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In this lecture, we describe a very general problem called linear programming that can be used to
express a wide variety of different kinds of problems. We can use algorithms for linear program-
ming to solve the max-flow problem, solve the min-cost max-flow problem, find minimax-optimal
strategies in games, and many other things. We will primarily discuss the setting and how to code
up various problems as linear programs (LPs). At the end, we will briefly describe some of the
algorithms for solving LPs. Specific topics include:

• The definition of linear programming and simple examples.
• Using linear programming to solve max flow and min-cost max flow.
• Using linear programming to solve for minimax-optimal strategies in games.
• Linear programs in standard form.

1 Introduction

In recent lectures we have looked at the following problems:

— Bipartite maximum matching: given a bipartite graph, find the largest set of edges with no
endpoints in common.

— Network flow (more general than bipartite matching).

— Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. (Except we won’t necessarily be able to get integer solutions, even when the specifi-
cation of the problem is integral).

Linear Programming is important because it is so expressive: many, many problems can be coded
up as linear programs (LPs). This especially includes problems of allocating resources and business
supply-chain applications. In business schools and Operations Research departments there are
entire courses devoted to linear programming. Today we will mostly say what they are and give
examples of encoding problems as LPs. We will only say a tiny bit about algorithms for solving
them.

Before defining the problem, let’s motivate it with an example:

Example: There are 168 hours in a week. Say we want to allocate our time between classes and
studying (S), fun activities and going to parties (P ), and everything else (E) (eating, sleeping,
taking showers, etc). Suppose that to survive we need to spend at least 56 hours on E (8
hours/day). To maintain sanity we need P + E ≥ 70. To pass our courses, we need S ≥ 60,
but more if don’t sleep enough or spend too much time partying: 2S +E − 3P ≥ 150. (E.g.,
if don’t go to parties at all then this isn’t a problem, but if we spend more time on P then
need to sleep more or study more).

Q1: Can we do this? Formally, is there a feasible solution?

A: Yes. For instance, one feasible solution is: S = 80, P = 20, E = 68.
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Q2: Suppose our notion of happiness is expressed by 2P +E. What is a feasible solution such that
this is maximized? The formula “2P + E” is called an objective function.

The above is an example of a linear program. What makes it linear is that all our constraints are
linear inequalities in our variables. E.g., 2S + E − 3P ≥ 150. In addition, our objective function
is also linear. We’re not allowed things like requiring S × E ≥ 100, since this wouldn’t be a linear
inequality.

2 Definition of Linear Programming

More formally, a linear programming problem is specified as follows.

Given:

• n variables x1, . . . , xn.

• m linear inequalities in these variables (equalities OK too).

E.g., 3x1 + 4x2 ≤ 6, 0 ≤ x1 ≤ 3, etc.

• We may also have a linear objective function. E.g., 2x1 + 3x2 + x3.

Goal:

• Find values for the xi’s that satisfy the constraints and maximize the objective. (In the
“feasibility problem” there is no objective function: we just want to satisfy the constraints.)

An LP with an objective falls into three categories:

• Infeasible (there is no point that satisfies the constraints)

• Feasible and Bounded (there is a feasible point of maximum objective function value)

• Feasible and Unbounded (there is a feasible point of arbitrarily large objective function
value)

An algorithm for LP should classify the input LP into one of these categories, and find the optimum
feasible point when the LP is feasible and bounded.

For instance, let’s write out our time allocation problem this way.

Variables: S, P , E.

Objective: maximize 2P + E, subject to

Constraints:
S + P + E = 168

E ≥ 56

S ≥ 60

2S + E − 3P ≥ 150

P + E ≥ 70

P ≥ 0 (can’t spend negative time partying)
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3 Modeling problems as Linear Programs

Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms of
labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We have
3300 hours of labor and 4000 units of material available. We are allowed to produce 12000 units of
pollution, and we want to maximize the number of cars produced. How can we model this?

To model a problem like this, it helps to ask the following three questions in order: (1) what are
the variables, (2) what is our objective in terms of these variables, and (3) what are the constaints.
Let’s go through these questions for this problem.

1. What are the variables? x1, x2, x3, x4, where xi denotes the number of cars at plant i.

2. What is our objective? maximize x1 + x2 + x3 + x4.

3. What are the constraints?

xi ≥ 0 (for all i)

x3 ≥ 400

2x1 + 3x2 + 4x3 + 5x4 ≤ 3300

3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

Note that we are not guaranteed the solution produced by linear programming will be integral. For
problems where the numbers we are solving for are large (like here), it is usually not a very big
deal because you can just round them down to get an almost-optimal solution. However, we will
see problems later where it is a very big deal.

4 Modeling Network Flow

We can model the max flow problem as a linear program too.

Variables: Set up one variable fuv for each edge (u, v). Let’s just represent the positive flow since
it will be a little easier with fewer constraints.

