolute value overflow: if (abs(x) < 0)

Compilers Often Discard Unstable Code

i(p+100<p) i(x+100¢x) (1 (1¢<x)) *p; if(!p) if(abs(x)<0)

gcc-4.8.1
clang-3.3
aCC-6.25
armcc-5.02
icc-14.0.0
msvc-14.0.0
open64-14.0.0
pathcc-1.0.0
suncc-5.12
ti-7.4.2

windriver-5.9.2

xlc-12.1

STACK (Static Checker for Unstable
Code) Found 160 New Bugs

Quote for the Day

“There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages

2. Exactly-once delivery”

Friday’s Paper

Distributed Snapshots:
Determining Global States of Distributed Systems

Mani Chandy & Leslie Lamport [TOCS'85]

