
Lecture 5

Comparison-based Lower Bounds for
Sorting

5.1 Overview

In this lecture we discuss the notion of lower bounds, in particular for the problem of sorting. We
show that any deterministic comparison-based sorting algorithm must take Ω(n log n) time to sort
an array of n elements in the worst case. We then extend this result to average case performance,
and to randomized algorithms. In the process, we introduce the 2-player game view of algorithm
design and analysis.

5.2 Sorting lower bounds

So far we have been focusing on the question: “given some problem X, can we construct an
algorithm that runs in time O(f(n)) on inputs of size n?” This is often called an upper bound
problem because we are determining an upper bound on the inherent difficulty of problem X, and
our goal here is to make f(n) as small as possible. In this lecture we examine the “lower bound
problem.” Here, the goal is to prove that any algorithm must take time Ω(g(n)) time to solve
the problem, where now our goal is to do this for g(n) as large as possible. Lower bounds help
us understand how close we are to the best possible solution to some problem: e.g., if we have an
algorithm that runs in time O(n log2 n) and a lower bound of Ω(n log n), then we have a log(n)
“gap”: the maximum possible savings we could hope to achieve by improving our algorithm.

Often, we will prove lower bounds in restricted models of computation, that specify what types of
operations may be performed on the input and at what cost. So, a lower bound in such a model
means that if we want to do better, we would need somehow to do something outside the model.

Today we consider the class of comparison-based sorting algorithms. These are sorting algorithms
that only operate on the input array by comparing pairs of elements and moving elements around
based on the results of these comparisons. In particular, let us make the following definition.

Definition 5.1 A comparison-based sorting algorithm takes as input an array [a1, a2, . . . , an] of n
items, and can only gain information about the items by comparing pairs of them. Each comparison
(“is ai > aj?”) returns YES or NO and counts a 1 time-step. The algorithm may also for free

26

5.2. SORTING LOWER BOUNDS 27

reorder items based on the results of comparisons made. In the end, the algorithm must output a
permutation of the input in which all items are in sorted order.

For instance, Quicksort, Mergesort, and Insertion-sort are all comparison-based sorting algorithms.
What we will show is the following theorem.

Theorem 5.1 Any deterministic comparison-based sorting algorithm must perform Ω(n log n) com-
parisons to sort n elements in the worst case. Specifically, for any deterministic comparison-based
sorting algorithm A, for all n ≥ 2 there exists an input I of size n such that A makes at least
log2(n!) = Ω(n log n) comparisons to sort I.

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose a
pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any possible
(comparison-based) algorithm that might exist. The way we will do this is by showing that in order
to sort its input, the sorting algorithm is implicitly playing a game of “20 questions” with the input,
trying to figure out in what the order its elements are being given.

Proof: Since the algorithm must output a permutation of its input, we can assume the input
elements are {1, 2, . . . , n} but in some unknown order. The key to the argument is that (a) two
different input orders cannot both be correctly sorted by the same permutation, and (b) there are
n! different orders the input elements could be in. Now, suppose that two different initial orderings
of these numbers I1, I2, are consistent with all the comparisons the sorting algorithm has made so
far. Then, the sorting algorithm cannot yet be done since any permutation it outputs at this point
cannot be correct for both I1 and I2 (by observation (a) above). So, the sorting algorithm needs
at least implicitly to have pinned down which ordering of {1, . . . , n} was given in the input.

Let S be the set of input orderings consistent with all answers to comparisons made so far (so,
initially, S is the set of all n! possible orderings of the input). We can think of a new comparison as
splitting S into two groups: those input orderings for which the answer is YES and those for which
the answer is NO. Now, suppose the answer to each comparison is always the one corresponding to
the larger group. Then, each comparison cuts down the size of S by at most a factor of 2. Since S
initially has size n!, and at the end the algorithm must have reduced |S| down to 1, in this case the
algorithm will need to make at least log2(n!) comparisons before it can halt. We can then solve:

log2(n!) = log2(n) + log2(n− 1) + . . . + log2(2)
= Ω(n log n).

Let’s do an example with n = 3. In this case, there are six possible input orderings:

{123}, {132}, {213}, {231}, {312}, {321}.

Suppose the sorting algorithm first compares A[0] with A[1]. If the answer is that A[1] > A[0] then
we have narrowed down the input to the three possibilities:

{123}, {132}, {231}.

Suppose the next comparison is between A[1] and A[2]. In this case, the most popular answer is
that A[1] > A[2], which removes just one ordering, leaving us with:

{132}, {231}.

5.3. AVERAGE-CASE LOWER BOUNDS 28

It now takes one more comparison to finally isolate the input ordering.

Notice that our proof is like a game of 20 Questions in which the responder doesn’t actually decide
what he is thinking of until there is only one option left. This is legitimate because we just need to
show that there is some input that would cause the algorithm to take a long time. In other words,
since the sorting algorithm is deterministic, we can take that final remaining option and then re-
run the algorithm on that specific input, and the algorithm will make the same exact sequence of
operations.