Objective: Maximize
∑

u fut −
∑

u ftu. (maximize the flow into t minus any flow out of t)

Constraints:

– For all edges (u, v), 0 ≤ fuv ≤ c(u, v). (capacity constraints)
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– For all v 6∈ {s, t},
∑

u fuv =
∑

u fvu. (flow conservation)

For instance, consider this example:

In this case, our LP is: maximize fct + fdt subject to the constraints:

0 ≤ fsa ≤ 4, 0 ≤ fac ≤ 3, etc.

fsa = fac, fsb + fcb = fbc + fbd, fac + fbc = fcb + fct, fbd = fdt.

How about min cost max flow? In min-cost max flow, each edge (u, v) has both a capacity
c(u, v) and a cost w(u, v). The goal is to find out of all possible maximum s-t flows the one of least
total cost, where the cost of a flow f is defined as∑

(u,v)∈E

w(u, v)fuv.

One way to do this is to first solve for the maximum flow f , ignoring costs. Then, add a con-
straint that flow must equal f , and subject to that constraint (plus the original capacity and flow
conservation constraints), minimize the linear cost function

∑
(u,v)∈E w(u, v)fuv.

5 2-Player Zero-Sum Games

Suppose we are given a 2-player zero-sum game with n rows and n columns, and we want to compute
a minimax optimal strategy. For instance, perhaps a game like this (say payoffs are for the row
player):

20 −10 5
5 10 −10
−5 0 10

Let’s see how we can use linear programming to solve this game. Informally, we want the variables
to be the things we want to figure out, which in this case are the probabilities to put on our different
choices p1, . . . , pn. These have to form a legal probability distribution, and we can describe this
using linear inequalities: namely, p1 + . . .+ pn = 1 and pi ≥ 0 for all i.

Our goal is to maximize the worst case (minimum), over all columns our opponent can play, of our
expected gain. This is a little confusing because we are maximizing a minimum. However, we can
use a trick: we will add one new variable v (representing the minimum), put in constraints that
our expected gain has to be at least v for every column, and then define our objective to be to
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maximize v. Assume our input is given as an array m where mij represents the payoff to the row
player when the row player plays i and the column player plays j. Putting this all together we
have:

Variables: p1, . . . , pn and v.

Objective: Maximize v.

Constraints:

• pi ≥ 0 for all i, and
∑

i pi = 1. (the pi form a probability distribution)

• for all columns j, we have
∑

i pimij ≥ v.

6 Matchings

Given an undirected graph G = (V,E), a matching is a set M of edges of G such that no two
edges of M share a vertex. Typically we’re interested in finding the matching of largest cardinality.
We’ve already seen how to use maximum flow to solve the matching problem in bipartite graphs.
It’s instructive to see how LP can be used for the matching problem.

For each edge {u, v} ∈ E we create a variable e{u,v}. And we assert the following inequalities:

0 ≤ e{u,v} ≤ 1 ∀{u, v} ∈ E (1)∑
v:{u,v}∈E

e{u,v} ≤ 1 ∀u ∈ V (2)

The objective function is:

max
∑

{u,v}∈E

e{u,v}

It’s easy to see that any matching in G can be used to give a solution to this LP (set e{u,v} = 1
for edges in the matching, and zero otherwise). In other words, if ZG is the maximum objective
function value of this LP on a graph G, and MG is the size of the maximum matching in G then
ZG ≥MG. Another way to phrase this is that the integral solutions are a subset of the space being
considered by the LP.

But the converse is not necessarily true, because the solution to the LP might not be integral. It
turns out that when G is bipartite ZG = MG, but equality does not hold in general graphs. For
example, consider the following graph of five vertices and five edges:

The maximum objective function value ZG = 2.5 (as shown here) but the maximum matching is of
size MG = 2. The simplex algorithm for linear programming has a property that guarantees that
for bipartite graphs it will find the maximum matching (integral), and for general graphs it will
find a solution for which all the edges are integers or half-integers. The next section develops this
in more detail.
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7 Polytopes, Vertices, and the Simplex Algorithm

It’s sometimes helpful to visualize linear programs geometrically. The set of points that satisfy a
linear inequality is all the points on, or on one-side of a “plane” in Rd. This set of points is called a
half-space. The points satisfying all the inequalities of an LP is therefore the intersection of a finite
number of half-spaces. Such a set of points is called a convex polytope. (Figures from Wiktionary,
and Geometry Junkyard.)

Given two points a and b in Rd, we can define the convex combination of a and b as follows:

Conv(a, b) = {αa+ (1− α)b | 0 ≤ α ≤ 1}

Conv(a, b) is simply the all the points on the straight line in Rd between points a and b.

