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Today’s Reminders
• Kevin office hours

– 2-4 pm Tues @ CIC 4th floor
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Eraser: A Dynamic Data Race Detectorfor Multi-Threaded Programsm
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson [SOSP’97]

• Stefan Savage (UCSD, CMU undergrad, ACM Fellow)
• Michael Burrows (Google, BWT in bzip2, FRS Fellow)
• Greg Nelson (HP, d. 2015, Herbrand Award 2013)
• Patrick Sobalvarro (Upward Labs, many start-ups)
• Tom Anderson (U. Washington, 35000+ citations, Usenix Lifetime Achievement Award 2014) times

BestPaper
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Data Race Detection
• Data Race: Two concurrent threads access a shared variable and

– At least one access is a write
– The threads use no explicit mechanism to prevent the accesses from being simultaneous

• Monitors prevent data races, but only when all shared variables are static globals
• Static Analysis must reason about program semantics
• Happens-before Analysis

– E.g., using vector clocks
• This paper: based on locking discipline
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Vector Clocks for Race Detectors
• ࢇ → ࢈ iff ࢂ ࢇ < ࢂ ࢈
• Use vector clocks

– Inter-thread arcs are from unlock L to next lock L;otherwise, we report a data race
– Check each access for conflicting access unrelated by →
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Drawbacks of Happens-Before
• Difficult to implement efficiently

– Require per-thread info about concurrent accesses to each shared-memory location
– Effectiveness highly dependenton interleaving that occurred:
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Lockset Algorithm (1st version)
• Let locks_held(t) be the set of locks held by thread t
• For each v, initialize C(v) to the set of all locks
• On each access to v by thread t:

– Set C(v) := C(v) ∩ locks_held(t)
– If C(v) is empty, then issue a warning

8

Handling Initialization & Read Sharing
• State machine tracked for each variable v
• Empty Lockset C(v) reported only if v is Shared-Modified
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Lockset Algorithm (Final Version)
• Let locks_held(t) be the set of locks held by thread t;Let write_locks_held(t) be set of locks held in write mode
• For each v, initialize C(v) to the set of all locks
• On each read of v by thread t:

– Set C(v) := C(v) ∩ locks_held(t)
– If C(v) is empty, then issue a warning

• On each write of v by thread t:
– Set C(v) := C(v) ∩ write_locks_held(t)
– If C(v) is empty, then issue a warning
Locks held purely in read mode do not protect against a data race between the writer & some other reader thread
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Implementation
• Binary instrumentation
• Instruments each load/store and malloc to maintain C(v)

– 32-bit (aligned) words
– But not stack-based accesses (stack assumed private)

• Instrument lock/unlock calls, thread init/finalize to maintain lock_held(t); 
• Warnings report file, line number, thread ID, memory access address & type, PC, SP

– Option: Log all accesses to v that modify C(v) 
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Representing C(v)s
• Represent by small integer lockset index into table

– Never observed > 10K distinct lock sets
• Append-only table
• Lock vectors sorted
• Cache results of set intersections
• Shadow word: 30-bitindex, 2-bit state

• Issue: Shadow memory doubles size of memory
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Performance
“Performance was not a major goal in our implementation”
• Typical app slowdown: 10x-30x

– Estimate half due to procedure call at every load/store
– Today: dynamic binary instrumentation (DBI) using inliningfor short code segments

“Eraser is fast enough to debug most programs and therefore meets the most essential performance criterion.”
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Source of Overheads
• We measured 55x-70x for Valgrind 2.2 [2006]

– Lockset work overheads: 7x-10x
– Instrumentation overheads: 48x-60x

• Compete for cycles & resources (register state, L1 cache)
• Must recreate HW state (effective addresses, IP)
• e.g., 3 x86 insts becomes 27 x86 insts:
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False Alarms & Annotations
• Memory reused without resetting shadow memory

– When app uses private memory allocator
– Annotation: EraserReuse(address, size)

• Synchronization outside of instrumented channels
– Private lock implementations of MR/SW locks
– Spin on flag
– Annotation: EraserReadLock(lock), EraserReadUnlock(lock),EraserWriteLock(lock), EraserWriteUnlock(lock)

