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1 Duality for network flow

In lecture, we talked about applying LP duality to network flow, and seeing how we get the maxflow-
mincut theorem as a special case of the strong duality theorem for LPs.

First, let’s set up the primal. As usual, we’ll have a variable fuv for each edge (u, v) indicating the
amount of material flowing on that edge, with constraints 0 ≤ fuv ≤ cuv where cuv is the capacity
of that edge. Now, to simplify our lives, let’s add in an edge (t, s) of very large capacity M (greater
than the sum of capacities of all other edges) and ask to maximize the flow on that edge fts subject
to having flow-in equal to flow-out everywhere, including at s and t. Convince yourself that this
is equivalent to the original max-flow problem. As mentioned in class, we can think of this like a
fountain, where the (t, s) edge is the hidden pipe bringing water from the bottom back up to the
top.

The next trick to simplify our lives is that instead of requiring flow-in = flow-out everywhere, we
can require flow-in ≤ flow out everywhere. I.e.,

for all v,
∑

u

fuv ≤
∑
w

fvw.

This sounds dangerous at first, but notice that this can only be satisfied if indeed we have flow-in
= flow-out everywhere. That’s because if we sum up the LHS for all v we get the same thing
as summing up the RHS for all v; i.e.,

∑
v

∑
u fuv =

∑
v

∑
w fvw. So, the only way that all the

left-hand-sides can be ≤ their corresponding right-hand-side is if indeed we have equality.

So, now we can write this as maximizing cTx subject to Ax ≤ b, x ≥ 0, where:

• x is the vector of fuv variables, with, say, fts as the first variable for convenience.

• cT is the vector (100 . . . 0).

• A has |E|+ |V | rows and |E| columns, and b has |E|+ |V | entries.

We can put the contraints in whatever order we like, but let’s have the first |E| constraints
be the fuv ≤ cuv constraints, so the first |E| rows of A look like the identity matrix and the
first |E| entries in b are the cuv’s.

Then the next |V | rows of A correspond to the constraints “for all v,
∑

u fuv −
∑

w fvw ≤ 0”.
So the vth row has 1’s for all the edges entering into v and −1’s for all the edges exiting from
v. The corresponding entry in b is 0.

Let’s use Ave to index the vth row and eth column of this bottom portion of A. So, Ave = 1
if v is the head of edge e (e is pointing into v) and Ave = −1 if v is the tail of e.

1.1 The dual

For the dual, we have one variable per row of A. Let’s call the first |E| variables zuv (we have
one per edge) and the next |V | variables yv (we have one per vertex). We want to minimize yTb
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subject to yT A ≥ cT and y ≥ 0. So, this means we want to:

• Minimize
∑

uv cuvzuv subject to:

• For the first column of A we get the constraint zts + ys − yt ≥ 1.

• For the rest of the columns of A we get zuv + yv − yu ≥ 0, i.e., zuv ≥ yu − yv.

• And we need all variables to be ≥ 0.

Now, we can simplify this a bit and interpret it. First of all, additive offsets to all the yv’s don’t
change anything, so we can set yt = 0. Secondly, since cts is very large, the optimal solution will
set zts = 0. So this means that ys ≥ 1, and in fact it’s not hard to see that the optimal solution
will set ys = 1. Finally, if we look at the constraint zuv ≥ yu − yv, we can notice that if yu > yv

then this will be satisfied at equality (zuv = yu − yv) in the optimal solution, since we are trying to
minimize.

So, this means we can think of the dual as follows. Think of yv as the “height” of v. We have the
sink t at height 0, the source s at height 1, and we are trying to solve for heights yv of all the other
nodes to minimize the total sum, over all edges (u, v) that go downhill, of cuv(yu − yv).

Notice that one solution is to take some subset of the nodes S and put them at height 1, and put
the remaining nodes V − S at height 0, where s ∈ S and t 6∈ S. In this case, the value of the
objective will be exactly the capacity of the cut (S, V − S). So, the minimum integral solution is
the minimum cut in the graph.

Interestingly, the minimum interal solution is also the minimum fractional solution, i.e., you can’t
do better with fractions. We will prove this in a minute, but first notice that this then gives us
the maxflow-mincut theorem from strong duality, since the optimum value of the primal LP is the
maximum flow, and we are saying that the optimum value of the dual LP is the minimum cut.

OK, so now, why can’t you do better with fractions? Let’s prove it by contradiction. Suppose you
can do better with fractions, and consider some optimal (fractional) solution, and out of all possible
optimal fractional solutions (if there is more than one) pick the one that uses the fewest different
heights. Let h ∈ (0, 1) be some nonintegral height used in this solution, and let Sh be the set of all
nodes of height h. Let C1 be the sum of capacities of all edges coming into Sh from nodes of higher
height. Let C0 be the sum of capacities of all edges leaving Sh going to nodes of lower height. If
C1 ≥ C0, then we can get an equally good solution (or better if this inequality is strict) by raising
the height of all nodes in Sh to the next higher height used in the solution. If C1 < C0 then we can
get a better solution by lowering the height of all nodes in Sh to the next lower height used in the
solution. (These statements follow from the same reasoning used to show that the optimal coffee
shops in the coffee-shop problem will be located at people’s houses.) Either way, this contradicts
the assumption that this was the optimal solution that uses the fewest different heights.
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