
15-494/694: Cognitive Robotics

Lecture 13:
Convolutional Neural Nets

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

TensorFlow Playground

Google's interactive backprop simulator.
 https://playground.tensorflow.org

https://playground.tensorflow.org/

3

MNIST Dataset

● 60,000 labeled handwritten digits
● 28 x 28 pixel grayscale images

4

Recognition With a Linear Network

28 x 28
grayscale

image:
784 pixels

0

1

2

3

4

5

6

7

8

9

784 x 10
weight
matrix

10 output
classes

5

PyTorch

● Python package for tensor manipulation
and vectorized computations, including
neural net learning.

– Replacement for numpy
– Optimized for GPUs

● Tensors are multi-dimensional arrays,
similar to numpy's ndarray structure.

● Code can run on either CPU or GPU.

6

Defining the Model mnist1

class MultiLogisticModel(nn.Module):

 def __init__(self, in_dim, out_dim):
 super(MultiLogisticModel, self).__init__()
 self.linear = nn.Linear(in_dim, out_dim)

 def forward(self, x):
 out = self.linear(x)
 return out

model = MultiLogisticModel(28*28, 10)

7

Learned Weights to Output Units

Training set performance: 89% correct.

8

Batch Size
● An epoch is one pass through all the

training data.
● With a large training set (60,000 images),

we don't need to see all the training
examples in order to estimate the error
gradient.

● We set a batch size of 100 to indicate we
want to do a weight update after every
100 training examples.

– The examples need to be mixed together.
– What if we trained on all the 2's first?

9

Adding A Hidden Layer

28 x 28
grayscale

image:
784 pixels

0
1
2
3
4
5
6
7
8
9

784 x
20

weight
matrix

10
output
classes

Model has (784+1)×20 +
(20+1)×10 = 15,910
weights

20 x 10
weight
matrix

20 hidden units

10

Batch Normalization
● We want the activity patterns in each

layer to have nice statistical properties
(mean and variance) because this helps
speed up learning.

● But each weight update changes the
statistical distribution.

● Solution: “batch normalization”, a trick for
making the distributions more uniform.

● Built in to PyTorch.

11

Defining the Model mnist2
class OneHiddenLayer(nn.Module):

 def __init__(self, in_dim, out_dim, nhiddens):
 super(OneHiddenLayer, self).__init__()
 self.network = nn.Sequential(
 nn.Linear(in_dim, nhiddens),
 nn.BatchNorm1d(nhiddens),
 nn.ReLU(),
 nn.Linear(nhiddens, out_dim)
)

 def forward(self, x):
 out = self.network(x)
 return out

model = OneHiddenLayer(28*28, 10, 20)

12

Learned Weights to Hidden Units

Training set performance: 91% correct.

13

Learned Weights to Output Units

0 1 2 3 4 5 6 7 8 9

Training set performance: 91% correct.

14

Overfitting

15

How to Avoid Overfitting
● Increase the size of the training set.
● Reduce the number of parameters:

– Fewer hidden units
– Shared weights (convolutional network)

● Regularization: penalize large weights to
encourage making more weights be zero.

● Dropout: randomly disable some fraction of the
connections on every iteration.

● Early stopping:

– Maintain a separate cross-validation set
– Stop training when the CV error rises

16

Convolutional Neural Networks

● Learn small (3x3 or 5x5) feature
detectors or kernels that can be applied
anywhere in the image.

Feature 1: Feature 2:

17

Feature Maps

28 x 28 image

32 kernels
5x5 pixels

stride 1
padding 1

32 feature maps
26 x 26

weights = 32 x (5x5+1) = 832 (small!)
connections = 32 x (26x26) x (5x5+1) = 562,432

18

Stride 1

19

Stride 2

20

First Kernel: Padding 0

21

First Kernel: Padding 1

22

First Kernel: Padding 2

23

Max Pooling
● We might not care exactly where a

feature appears in the image.
● Downsampling by max pooling reduces

the number of units and connections.

max

24

Choice of Activation Function

● Sigmoid and tanh were popular early on:

● Now it's more common to use ReLU:
Rectified Linear Unit. g(x) = max(x,0)

– Derivative doesn't go to zero for large x.

25

Choice of Loss Function

● Mean Squared Error is a general loss
function but not always the best to use.

● If desired outputs are probabilities (values
between 0 and 1), use cross-entropy
instead. Heavily penalizes really wrong
outputs.

E =
1
2
∑
p

(d p− y p)2

E = ∑
p

−d p log (y p)−(1−d p) log(1− y p)

26

MNIST With A CNN

0

1

2

3

4

5

6

7

8

9

28 x 28 image

32 kernels 5x5 pixels
stride 1

padding 2
ReLU nonlinearity

image maps 28 x 28
batch normalization

2 x 2 max
pooling

32 image maps
14 x 14

fully
connected

weight matrix
(32*14*14+1)

x 10

parameters = 63,626
How many connections? Accuracy on training set: 98.3%

Cross-
entropy

loss
function

27

Defining the Model mnist3

class OneConvLayer(nn.Module):

 def __init__(self, in_dim, out_dim, nkernels):
 super(OneConvLayer, self).__init__()
 self.network1 = nn.Sequential(
 nn.Conv2d(in_channels=1,
 out_channels=nkernels,
 kernel_size=5,
 stride=1,
 padding=2),
 nn.BatchNorm2d(nkernels),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=2)
)
 self.network2 = nn.Linear(nkernels*14*14,
 out_dim)

28

Defining mnist3 (cont.)

 def forward(self, x):
 out = self.network1(x)
 out = out.view(out.size(0), -1)
 out = self.network2(out)
 return out

model = OneConvLayer(28*28, 10, 32)

29

Sample Learned Kernels (32 Total)

30

Deep Neural Networks

● For really hard problems (e.g., object
recognition on color images) we may
need many layers.

● Series of convolutional and max pooling
layers, followed by some fully connected
layers.

– LeNet had 10 layers.
– Inception V1 had 27 layers.
– ResNet has 100 layers.

● GPUs required for training.

31

LeNet (Yann LuCun, 1990s)

● Handwritten digit recognition

32

Object Recognition CNN

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/

33

TinyYOLOV2 Face Recognition

34

TinyYOLOV2 Architecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

