
15-451 Algorithms, Fall 2004

Homework # 5 due: Tuesday November 9, 2004

Please hand in each problem on a separate sheet and put your name and recitation (time

or letter) at the top of each sheet. You will be handing each problem into a separate box,

and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the

oral-presentation assignments.

Problems:

(30 pts) 1. [Fair carpooling] The n employees of Algorithms-R-Us sometimes carpool to work

together. