Eraser: A Dynamic Data Race Detector
for Multi-Threaded Programs

Phil Gibbons
15-712 F15

Lecture 6

Eraser: A Dynamic Data Race Detector
for Multi-Threaded Programsm

Stefan Savage, Michael Burrows, Greg Nelson,
Patrick Sobalvarro, Thomas E. Anderson [SOSP’'97]

e Stefan Savage (UCSD, CMU undergrad, ACM Fellow)

¢ Michael Burrows (Google, BWT in bzip2, FRS Fellow)

o Greg Nelson (HP, d. 2015, Herbrand Award 2013) JL:{E50
Paper

¢ Patrick Sobalvarro (Upward Labs, many start-ups)

e Tom Anderson (U. Washington, 35000+ citations,
Usenix Lifetime Achievement Award 2014

7P

Today’s Reminders

¢ Kevin office hours
- 2-4 pm Tues @ CIC 4t floor

Data Race Detection

o Data Race: Two concurrent threads access a shared
variable and

- At least one access is a write

- The threads use no explicit mechanism to prevent the
accesses from being simultaneous

e Monitors prevent data races, but only when
all shared variables are static globals

e Static Analysis must reason about program semantics

 Happens-before Analysis
- E.g., using vector clocks

e This paper: based on locking discipline

Vector Clocks for Race Detectors

e a- biff V(ia) <V(b)

¢ Use vector clocks
- Inter-thread arcs are from unlock L to next lock L;
otherwise, we report a data race

- Check each access for conflicting access unrelated by —

Drawbacks of Happens-Before

o Difficult to implement efficiently
- Require per-thread info about concurrent accesses
to each shared-memory location

- Effectiveness highly dependent
on interleaving that occurred:

Lockset Algorithm (1st version)
o Let locks_held(t) be the set of locks held by thread t
¢ For each v, initialize C(v) to the set of all locks

¢ On each access to v by thread t:
- Set C(v) := C(v) n locks_held(t)
- If C(v) is empty, then issue a warning

Handling Initialization & Read Sharing

e State machine tracked for each variable v

o Empty Lockset C(v) reported only if v is Shared-Modified

Lockset Algorithm (Final Version)

e Let locks_held(t) be the set of locks held by thread t;
Let write_locks_held(t) be set of locks held in write mode

¢ For each v, initialize C(v) to the set of all locks

e On each read of v by thread t:
- Set C(v) := C(v) n locks_held(t)

- If C(v) is empty, then issue a warning

e On each write of v by thread t:
- Set C(v) := C(v) n write_locks_held(t)

- If C(v) is empty, then issue a warning

Locks held purely in read mode do not protect against a
data race between the writer & some other reader thread

Implementation

¢ Binary instrumentation

e Instruments each load/store and malloc to maintain C(v)
- 32-bit (aligned) words
- But not stack-based accesses (stack assumed private)

e Instrument lock/unlock calls, thread init/finalize
to maintain lock_held(t);

e Warnings report file, line number, thread ID,
memory access address & type, PC, SP

- Option: Log all accesses to v that modify C(v)

Representing C(v)s

o Represent by small integer lockset index into table
- Never observed > 10K distinct lock sets

 Append-only table

e Lock vectors sorted

e Cache results of e Al
set intersections g
e Shadow word: 30-bit
index, 2-bit state 3 o

e Issue: Shadow memory doubles size of memory

Performance

“Performance was not a major goal in our implementation”

e Typical app slowdown: 10x-30x
- Estimate half due to procedure call at every load/store

- Today: dynamic binary instrumentation (DBI) using inlining
for short code segments

“Eraser is fast enough to debug most programs and
therefore meets the most essential performance criterion.”

Source of Overheads

e We measured 55x-70x for Valgrind 2.2 [2006]
- Lockset work overheads: 7x-10x
- Instrumentation overheads: 48x-60x
- Compete for cycles & resources (register state, L1 cache)
« Must recreate HW state (effective addresses, IP)
»e.g., 3 x86 insts becomes 27 x86 insts:

LEAIL -24(%ebx), %eax # Determine addr of lirst read
leal OxFFFFFFES(“hebx), Sreax
c=a+h; CCALLo OxB 11 3C900(Sheax) # Call read_check()
pushl Scax # Save register
(a) Original C stalement call + 36{%cbp)
popl Freax # Restore register
LDL (Geeax), %ecx # Do the actual read
mov] (Feeax). fecx
mov DxfTiiTeB(%ebp). feax INCEIPo 83 # Update the instrumented EIP
add Oxffffftec(ebp), Foeax movh $Ux5D, Uxdd(Foebp)

mov Yeeax, Oxfffffed(%ebp) LEAIL -200%ebx), %eax # Determine addr of second read

(b) Original x86 assembly code :
b s i (c) xBf assembly code instrumented for ADDRCHECK

Figure 3: Tllustrating the sources of overheads in dynamic binary instrumentation.