You can also think of the above proof in terms of the number of possible outputs of the sorting
algorithm. Any comparison-based sorting algorithm can be thought of as producing a permutation
as its output (the permutation that, when applied to the input, produces a sorted array). There
are n! permutations and only one of them can be correct for any given input. Each comparison
breaks the set of possible outputs into two classes, and the response to the question says which
class the correct output is in. By always giving the answer corresponding to the larger class, an
adversary can force the algorithm to make log2(n!) comparisons.

5.3 Average-case lower bounds

In fact, we can generalize the above theorem to show that any comparison-based sorting algorithm
must take Ω(n log n) time on average, not just in the worst case.

Theorem 5.2 For any deterministic comparison-based sorting algorithm, the Average-Case num-
ber of comparisons (the number of comparisons on average on a randomly chosen input permutation)
is at least blog2(n!)c.

Proof: Let’s build out the entire decision tree: the tree we get by looking at all possible series of
answers that one might get from some ordering of the input. By the previous argument, each leaf
of this tree corresponds to a single input permutation (we can’t have two permutations at the same
leaf, else the algorithm would not be finished). The depth of the leaf is the number of comparisons
performed by the sorting algorithm on that input.

If the tree is completely balanced, then each leaf is at depth dlog2(n!)e or blog2(n!)c and we are
done.1 To prove the theorem, we just need to show that out of all binary trees on a given number
of leaves, the one that minimizes their average depth is a completely balanced tree. This is not
too hard to see: given some unbalanced tree, we take two sibling leaves at largest depth and move
them to be children of the leaf of smallest depth. Since the difference between the largest depth
and the smallest depth is at least 2 (otherwise the tree would be balanced), this operation reduces
the average depth of the leaves. Specifically, if the smaller depth is d and the larger depth is D, we
have removed two leaves of depth D and one of depth d, and we have added two leaves of depth
d+1 and one of depth D−1. Since any unbalanced tree can be modified to have a smaller average
depth, such a tree cannot be one that minimizes average depth, and therefore the tree of smallest
average depth must in fact be balanced.

In fact, if we are a bit more clever in the proof, we can get rid of the floor in the bound.

1Let us define a tree to be completely balanced if the deepest leaf is at most one level deeper than the shallowest
leaf. Everything would be easier if we could somehow assume n! was a power of 2....

5.4. LOWER BOUNDS FOR RANDOMIZED ALGORITHMS 29

5.4 Lower bounds for randomized algorithms

Theorem 5.3 The above bound holds for randomized algorithms too.

Proof: The argument here is a bit subtle. The first step is to argue that with respect to
counting comparisons, we can think of a randomized algorithm A as a probability distribution over
deterministic algorithms. To make things easier, let us only consider algorithms that have some
finite upper bound B (like n2) on the number of random coin-flips they make. This means we can
think of A as having access to a special “random bit tape” with B bits on it, and every time A
wants to flip a coin, it just pulls the next bit off that tape. In that case, for any given string s on
that tape, the resulting algorithm As is deterministic, and we can think of A as just the uniform
distribution over all those deterministic algorithms As.

This means that the expected number of comparisons made by randomized algorithm A on some
input I is just ∑

s

Pr(s)(Running time of As on I).

If you recall the definition of expectation, the running time of the randomized algorithm is a random
variable and the sequences s correspond to the elementary events.

So, the expected running time of the randomized algorithm is just an average over deterministic
algorithms. Since each deterministic algorithm has average-case running time at least blog2(n!)c,
any average over them must too. Formally, the average-case running time of the randomized
algorithm is

avg
inputs I

∑
s

[Pr(s)(Running time of As on I)] =
∑
s

avg
I

[Pr(s)(Running time of As on I)]

=
∑
s

Pr(s) avg
I

(Running time of As on I)

≥
∑
s

Pr(s)blog2(n!)c

= blog2(n!)c.

One way to think of the kinds of bounds we have been proving is to think of a matrix with one
row for every possible deterministic comparison-based sorting algorithm (there could be a lot of
rows!) and one column for every possible permutation of the n inputs (there are a lot of columns
too). Entry (i, j) in this matrix contains the running time of algorithm i on input j. The worst-
case deterministic lower bound tells us that for each row i there exists a column ji such that the
entry (i, ji) is large. The average-case deterministic lower bound tells us that for each row i, the
average of the elements in the row is large. The randomized lower bound says “well, since the
above statement holds for every row, it must also hold for any weighted average of the rows.” In
the language of game-theory, one could think of this as a two-player game (much like rock-paper-
scissors) between an “algorithm player” who gets to pick a row and an adversarial “input player”
who gets to pick a column. Each player makes their choice and the entry in the matrix is the
cost to the algorithm-player which we can think of as how much money the algorithm-player has
to pay the input player. We have shown that there is a randomized strategy for the input player
(namely, pick a column at random) that guarantees it an expected gain of Ω(n log n) no matter
what strategy the algorithm-player chooses.

