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An Algorithms-based Intro fo
Machine Learning, part IT

Plan for today

* Machine Learning intro: basic questions,
issues & models.

* A formal analysis of "Occam’s razor”.
* Support-vector machines

Machine learning can be used to...

* recognize speech,

* identify patterns in data,
* steer a car,

+ play games,

* adapt programs tfo users,
- improve web search, ...

From a scientific perspective: can we develop
models to understand learning as a computational
problem, and what types of guarantees might we
hope to achieve?

A typical setting

+ Imagine you want a computer program to help filter
which email messages are spam and which are
important.

* Might represent each message by n features. (eg.,
return address, keywords, spelling, etc.)

+ Take sample S of datq, labeled according to
whether they were/weren't spam.

* Goal of algorithm is to use data seen so far produce
good prediction rule (a “hypothesis”) A(x) for future
data.

The concept learning setting
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Given data, some reasonable rules might be:
*Predict SPAM if —known AND (money OR pills)

*Predict SPAM if money + pills - known > 0.




Big questions

(A) How might we automatically generate rules
that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have that
they will do well in the future?

[confidence bound / sample complexity]

for a given learnin
how can we

For the confidence question, we'll need some

connection between future data and past data.

Natural for‘maliza‘rion (PAC)

Email msg Spam or no'r’
* We are given sample S={(x

- View labels y as being produced by some target
function f.

+ Alg does optimization over S to produce some

hypothesis (prediction rule) h.

- Assume S is a random sample from some

probability distribution D. Goal is for h to do well
on new examples also from D.

Ie, errp(h) = xFirD[h(x) #f()] <e

Example of analysis: Decision Lists
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Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with erry(h) > €] < 8.

3. This means that A is a good algorithm to use if
f is, in fact, a DL.
(a bit of a toy example since would want to
extend to "mostly consistent” DL)

How can we find a consistent DL?

Tl Tp T3 T4 Ts label
1 0 0 1 1 -+
O0— 1T 190 19} =
T T T V) O +
O0— 00 —1 9] =
1 1 Q 1 1 =+
1 0 0 O 1 —

if (x;=0) then -, else
if (x,=1) then +, else
if (x4,=1) then +, else -

Decision List algorithm

+ Start with empty list.
- Find if-then rule consistent with data.
(and satisfied by at least one example)
+ Put rule at bottom of list so far, and cross of f

examples covered. Repeat until no examples remain.

If this fails, then:
*No rule consistent with remaining data.
*So no DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it

to do well on future data?

Confidence/sample-complexity

+ Consider some DL h with err(h)>c, that we're

worried might fool us.

+ Chance Tha‘r h survives |S| examples is at

most (1-¢)!sl.

- Let |H| = number of DLs over n Boolean

fea‘l'ur‘es. |H| < (4n+2)| (really crude bound)

So, Pr[some DL h with err(h)>c is consistent]
<|H|(1-¢)!s!.

* This is <0.01 for |S| > (1/e)[In(|H|) + In(100)]

or about (1/¢)[n In n + In(100)]




Example of analysis: Decision Lists
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Say we suspect there might be a good prediction
rule of this form.
¢ Design an efficient algorithm A that will find a
9" consistent DL if one exists.
%gshow that if |S| is of reasonable size, then
00" Prlexists consistent DL h with erry(h) > €] < 8.

3. So,if fisinfact a DL, then whp A's hypothesis
will be approximately correct. "PAC model”

Confidence/sample-complexity

+ What's great is there was nothing special about

DLs in our argument.

- All we said was: "“if there are not foo many rules to

choose from, then it's unlikely one will have fooled
us just by chance.”

* And in particular, the number of examples needs

to only be proportional to log(|HI).

If Is| > 2 (In|H]| +In3) then with prob > 1 -5, all
h € H with errp(h) = € will have errg(h) > 0.

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: "in general, prefer
simpler explanations”.

Why? TIs this a good policy? What if we
have different notions of what's simpler?

Occam's razor (contd)
A computer-science-ish way of looking at it:

+ Say "simple” = "short description”.
* At most 25 explanations can be < s bits long.
* So, if the number of examples satisfies:

m > (1/¢)[s In(2) + In(1/6)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will
be a short explanation for the data. That
depends on your representation.

Reqularization

+ Very important notion in machine learning:
basically a generalization of Occam's razor.

Errp(h) = Errg(h) + [Errp(h) — Errg(h)]

Minimize [error gn fraining set] + [complexity term]
;—zgicf‘r“ysgar:\?nif:\;z “Regularizer”: bounds the
@ u);iaer AU amount of overfitting.




Support-vector machines

* An instantiation of this for the case of
linear separators in high dimensions.

- E.g., "bag of words", "bag of phrases”

Minimize [error on training set] + [complexity term]

zlzéi?”yszq;y?n?:ﬁ(zjz “Regularizer”: bounds the
p u:lpzr“ bound amount of overfitting.

Support-vector machines

+ Issue #1: minimizing error on S is NP-hard.
So, replace with upper bound: “hinge loss".

- Issue #2: what to use as complexity term?

Minimize [error on fraining set] + [complexity term]

:‘lggf“ysza;?n?:‘;: “Regularizer”: bounds the
an u)p;’per bound amount of overfitting.

Support-vector machines

- “Hinge loss": 3;¢;, where:
- w-x; =1 —¢; for positive x; € S.
- w-x; < —1+¢; for negative x; € S.
-€=0.

penalty

1/|w| = “margin of
separation”
Minimize Zfi + c-lwl?

[
Typically hard to do
exactly, so minimize
an upper bound

w - x (for positive x)

Turns out, can connect |w|? to
the amount of overfitting.

Support-vector machines

+ This is a convex optimization problem. (Not
quite an LP, but solvable efficiently).
Can approximate with Margin-Perceptron
(update on mistake or “barely correct").

+ Powerful tool in machine learning, both on
its own and combined with kernel functions.

1/|w| = “margin of
separation”

Minimize D e wl




