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TensorFlow Playground

Google's interactive backprop simulator.
     https://playground.tensorflow.org 

https://playground.tensorflow.org/
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MNIST Dataset

● 60,000 labeled handwritten digits
● 28 x 28 pixel grayscale images
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Recognition With a Linear Network
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PyTorch

● Python package for tensor manipulation 
and vectorized computations, including 
neural net learning.

– Replacement for numpy
– Optimized for GPUs

● Tensors are multi-dimensional arrays, 
similar to numpy's ndarray structure.

● Code can run on either CPU or GPU.



6

Defining the Model mnist1

class MultiLogisticModel(nn.Module):

  def __init__(self, in_dim, out_dim):
    super(MultiLogisticModel, self).__init__()
    self.linear = nn.Linear(in_dim, out_dim)

  def forward(self, x):
    out = self.linear(x)
    return out

model = MultiLogisticModel(28*28, 10)
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Learned Weights to Output Units

Training set performance: 89% correct.
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Batch Size
● An epoch is one pass through all the 

training data.
● With a large training set (60,000 images), 

we don't need to see all the training 
examples in order to estimate the error 
gradient.

● We set a batch size of 100 to indicate we 
want to do a weight update after every 
100 training examples.

– The examples need to be mixed together.
– What if we trained on all the 2's first?
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Adding A Hidden Layer
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Batch Normalization
● We want the activity patterns in each 

layer to have nice statistical properties 
(mean and variance) because this helps 
speed up learning.

● But each weight update changes the 
statistical distribution.

● Solution: “batch normalization”, a trick for 
making the distributions more uniform.

● Built in to PyTorch.
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Defining the Model mnist2
class OneHiddenLayer(nn.Module):

  def __init__(self, in_dim, out_dim, nhiddens):
    super(OneHiddenLayer, self).__init__()
    self.network = nn.Sequential(
      nn.Linear(in_dim, nhiddens),
      nn.BatchNorm1d(nhiddens),
      nn.ReLU(),
      nn.Linear(nhiddens, out_dim)
    )

  def forward(self, x):
    out = self.network(x)
    return out

model = OneHiddenLayer(28*28, 10, 20)
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Learned Weights to Hidden Units

Training set performance: 91% correct.
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Learned Weights to Output Units
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Training set performance: 91% correct.
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Overfitting
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How to Avoid Overfitting
● Increase the size of the training set.
● Reduce the number of parameters:

– Fewer hidden units
– Shared weights (convolutional network)

● Regularization: penalize large weights to 
encourage making more weights be zero.

● Dropout: randomly disable some fraction of the 
connections on every iteration.

● Early stopping:

– Maintain a separate cross-validation set
– Stop training when the CV error rises
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Convolutional Neural Networks

● Learn small (3x3 or 5x5) feature 
detectors or kernels that can be applied 
anywhere in the image.

Feature 1: Feature 2:
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Feature Maps

28 x 28 image

32 kernels
5x5 pixels

stride 1
padding 1

32 feature maps
26 x 26

# weights = 32 x (5x5+1) = 832 (small!)
# connections = 32 x (26x26) x (5x5+1) = 562,432 
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Stride 1
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Stride 2
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First Kernel: Padding 0
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First Kernel: Padding 1
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First Kernel: Padding 2
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Max Pooling
● We might not care exactly where a 

feature appears in the image.
● Downsampling by max pooling reduces 

the number of units and connections.

 
max
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Choice of Activation Function

● Sigmoid and tanh were popular early on:

● Now it's more common to use ReLU:
Rectified Linear Unit.  g(x) = max(x,0)

– Derivative doesn't go to zero for large x.
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Choice of Loss Function

● Mean Squared Error is a general loss 
function but not always the best to use.

● If desired outputs are probabilities (values 
between 0 and 1), use cross-entropy 
instead. Heavily penalizes really wrong 
outputs.

E =
1
2
∑
p

(d p− y p)2

E = ∑
p

−d p log ( y p)−(1−d p) log(1− y p)
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MNIST With A CNN
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Defining the Model mnist3

class OneConvLayer(nn.Module):

  def __init__(self, in_dim, out_dim, nkernels):
    super(OneConvLayer, self).__init__()
    self.network1 = nn.Sequential(
      nn.Conv2d(in_channels=1,
                out_channels=nkernels,
                kernel_size=5,
                stride=1,
                padding=2),
      nn.BatchNorm2d(nkernels),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2)
    )
    self.network2 = nn.Linear(nkernels*14*14,        
                              out_dim)
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Defining mnist3 (cont.)

  def forward(self, x):
    out = self.network1(x)
    out = out.view(out.size(0), -1)
    out = self.network2(out)
    return out

model = OneConvLayer(28*28, 10, 32)
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Sample Learned Kernels (32 Total)
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Deep Neural Networks

● For really hard problems (e.g., object 
recognition on color images) we may 
need many layers.

● Series of convolutional and max pooling 
layers, followed by some fully connected 
layers.

– LeNet had 10 layers.
– Inception V1 had 27 layers.
– ResNet has 100 layers.

● GPUs required for training.
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LeNet (Yann LuCun, 1990s)

● Handwritten digit recognition
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Object Recognition CNN

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/
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TinyYOLOV2 Face Recognition
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TinyYOLOV2 Architecture
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