Race Detection in OS Kernel

¢ OS often raises the processor interrupt level to provide
mutual exclusion
- Particular interrupt level inclusively protects all data protected
by lower interrupt levels

- Solution: Have a virtual lock for each level; when raise level
to x, treat this as first x per-level locks acquired

¢ OS makes greater use of POST/WAIT style synch,
e.g., semaphores to signal when a device op is done

- Problem: Hard to infer which data a semaphore is protecting

False Alarms & Annotations

e Memory reused without resetting shadow memory
- When app uses private memory allocator

- Annotation: EraserReuse(address, size)

e Synchronization outside of instrumented channels
- Private lock implementations of MR/SW locks
- Spin on flag
- Annotation: EraserReadLock(lock), EraserReadUnlock(lock),
EraserWriteLock(lock), EraserWriteUnlock(lock)

e Benign races
- Annotation: EraserIgnoreOn(), EraserIgnoreOff()

“We have found that a handful of these annotations

usually suffices to eliminate all false alarms.”

Experience

e Ten iterations to resolve all reported races

» Worked well on servers: Evidence that experienced
programmers tend to obey the simple locking discipline

o AltaVista Web indexing service: mhttpd & Ni2
- Some good examples of benign races in production codes

- 24 annotations reduced false positives from 100+ to 0

- Reintroduced two old bugs & found/corrected in 30 minutes

e Vesta Cache Server
- Found data race on “valid” bit—serious on weak memory model

- Benign: Main thread passes RPC request to worker thread;
Head of log lock makes entire log private

- 10 annotations & 1 bug fix reduced alarms from 100s to 0

Experience

¢ Petal distributed storage system
- Implements distributed consensus, failure detector/recovery

- Found one real race

¢ Undergraduate coursework
- 100 runnable assighments

- Found data races in 10% of them

¢ Sensitivity to thread interleavings
- Reran Ni2 & Vesta on 2 threads instead of 10

— Same race reports, in different order

Deadlock

“If the data race is Scylla, the deadlock is Charybdis.”

(Sea monsters in Homer’s Odyssey)

» Discipline: Acquire locks in ascending order
¢ Found cycle of locks in formsedit application

e Would be useful addition to Eraser...

Protection by Multiple Locks

e Every writer must hold all locks
Every reader must hold at least 1 lock

- Used to avoid deadlock in program that contains upcalls

e Causes false alarms
- Not worth cost of handling this

Bugs as Deviant Behavior
Dawson Engler, David Chen, Seth Hallem,
Andy Chou, Benjamin Chelf [SOSP’'01]

o Infer programmer beliefs from source code
- E.g., <a> must be paired with

e Cross-check for contradictions
e Report in order of likelihood of belief accuracy

* Developed 6 template checkers that found 100s of bugs
in real systems such as Linux and OpenBSD

Data Race Detection Today

¢ Valgrind tools: Helgrind, DRD, Tsan
- Use Happens-before; Only Tsan also uses Lockset
- Early versions of Helgrind used Lockset

e Intel ThreadChecker: uses Happens-before

e Papers proposing hardware support, e.g.,
- HARD [HPCA’07]: HW bloom filters for fast lockset ops

- LBA [ISCA’08]: HW to eliminate instrumentation overheads,
run analysis tool on different core + Idempotent Filters:
Caches recent addresses, ignores accesses that hit in cache,
flushes on lock/unlock; Overheads down to 1.4x (2x the cores)

Application Core Lifeguard Coree
Event-type PP 8 TN Metadata access

filtering |:| Log record Log record acceleration
P! Log Transport Sp

] (e.g. cache) :
! Optional | 7 Compres, RO Redundant event
and store

Data Races in Parallel Codes

¢ Cilk: Nondeterminator, Cilkscreen

- Relies on fork-join structure of Cilk programs to determine
whether two conflicting accesses are ordered

- Reports race or that no race can occur with the given input

- Runs serially

o Parallel detectors for parallel code
— Issue: Capture & enforce in analysis the app’s inter-thread
data dependencies

- Issue: Metadata access atomicity, especially under weak
memory models

- E.g., Paralog [ASPLOS’10], Butterfly Analysis [ASPLOS’10,
PACT’12, PACT'15]

Data Races in Kernels

e DataCollider [OSDI'10]
- Stalls a kernel thread in critical sections to see if racy access
occurs while stalled (not for time-critical interrupts)

e Guardrail [ASPLOS’14] for kernel-mode drivers addresses
the following challenges:

- Single thread can race itself (!)

2

] Interrupt context

. . . . 14 L Process context
- Synchronization invariants based
on context of device state Time

Priority

1. In process context (e.g. packet transmission)

- Synchronization based on deferred 2 preempted to interrupt context to service Nic nterrupt
. . . . Resume process context
execution using softirgs or timers i

- Mutual exclusion via HW test-and-set poizprobe () netdev:open ()
or disabling interrupts & preemption -) *

—_— connected o) [readyfor |
N peibus /N pktrx/tx

Wednesday’s Paper

Using Model Checking to Find
Serious File System Errors

Junfeng Yang, Paul Twokey, Dawson Engler,
Madanlal Musuvathi [OSDI'04]

