
Eraser: A Dynamic Data Race Detectorfor Multi-Threaded Programs
Phil Gibbons
15-712 F15
Lecture 6

2

Today’s Reminders
• Kevin office hours

– 2-4 pm Tues @ CIC 4th floor

3

Eraser: A Dynamic Data Race Detectorfor Multi-Threaded Programsm
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson [SOSP’97]

• Stefan Savage (UCSD, CMU undergrad, ACM Fellow)
• Michael Burrows (Google, BWT in bzip2, FRS Fellow)
• Greg Nelson (HP, d. 2015, Herbrand Award 2013)
• Patrick Sobalvarro (Upward Labs, many start-ups)
• Tom Anderson (U. Washington, 35000+ citations, Usenix Lifetime Achievement Award 2014) times

BestPaper

4

Data Race Detection
• Data Race: Two concurrent threads access a shared variable and

– At least one access is a write
– The threads use no explicit mechanism to prevent the accesses from being simultaneous

• Monitors prevent data races, but only when all shared variables are static globals
• Static Analysis must reason about program semantics
• Happens-before Analysis

– E.g., using vector clocks
• This paper: based on locking discipline

5

Vector Clocks for Race Detectors
• ࢇ → ࢈ iff ࢂ ࢇ < ࢂ ࢈
• Use vector clocks

– Inter-thread arcs are from unlock L to next lock L;otherwise, we report a data race
– Check each access for conflicting access unrelated by →

6

Drawbacks of Happens-Before
• Difficult to implement efficiently

– Require per-thread info about concurrent accesses to each shared-memory location
– Effectiveness highly dependenton interleaving that occurred:

7

Lockset Algorithm (1st version)
• Let locks_held(t) be the set of locks held by thread t
• For each v, initialize C(v) to the set of all locks
• On each access to v by thread t:

– Set C(v) := C(v) ∩ locks_held(t)
– If C(v) is empty, then issue a warning

8

Handling Initialization & Read Sharing
• State machine tracked for each variable v
• Empty Lockset C(v) reported only if v is Shared-Modified

9

Lockset Algorithm (Final Version)
• Let locks_held(t) be the set of locks held by thread t;Let write_locks_held(t) be set of locks held in write mode
• For each v, initialize C(v) to the set of all locks
• On each read of v by thread t:

– Set C(v) := C(v) ∩ locks_held(t)
– If C(v) is empty, then issue a warning

• On each write of v by thread t:
– Set C(v) := C(v) ∩ write_locks_held(t)
– If C(v) is empty, then issue a warning
Locks held purely in read mode do not protect against a data race between the writer & some other reader thread

10

Implementation
• Binary instrumentation
• Instruments each load/store and malloc to maintain C(v)

– 32-bit (aligned) words
– But not stack-based accesses (stack assumed private)

• Instrument lock/unlock calls, thread init/finalize to maintain lock_held(t);
• Warnings report file, line number, thread ID, memory access address & type, PC, SP

– Option: Log all accesses to v that modify C(v)

11

Representing C(v)s
• Represent by small integer lockset index into table

– Never observed > 10K distinct lock sets
• Append-only table
• Lock vectors sorted
• Cache results of set intersections
• Shadow word: 30-bitindex, 2-bit state

• Issue: Shadow memory doubles size of memory
12

Performance
“Performance was not a major goal in our implementation”
• Typical app slowdown: 10x-30x

– Estimate half due to procedure call at every load/store
– Today: dynamic binary instrumentation (DBI) using inliningfor short code segments

“Eraser is fast enough to debug most programs and therefore meets the most essential performance criterion.”

13

Source of Overheads
• We measured 55x-70x for Valgrind 2.2 [2006]

– Lockset work overheads: 7x-10x
– Instrumentation overheads: 48x-60x

• Compete for cycles & resources (register state, L1 cache)
• Must recreate HW state (effective addresses, IP)
• e.g., 3 x86 insts becomes 27 x86 insts:

14

False Alarms & Annotations
• Memory reused without resetting shadow memory

– When app uses private memory allocator
– Annotation: EraserReuse(address, size)

• Synchronization outside of instrumented channels
– Private lock implementations of MR/SW locks
– Spin on flag
– Annotation: EraserReadLock(lock), EraserReadUnlock(lock),EraserWriteLock(lock), EraserWriteUnlock(lock)

• Benign races
– Annotation: EraserIgnoreOn(), EraserIgnoreOff()

“We have found that a handful of these annotationsusually suffices to eliminate all false alarms.”

