
CS 495, Fall 2002

MPI: A Short Introduction

This document is meant to be a short introduction to MPI, the Message Passing Interface. MPI is a library

of C functions, data structures and macros that enable you to write portable and eÆcient message-passing

programs with ease.

1 Learning MPI

This document is only meant to get you started on compiling and running your MPI programs on the

NCSA Origin machines. To learn more about MPI, you should take the following online course:

Intoduction to MPI

http://webct.ncsa.uiuc.edu:8900/public/MPI/

The course is free; register online at the above URL, with any easy-to-remember login and password (these

need not be the same as your login and password for the NCSA machines). Chapters 2-8 cover everything

you will need for this assignment. You can log into your account any number of times, so the course

material can also be used as an online reference. The material in this document has been derived from the

material in the above course.

2 Compiling and running MPI programs

During compilation, MPI programs have to be linked with the libmpi.so library, as follows:

% gcc my_prog.c -lmpi

The program can be run using the mpirun utility:

% mpirun -np <no. of processors> <binary name> <command line input/options>

This runs the speci�ed program on the desired number of processors. mpirun also lets you do other more

sophisticated things, such as running di�erent binaries on di�erent processors which can communicate with

each other. See the mpirun manpage for more details.

To submit MPI jobs to the LSF batch queueing system, do the following:

% bsub -n<no. of processors> mpirun -np <no. of processors> <binary name>

<command line input/options>

As before, the binary should be in your home directory on modi4.

2.1 Timing your MPI programs

In order to obtain speedup and timing information, you should use the MPI Wtime() function, which returns

a double containing the time in seconds since some reference point. You can use the di�erence in the values

returned by two calls to this function, one at the beginning of your program and one at the end, to obtain

total execution time. The resolution of the timer is 1 microsecond.

1

3 MPI basics

MPI provides a simple set of routines that let a number of processes running on di�erent processors and/or

machines communicate with one-another. As the name suggests, the MPI speci�cation is just an Interface;

di�erent vendors are allowed to write di�erent implementations that are optimized for speci�c machine

architectures. This allows programs to be portable across di�erent machines while still allowing for good

performance. On the NCSA Origin 2000s, we will use the SGI-supplied MPI implementation.

MPI allows for the following types of communications:

1. Point-to-point: between 2 processors at a time, or one-one

2. Collective: one-many, many-one or many-many

We will deal with each of these in later sections.

4 MPI program structure

All MPI programs should include the header �le mpi.h. All MPI functions, variables and data structures

have the pre�x \MPI ", and return an error code on completion. The returned value is MPI SUCCESS

for successful completion.

4.1 Starting and terminating an MPI program

Before any other MPI routines are called, the program should execute a call to MPI Init:

MPI_Init(&argc, &argv);

Similarly, just before termination, all programs should execute MPI Finalize(). This has to be done by

all MPI processes; otherwise the program would appear to hang.

4.2 Types in MPI

Most MPI communication routines have an argument to specify what type of data is being communicated.

This argument is of type MPI Datatype, whose pre-de�ned values include correspondences for all of C's

standard types, for example, MPI CHAR for a char, MPI INT for an int and so on. In addition, you can

create your own custom MPI types for transferring data of many di�erent types or from non-contiguous

memory locations in one message (see Chapters 3.6 and 5 of the online course).

4.3 Communicators

Communication in MPI is based on the notion of a communicator: a group of processes that can com-

municate amongst themselves. Each process has a rank for every communicator it is a part of (note that

a process can be part of many di�erent communicators); a combination of a communicator and a rank

uniquely identify a processor. MPI supplies a pre-built communicator: MPI COMM WORLD, that con-

tains all the processes belonging to this program. You can also create your own communicators for more

restricted communications (see Chapters 3.11, 7 and 8 of the online course).

2

5 Point to point communication

(see Chapter 4 of the online course for more details)

This type of communication allows two processes to communicate with one another. One process sends

data using the MPI Send call, which the other can receive by executing an MPI Recv. The message contains

sender identi�cation, recepient, the communicator that they belong to (the \sender" and \recipient" are

actually just ranks within this communicator), a tag (helps identify the data and has meaning to the

application) the data itself, the type of the data (one of MPI's pre-built types, or a custom datatype), and

the number of data elements of this type present in the data.

Note that the recepient can get the data only by executing an MPI Recv: the operation terminates immedi-

ately if there is a message present to match the criteria speci�ed by the recipient; otherwise, the termination

is delayed till appropriate data is available. The recipient can specify which message (of potentially many

that may be pending) it wants to receive by specifying a communicator, a sender, and a value for the tag.

The operation completes if (or when) a message matching these parameters is available. Wildcards can be

used for the communicator and/or the sender.

