Here’s a more verbose statement of the Access Lemma, and its use to prove the Balance Theorem.

1 Access Lemma

Take any tree T (it does not have to arise in the splaying algorithm, and may be created any which way), and any weights $w(\cdot)$ on the nodes of T. Let $T(x)$ be the subtree rooted at x.

For a node $x \in T$, define

$$s(x) := \sum_{y \in T(x)} w(y)$$

$$r(x) := \lfloor \log_2 s(x) \rfloor$$

$$\Phi(T) := \sum_{x \in T} r(x)$$

Lemma 1 (Access Lemma) Take any tree T with root t, and any weights $w(\cdot)$ on the nodes. Suppose you splay node x; let T' be the new tree. Then

$$\text{amortized number of splaying steps} = \text{actual number of splaying steps} + (\Phi(T') - \Phi(T))$$

$$\leq 3(r(t) - r(x)) + 1.$$

To get a sense for the Access Lemma, let us use it to prove the Balance Theorem.

2 Balance Theorem

Suppose all the weights equal 1. Then the access lemma says that if we splay node x in tree T to get the new tree T'

$$\text{actual number of splaying steps} + (\Phi(T') - \Phi(T)) \leq 3(\log_2 n - \log_2 |T(x)|) + 1$$

$$\leq 3\log_2 n + 1.$$

Hence, if we start off with a tree T_0 of size at most n and perform any sequence of m splays to it

$$T_0 \xrightarrow{\text{splay}} T_1 \xrightarrow{\text{splay}} T_2 \xrightarrow{\text{splay}} \ldots \xrightarrow{\text{splay}} T_m,$$

repeatedly using this inequality m times shows:

$$\text{actual total number of splaying steps} + (\Phi(T_m) - \Phi(T_0)) \leq m(3\log_2 n + 1).$$

In any tree T with unit weights, each $s(x) \leq n$ so each $r(x) \leq \log_2 n$ so $\Phi(T) \leq n\log_2 n$; also $\Phi(T) \geq 0$. Rearranging, we get

$$\text{actual total number of splaying steps} \leq m(3\log_2 n + 1) + (\Phi(T_0) - \Phi(T_m))$$

$$\leq O(m\log n) + O(n\log n).$$

This proves the Balance Theorem.

3 What next?

Suppose you have some way of inserting a node into a tree. Now if you start off with a tree T_0 of size n_0 and perform any sequence of m splays and inserts to it

$$T_0 \xrightarrow{\text{splay}} T_1 \xrightarrow{\text{splay}} T_2 \xrightarrow{\text{insert}} T_3 \xrightarrow{\text{splay}} T_4 \xrightarrow{\text{insert}} \ldots \xrightarrow{\text{insert}} T_m,$$

you now know how the potential changes during the splay moves. How does it change for the insert moves? You’ll solve this in HW#4. (What if you had deletes? Think about it if you’re interested.)