15

Race Detection in OS Kernel
• OS often raises the processor interrupt level to provide mutual exclusion

– Particular interrupt level inclusively protects all data protected by lower interrupt levels
– Solution: Have a virtual lock for each level; when raise levelto x, treat this as first x per-level locks acquired

• OS makes greater use of POST/WAIT style synch, e.g., semaphores to signal when a device op is done
– Problem: Hard to infer which data a semaphore is protecting

16

Experience
• Ten iterations to resolve all reported races
• Worked well on servers: Evidence that experiencedprogrammers tend to obey the simple locking discipline
• AltaVista Web indexing service: mhttpd & Ni2

– Some good examples of benign races in production codes
– 24 annotations reduced false positives from 100+ to 0
– Reintroduced two old bugs & found/corrected in 30 minutes

• Vesta Cache Server
– Found data race on “valid” bit—serious on weak memory model
– Benign: Main thread passes RPC request to worker thread;Head of log lock makes entire log private
– 10 annotations & 1 bug fix reduced alarms from 100s to 0

17

Experience
• Petal distributed storage system

– Implements distributed consensus, failure detector/recovery
– Found one real race

• Undergraduate coursework
– 100 runnable assignments
– Found data races in 10% of them

• Sensitivity to thread interleavings
– Reran Ni2 & Vesta on 2 threads instead of 10
– Same race reports, in different order

18

Protection by Multiple Locks
• Every writer must hold all locksEvery reader must hold at least 1 lock

– Used to avoid deadlock in program that contains upcalls
• Causes false alarms

– Not worth cost of handling this

19

Deadlock
“If the data race is Scylla, the deadlock is Charybdis.”

(Sea monsters in Homer’s Odyssey)

• Discipline: Acquire locks in ascending order
• Found cycle of locks in formsedit application
• Would be useful addition to Eraser…

20

Bugs as Deviant Behavior
Dawson Engler, David Chen, Seth Hallem,Andy Chou, Benjamin Chelf [SOSP’01]

• Infer programmer beliefs from source code
– E.g., <a> must be paired with

• Cross-check for contradictions
• Report in order of likelihood of belief accuracy
• Developed 6 template checkers that found 100s of bugsin real systems such as Linux and OpenBSD

21

Data Race Detection Today
• Valgrind tools: Helgrind, DRD, Tsan

– Use Happens-before; Only Tsan also uses Lockset
– Early versions of Helgrind used Lockset

• Intel ThreadChecker: uses Happens-before
• Papers proposing hardware support, e.g.,

– HARD [HPCA’07]: HW bloom filters for fast lockset ops
– LBA [ISCA’08]: HW to eliminate instrumentation overheads, run analysis tool on different core + Idempotent Filters: Caches recent addresses, ignores accesses that hit in cache, flushes on lock/unlock; Overheads down to 1.4x (2x the cores)

Application Core Lifeguard Core
Log Transport

(e.g. cache)
Fetch and
decompress

Compress
and store

Log recordcapture Log recorddispatch
Metadata access
acceleration

Redundant event
filtering

Event-type
filtering

Optional
components 22

Data Races in Kernels
• DataCollider [OSDI’10]

– Stalls a kernel thread in critical sections to see if racy access occurs while stalled (not for time-critical interrupts)
• Guardrail [ASPLOS’14] for kernel-mode drivers addresses the following challenges:

– Single thread can race itself (!)
– Synchronization invariants basedon context of device state
– Synchronization based on deferredexecution using softirqs or timers
– Mutual exclusion via HW test-and-setor disabling interrupts & preemption

23

Data Races in Parallel Codes
• Cilk: Nondeterminator, Cilkscreen

– Relies on fork-join structure of Cilk programs to determine whether two conflicting accesses are ordered
– Reports race or that no race can occur with the given input
– Runs serially

• Parallel detectors for parallel code
– Issue: Capture & enforce in analysis the app’s inter-thread data dependencies
– Issue: Metadata access atomicity, especially under weak memory models
– E.g., Paralog [ASPLOS’10], Butterfly Analysis [ASPLOS’10, PACT’12, PACT’15]

24

Wednesday’s Paper

Using Model Checking to FindSerious File System Errors
Junfeng Yang, Paul Twokey, Dawson Engler,Madanlal Musuvathi [OSDI’04]