• Benign races
– Annotation: EraserIgnoreOn(), EraserIgnoreOff()

“We have found that a handful of these annotationsusually suffices to eliminate all false alarms.”
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Race Detection in OS Kernel
• OS often raises the processor interrupt level to provide mutual exclusion

– Particular interrupt level inclusively protects all data protected by lower interrupt levels
– Solution: Have a virtual lock for each level; when raise levelto x, treat this as first x per-level locks acquired

• OS makes greater use of POST/WAIT style synch, e.g., semaphores to signal when a device op is done
– Problem: Hard to infer which data a semaphore is protecting
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Experience
• Ten iterations to resolve all reported races
• Worked well on servers: Evidence that experiencedprogrammers tend to obey the simple locking discipline
• AltaVista Web indexing service: mhttpd & Ni2

– Some good examples of benign races in production codes
– 24 annotations reduced false positives from 100+ to 0
– Reintroduced two old bugs & found/corrected in 30 minutes

• Vesta Cache Server 
– Found data race on “valid” bit—serious on weak memory model
– Benign: Main thread passes RPC request to worker thread;Head of log lock makes entire log private
– 10 annotations & 1 bug fix reduced alarms from 100s to 0
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Experience
• Petal distributed storage system

– Implements distributed consensus, failure detector/recovery
– Found one real race

• Undergraduate coursework
– 100 runnable assignments
– Found data races in 10% of them

• Sensitivity to thread interleavings
– Reran Ni2 & Vesta on 2 threads instead of 10
– Same race reports, in different order
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Protection by Multiple Locks
• Every writer must hold all locksEvery reader must hold at least 1 lock

– Used to avoid deadlock in program that contains upcalls
• Causes false alarms

– Not worth cost of handling this

19

Deadlock
“If the data race is Scylla, the deadlock is Charybdis.”

(Sea monsters in Homer’s Odyssey)

• Discipline: Acquire locks in ascending order
• Found cycle of locks in formsedit application
• Would be useful addition to Eraser…
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Bugs as Deviant Behavior
Dawson Engler, David Chen, Seth Hallem,Andy Chou, Benjamin Chelf [SOSP’01]

• Infer programmer beliefs from source code
– E.g., <a> must be paired with <b>

• Cross-check for contradictions
• Report in order of likelihood of belief accuracy
• Developed 6 template checkers that found 100s of bugsin real systems such as Linux and OpenBSD
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Data Race Detection Today
• Valgrind tools: Helgrind, DRD, Tsan

– Use Happens-before; Only Tsan also uses Lockset
– Early versions of Helgrind used Lockset

• Intel ThreadChecker: uses Happens-before
• Papers proposing hardware support, e.g.,

– HARD [HPCA’07]: HW bloom filters for fast lockset ops
– LBA [ISCA’08]: HW to eliminate instrumentation overheads, run analysis tool on different core + Idempotent Filters: Caches recent addresses, ignores accesses that hit in cache, flushes on lock/unlock; Overheads down to 1.4x (2x the cores)
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Data Races in Kernels
• DataCollider [OSDI’10]

– Stalls a kernel thread in critical sections to see if racy access occurs while stalled (not for time-critical interrupts)
• Guardrail [ASPLOS’14] for kernel-mode drivers addresses the following challenges:

– Single thread can race itself (!)
– Synchronization invariants basedon context of device state
– Synchronization based on deferredexecution using softirqs or timers
– Mutual exclusion via HW test-and-setor disabling interrupts & preemption
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Data Races in Parallel Codes
• Cilk: Nondeterminator, Cilkscreen

– Relies on fork-join structure of Cilk programs to determine whether two conflicting accesses are ordered
– Reports race or that no race can occur with the given input
– Runs serially

• Parallel detectors for parallel code
– Issue: Capture & enforce in analysis the app’s inter-thread data dependencies
– Issue: Metadata access atomicity, especially under weak memory models
– E.g., Paralog [ASPLOS’10], Butterfly Analysis [ASPLOS’10, PACT’12, PACT’15]
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Wednesday’s Paper

Using Model Checking to FindSerious File System Errors
Junfeng Yang, Paul Twokey, Dawson Engler,Madanlal Musuvathi [OSDI’04]


