CMU 15-451/15-651

Lecturer: Avrim Blum 11/16/15

An Algorithms-based Intro fo
Machine Learning, part IT

Plan for today

* Machine Learning intro: basic questions,
issues & models.

* A formal analysis of "Occam’s razor”.
* Support-vector machines

Machine learning can be used to...

* recognize speech,

* identify patterns in data,
* steer a car,

+ play games,

* adapt programs tfo users,
- improve web search, ...

From a scientific perspective: can we develop
models to understand learning as a computational
problem, and what types of guarantees might we
hope to achieve?

A typical setting

+ Imagine you want a computer program to help filter
which email messages are spam and which are
important.

* Might represent each message by n features. (eg.,
return address, keywords, spelling, etc.)

+ Take sample S of datq, labeled according to
whether they were/weren't spam.

* Goal of algorithm is to use data seen so far produce
good prediction rule (a “hypothesis”) A(x) for future
data.

The concept learning setting

Eg money pills Mr. bad spelling known-sender | spam?
! Y NY Y N Y
. N N N Y Y N
a positive
e’;ample N Y N N N ¥
a negative Y N N N Y N
example (N N Y N Y N)
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given data, some reasonable rules might be:
*Predict SPAM if —known AND (money OR pills)

*Predict SPAM if money + pills - known > 0.

Big questions

(A) How might we automatically generate rules
that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have that
they will do well in the future?

[confidence bound / sample complexity]

for a given learnin
how can we

For the confidence question, we'll need some

connection between future data and past data.

Natural for‘maliza‘rion (PAC)

Email msg Spam or no'r’
* We are given sample S={(x

- View labels y as being produced by some target
function f.

+ Alg does optimization over S to produce some

hypothesis (prediction rule) h.

- Assume S is a random sample from some

probability distribution D. Goal is for h to do well
on new examples also from D.

Ie, errp(h) = xFirD[h(x) #f()] <e

Example of analysis: Decision Lists
| u:m ‘—"q xTn |—"4 u:ﬂ? ‘—'"Ln

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with erry(h) > €] < 8.

3. This means that A is a good algorithm to use if
f is, in fact, a DL.
(a bit of a toy example since would want to
extend to "mostly consistent” DL)

How can we find a consistent DL?

Tl Tp T3 T4 Ts label
1 0 0 1 1 -+
O0— 1T 190 19} =
T T T V) O +
O0— 00 —1 9] =
1 1 Q 1 1 =+
1 0 0 O 1 —

if (x;=0) then -, else
if (x,=1) then +, else
if (x4,=1) then +, else -

Decision List algorithm

+ Start with empty list.
- Find if-then rule consistent with data.
(and satisfied by at least one example)
+ Put rule at bottom of list so far, and cross of f

examples covered. Repeat until no examples remain.

If this fails, then:
*No rule consistent with remaining data.
*So no DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it

to do well on future data?

Confidence/sample-complexity

+ Consider some DL h with err(h)>c, that we're

worried might fool us.

+ Chance Tha‘r h survives |S| examples is at

most (1-¢)!sl.

- Let |H| = number of DLs over n Boolean

fea‘l'ur‘es. |H| < (4n+2)| (really crude bound)

So, Pr[some DL h with err(h)>c is consistent]
<|H|(1-¢)!s!.

* This is <0.01 for |S| > (1/e)[In(|H|) + In(100)]

or about (1/¢)[n In n + In(100)]

Example of analysis: Decision Lists
| u;w ‘ln-{ xafl? |4"i{ mfm' ‘—"in

[\ 1

Say we suspect there might be a good prediction
rule of this form.
¢ Design an efficient algorithm A that will find a
9" consistent DL if one exists.
%gshow that if |S| is of reasonable size, then
00" Prlexists consistent DL h with erry(h) > €] < 8.

3. So,if fisinfact a DL, then whp A's hypothesis
will be approximately correct. "PAC model”

Confidence/sample-complexity

+ What's great is there was nothing special about

DLs in our argument.

- All we said was: "“if there are not foo many rules to

choose from, then it's unlikely one will have fooled
us just by chance.”

* And in particular, the number of examples needs

to only be proportional to log(|HI).

If Is| > 2 (In|H]| +In3) then with prob > 1 -5, all
h € H with errp(h) = € will have errg(h) > 0.

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: "in general, prefer
simpler explanations”.

Why? TIs this a good policy? What if we
have different notions of what's simpler?

Occam's razor (contd)
A computer-science-ish way of looking at it:

+ Say "simple” = "short description”.
* At most 25 explanations can be < s bits long.
* So, if the number of examples satisfies:

m > (1/¢)[s In(2) + In(1/6)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will
be a short explanation for the data. That
depends on your representation.

Reqularization

+ Very important notion in machine learning:
basically a generalization of Occam's razor.

Errp(h) = Errg(h) + [Errp(h) — Errg(h)]

Minimize [error gn fraining set] + [complexity term]
;—zgicf‘r“ysgar:\?nif:\;z “Regularizer”: bounds the
@ u);iaer AU amount of overfitting.

Support-vector machines

* An instantiation of this for the case of
linear separators in high dimensions.

- E.g., "bag of words", "bag of phrases”

Minimize [error on training set] + [complexity term]

zlzéi?”yszq;y?n?:ﬁ(zjz “Regularizer”: bounds the
p u:lpzr“ bound amount of overfitting.

Support-vector machines

+ Issue #1: minimizing error on S is NP-hard.
So, replace with upper bound: “hinge loss".

- Issue #2: what to use as complexity term?

Minimize [error on fraining set] + [complexity term]

:‘lggf“ysza;?n?:‘;: “Regularizer”: bounds the
an u)p;’per bound amount of overfitting.

Support-vector machines

- “Hinge loss": 3;¢;, where:
- w-x; =1 —¢; for positive x; € S.
- w-x; < —1+¢; for negative x; € S.
-€=0.

penalty

1/|w| = “margin of
separation”
Minimize Zfi + c-lwl?

[
Typically hard to do
exactly, so minimize
an upper bound

w - x (for positive x)

Turns out, can connect |w|? to
the amount of overfitting.

Support-vector machines

+ This is a convex optimization problem. (Not
quite an LP, but solvable efficiently).
Can approximate with Margin-Perceptron
(update on mistake or “barely correct").

+ Powerful tool in machine learning, both on
its own and combined with kernel functions.

1/|w| = “margin of
separation”

Minimize D e wl