All sends and receives have a notion of completion: when the operation has completed, it is safe to read or

write the memory whose contents were being sent or into which the incoming data was being stored. This

notion of completion is not the same as function call return, as we shall see.

Sends have a number of di�erent modes:

1. Synchronous: the send operation is complete when the receiver has acknowledged it. It results in the

sender and receiver getting synchronized.

2. Bu�ered: The data is copied into an MPI internal bu�er. The operation completes when this copying

is done. There is no guarantee that the sender has or has not received the message.

3. Ready: requires that the recepient has already posted a matching receive; otherwise, the result is

unde�ned.

4. Standard: this is the most general-purpose send mode, and the implementor of the MPI library is

free to chose the implementation. Depending on available resources and message size, it may behave

as synchronous mode or bu�ered mode.

The receive (thankfully) has just one mode: the operation completes if there is an available message that

matches the criteria; if not, completion is delayed till such a message is available.

To complicate things further, each of the send and receive calls have both blocking and non-blocking versions.

As was mentioned earlier, the notion of an operation completing is independent of when the function call

returns. If the call is blocking, it returns only when the operation completes. If the call is non-blocking,

it returns immediately: the corresponding communication operation and any other computation can then

proceed in parallel. MPI provides the functions MPI Wait and MPI Test to check when a non-blocking

communication operation has completed. Note that it is unsafe to use the memory bu�er that contains

the departing or arriving data till the operation completes; if a non-blocking call is used, the termination

of the operation should always be checked before this memory is touched.

3

6 Collective communications

(See Chapter 6 of the online course)

MPI's collective communication primitives allow one-many, many-one and many-many communication.

The following types of communication are allowed:

1. Barriers (MPI Barrier): no actual data is transferred; all calling processes are blocked until all the

processes in the speci�ed communicator have called the MPI Barrier routine.

2. Broadcast (MPI Bcast): allows one process to send the data to all the processes in the speci�ed

communicator; both the sender and receivers call MPI Bcast.

3. Reduction (MPI Reduce): allows data spread across numerous processes to be reduced to a single

process' memory. Reduction involves application of a built-in reduction operation such as MPI MAX

(�nd the maximum of all the data and pass it to the destination), MPI SUM etc., or some user-speci�ed

reduction operation.

4. Scatter (MPI Scatter): break up a contiguous piece of data in the sender's memory into numerous

small chunks, and pass each chunk to a di�ererent process in the communicator.

5. Gather (MPI Gather): the opposite of scatter; collect data from all the processes and store in a

contiguous chunk in the target.

7 Stu� you will need for this assignment

Of all the di�erent communication modes and paradigms described above, the following is the syntax and

semantics of the ones you are likely to �nd useful. If you �nd that you need something not described here,

look it up in the NCSA course material.

� int MPI Init(int *argc, char ***argv)

argc in address of the argc argument to main

argv in address of the argv argument to main

returns error code

This function has to be called before any other MPI routine is called.

� int MPI Finalize()

returns error code

Cleanup routine; all processes must call it before the application can terminate.

� double MPI Wtime()

returns time in seconds since some reference point

� int MPI Comm rank(MPI Comm comm, int *rank)

comm in communicator in which this process's rank is sought

rank out rank of this process

returns error code

This allows a process to know it's rank; this can be used, for example, to distinguish sender and

recipients.

4

� MPI Comm size(MPI Comm comm, int *size)

comm in communicator whose size is sought

size out size of this communicator

returns error code

This function can be used to obtain the number of processes in a given communicator.

� int MPI Send(void *buf, int count, MPI Datatype dtype, int dest, int tag, MPI Comm comm)

buf in initial address of send bu�er

count in number of elements in send bu�er

dtype in datatype of each element

dest in rank of the destination process

tag in message tag or identi�er

comm in communicator which the sender and receiver are a part of

returns error code

This is the blocking, standard-mode send. Since you will only be sending small pieces of data in this

assignment, this should be suÆcient.

� int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm

comm, MPI Status *status)

buf out initial address of receive bu�er

count in maximum number of elements in receive bu�er

datatype in datatype of each receive bu�er element

source in rank of source

tag in message tag

comm in communicator

status out status object

returns error code

Blocking receive. The status variable has information about the identity of the sender, tag etc. if

wildcards are used.

� int MPI Barrier (MPI Comm comm)

comm in communicator

returns error code

Blocks until all the processes in the communicator have calles it.

� int MPI Bcast (void *buffer, int count, MPI Datatype datatype, int root, MPI Comm comm)

bu�er in/out starting address of bu�er containing sent/received data

count in number of entries in bu�er

datatype in data type of bu�er

root in rank of broadcast root

comm in communicator

returns error code

The data in the bu�er is sent to all processes in the communicator.

5