A set of points S in Rd is convex iff for all a, b ∈ S we have that Conv(a, b) ⊆ S. Note that the
intersection of two convex sets is convex, because if a and b are in both of the convex sets, then the
convex combination is also in both of the sets. It follows that the polytope of an LP is a convex
set.

Polytopes have many other interesting properties. They can be decomposed as a collection of
interrelated facets of dimensions varying from 0 to d. (In three dimensions these are vertices,
edges, faces, and volumes.) We’re not going to discuss that rich theory here except to talk about
the vertices of a polytope, that is, the facets of dimension 0.

A point q is a vertex of a polytope P if the following hold:

• q ∈ P
• For any v ∈ Rd with v 6= 0 then at least one of q + v or q − v is not in P .

Put another way, if you’re at a point for which there exist two opposite directions such that you
can move in these directions and still stay inside the polytope, then you’re not at a vertex.

Vertices are important because any LP has an optimum solution that is on a vertex. The intuition
for this is that if you’re at a non-vertex and you can move in directions v and −v, then moving in at
least one of these directions will not cause the objective function to decrease. So you move in that
direction as far as you can go. When you stop you must be entering a facet of a lower dimension.
This process is then repeated until you reach a vertex.

Furthermore, the simplex algorithm always moves from vertex to vertex, and therefore the solution
it finds is a vertex of the convex polytope. We’ll describe the simplex algorithm in the next lecture.

7.1 Vertices of the Matching Polytope

Given a graph G = (V,E), denote by MPG ⊆ R|E| the polytope of the matching LP given by
inequalities (1-2).
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Theorem 1 Let G be a bipartite graph, and MPG be its matching polytope. If q is a vertex of
MPG, then q is an integer point in Rd.

Proof: We will prove the contrapositive. Suppose q is a point in MPG that is non-integral. Then
we will show that it is not a vertex of MPG.

To avoid confusion, we’ll use the term “node” for the vertices of the graph G. So we have a point
q in MPG some of whose variables are strictly between zero and one. Consider the subgraph of G
(called G′) consisting only of those edges whose values are non-integral (strictly between 0 and 1).

There are two cases. Supppose G′ has a cycle. Because G′ is bipartite, the cycle is of even length.
Each edge of the cycle has a variable whose value is strictly between 0 and 1. Let ε be a number
which is so small that when added to or subtracted from any one of the variables on the cycle, its
value remains in the closed interval [0, 1]. The left side of the figure below illustrates this case.

 

We can now alternately add and subtract ε from the values around the cycle. This preserves the
sum of the variables at every node of G′. Also notice that we could have swapped + with − in
every case with the same result. This gives us a vector v such that the point q + v and the point
q − v are both in the polytope.

The second and final case is illustrated in the figure above on the right. Suppose there is no cycle in
G′. Then G′ is a tree. We find a path from a leaf to another leaf. We can apply the same technique
of alternately adding and subtracting ε along this path. One difference is that the sum total of
the variables impinging on the starting and ending nodes do change. But since the leaf nodes of
G′ have only one variable strictly between zero and one impinging on them, we can increase it or
decrease it without violating the constraint for that node.

And the result is again a direction v such that we can move in direction v and direction −v and
stay inside the polytope. �

Notice how the proof crucially depends on there not being an odd cycle in G. However, the following
theorem holds in the non-bipartite case.

Theorem 2 Let G be a graph, and MPG be its matching polytope. If q is a vertex of MPG, then
every component of the vector q is in the set {0, 12 , 1}.
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A similar but somewhat more complicated argument can be used to prove this.

8 Standard Linear Programming Terminology and Notation

It’s going to be useful as we discuss algorithms for LP in future lectures, as well as for the concept
of duality, to introduce some terminology and notation for linear programs.

A linear program (LP) written in the following form is said to be in Standard Form:

maximize cTx

subject to Ax ≤ b
x ≥ 0

Here there are n non-negative variables x1, x1, . . . , xn, and m linear constraints encapsulated in
the m × n matrix A and the m × 1 matrix (vector) b. The objective function to be maximized is
represented by the n× 1 matrix (vector) c.

!
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OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/30/15 7:00 PM

Any LP can be expressed in standard form. Example 1: if we are given an LP with some linear
equalities, we can split each equality into two inequalities. Example 2: if we need a variable xi to
be allowed to be positive or negative, we replace it by the difference between two variables x′i and
x′′i . Let xi = x′i − x′′i , and eliminate all occurrences of x in the LP by this substitution.

An LP is feasible if there exists a point x satisfying the constraints, and infeasible otherwise.

An LP is unbounded if ∀B ∃x such that x is feasible and cTx > B. Otherwise it is bounded .

An LP has an optimal solution iff it is feasible and bounded.

The job of an LP solver is to classify a given LP into these categories, and if it is feasible and
bounded, it should return a point with the optimum value of the objective function. Of course,
this optimal value may take on fractional values.
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