15-451 Algorithms, Fall 2004

Homework # 6 due: Mon—Tues, Nov 22-23, 2004

Reminder:

e This is an oral presentation assignment. You should work in groups of three. At some
point before Sat Nov 20 at midnight you should sign up for a 1 hour time slot on the
signup sheet on the course web page. Note: If you prefer to sign up for an earlier date
(e.g., because you will be going out of town) then feel free to contact your TA and
arrange a time.

Problems:

1. [Euler tours| Given a graph G, the Euler Tour problem is to find a tour (a path that
ends back where it started) that traverses each edge exactly once. It may visit some
vertices multiple times — 1i.e., it doesn’t have to be a simple cycle. In this problem
you will give an efficient algorithm to find an Euler tour if one exists. We will assume
for this problem that G is undirected.

(a) Suppose the graph has some node of odd degree. Then there cannot be an Euler
tour. Why?

(b) On the other hand, if all nodes have even degree (and the graph is connected)
then there always does exist an FEuler tour. Prove this by giving a polynomial-
time algorithm that finds an Euler tour in any such graph. Your algorithm should
work for multigraphs too (multiple edges allowed between any two vertices).

Hint: Suppose you start at some node x and just arbitrarily take a walk around
the graph, never going on any edge you've traversed before. Where will you end
up? Now, what about parts of the graph you haven’t visited? This problem is
given as problem 22-3 in the book.

Note: it is interesting that the very similar sounding Hamiltonian Cycle problem, which
is to find a tour that visits each vertex exactly once, is NP-complete.

2. [TSP approximation| Given a weighted undirected graph G, a traveling salesman tour
for GG is the shortest tour that starts at some node, visits all the vertices of GG, and
then returns to the start. We will allow the tour to visit vertices multiple times (so,
our goal is the shortest cycle, not the shortest simple cycle). This version of the TSP
that allows vertices to be visited multiple times is sometimes called the metric TSP
problem, because we can think of there being an implicit complete graph H defined
over the nodes of GG, where the length of edge (u,v) in H is the length of the shortest
path between v and v in G. (By construction, edge lengths in H satisfy the triangle
inequality, so H is a metric. We're assuming that all edge weights in G are positive.)

(a) Briefly (just a few sentences): prove that we can get a factor of 2 approximation
to the TSP by finding a minimum spanning tree 7' for H and then performing
a depth-first traversal of T". (If you get stuck, the book does this in a lot more
sentences in section 35.2.1.)

(b) The minimum spanning tree 7" must have an even number of nodes of odd degree
(only considering the edges in T"). In fact, any (undirected) graph must have an
even number of nodes of odd degree. Why?

(¢) Let M be a minimum-cost perfect matching (in H) between the nodes of odd
degree in T'. L.e., if there are 2k nodes of odd degree in T', then M will consist of
k edges no two of which share an endpoint. Prove that the total length of edges
in M is at most one-half the length of the optimal TSP tour.!

(d) Combine the above facts with your algorithm from 1(b) to get a 1.5 approximation
to the TSP. Hint: think about the (multi)graph you get from the union of edges
in T and M.

The above algorithm is due to Christofides [1976]. Extra credit and PhD thesis: Find
an algorithm that approximates the TSP to a factor of 1.49.

3. [The List-Update Problem]| Suppose we have n data items z1, zs, . .., x, that we wish
to store in a linked list in some order. Let’s say the cost for performing a lookup(z)
operation is $1 if x is in the head of the list, $2 if x is the second element in the list,
and so on.

For instance, say there are 4 items and it turns out that we end up accessing x; 3
times, xo 5 times, x3 once, and x4 twice. In this case, in hindsight, the best ordering
for a linked list would have been (z9, 1, 24, x3) with a total cost of $21.

The Move-to-Front (MTF) strategy is the following algorithm for organizing the list
if we don’t know in advance how many times we will access each element. We begin
with the elements in their initial order (z1,xs,...,%,). Then, whenever we perform a
lookup(x) operation, we move the item accessed to the front of the list. Let us say that
performing the movement is free. For instance, if the first operation was lookup(zs),
then we pay $3, and afterwards the list will look like (x5, x1, z2, 24 . .).

(a) Suppose n = 4 and we use MTF starting from the order (z1,xs, 3, x4). If we
perform the following 4 operations:

lookup(xy), lookup(z2), lookup(xy), lookup(zs).

What does the list look like in the end and what was the total cost?

(b) Your job is to prove that the total cost of the MTF algorithm on a sequence of
m operations (think of m as much larger than n) is at most 2Cs. + n? where
Cltatic 18 the cost of the best static list in hindsight for those m operations (like
in our first example). We will prove this in two steps.

'We didn’t prove it in class, but there are efficient algorithms for finding minimum cost perfect matchings
in arbitrary graphs (not just bipartite graphs).

i. First prove the somewhat easier statement that the cost of Move-to-Front is at
most 2C;nitiar Where Cipiriar 18 the cost of the original ordering (z1, 2, . . ., Zy).

Hint: If i < j but z; is in front of x; in the MTF list, let’s say that x; has

“cut in line” in front of z;. Now, imagine that each element x; has a piggy
bank with $1 for everyone that is currently cutting in line in front of it.

ii. Now prove the 2C4qsic + n? bound.

