Introduction

Cinemagraphs have recently gained popularity as a way to create artistic photography without being limited to capturing a single moment. They are painstakingly created by photographers who spend hours creating the effect with photo-editing software.

In this project, I created a pipeline that will automatically generate cinemagraphs given a video frame dump and a target area. This process should be fast, simple, and aimed towards general, non-enthusiast users—in other words, people who rather not spend hours to painstakingly post-process their photos in Photoshop, or in fact, even know how to use image editing software, and yet want to achieve the cinemagraph effect.

Motivation

Currently, cinemagraphs are created using software tools like Photoshop and Gimp. However, not everyone is proficient in using these tools. Furthermore, it would be
appealing to have an automated way to simply convert a short clip into a cinemagraph, much like just cropping and resizing a photo after it has been taken.

Previous Work

The major motivation behind this idea is the photographer Jamie Beck’s tumblr blog. Jamie, along with web designer Kevin Burg, created the concept of a cinemagraph, which rose into prominence in the middle of the year. As such, there is yet very little published research on this topic.

Solution

My solution comprises of a few stages: pre-processing, target selection, background reconstruction, and motion tracking.

Pre-Processing

After obtaining the frame dump of the video, the frames need to go through an image registration process to ensure that they all align. An important part of my solution is the assumption that the camera is stationary. Therefore, if the video was not taken with a tripod, the images must be pre-processed.

I implemented simple edge aligning in order to speed up the process while preventing too much jitter. The alignment was done with respect to a known invariant, as shown in Figure 1.
Target Selection

This is provided by the user. An example is shown in Figure 2.
Background Reconstruction

Since there is motion in a cinemagraph, and yet only one frame is chosen to be used as the background, it is possible that the target will move to uncover an area that cannot be seen in the chosen frame. To reconstruct this background, we have a few choices: averaging, naïve selection, and majority selection.

The first choice is to average the target area over all the frames to create the frozen frame. This will remove anything that is moving fast. However, since there are presumably a small number of frames, this may not work if the original frame is the outlier with respect to what lies behind the target region.

The second choice is naïve selection. Basically, we can just copy over the area from the current frame on to the frozen frame. However, this can lead to artifacts if the background in the original video is not constant.

The third choice is, for every pixel in the target area, fill it with the color that is present in majority of the other frames. This suffers from the same outlier problem as the first choice, but is decidedly more robust towards slight movement.

In my implementation, I opted for averaging as it gave sufficiently good results without being as slow as majority selection. The resulting background is shown in Figure 3.
Target Tracking

I implemented this using SSD over the target area, with a mask that provides more weight towards the center. This ensures the focus of the region gets the most weight, and the region will move with the target.

Tracking is done in a feedback loop, in order to take advantage of the temporal information in the video. Basically, for every frame, the assumption is that the location of the target is close to its location in the previous frame, allowing is to use a smaller window when searching.

Blending

After determining the location of the target in the new frame, the new target area is blended back into the reconstructed frozen frame via feathering. Feathering gave the best results despite some jitter left from my simple image aligning process.
Results

On the project website, I show a few results from my system. It is also possible to create novel effects, such as using a different frozen frame, or moving targets at different times.

Although the traditional format used for cinemagraphs is gif, for some of the results, I’ve opted to use .mov files instead, because the limitations of regular gifs produces strong artifacts in longer gifs.

Limitations

The main limitation of my approach is the implicit assumption that the size of the target is constant. Since I represent the target as a polygonal region of interest, the search mask is constant throughout the video.

The shape of the target area is also constant, and does not allow for targets that deform too much. Slight deformation is possible as long as the size does not exceed the boundaries.
Future Work

An interesting area to explore would be to use video texturing to extend this effect. After extracting the target area and blending the frames, we can create novel cinemagraphs that do not obviously loop.

Another possible addition would be to use feature points in place of a region mask. While it may be hard to estimate a good border when extracting the target, it would eliminate the constraint that the target size be constant, allowing for more interesting effects.

References

http://fromme-toyou.tumblr.com/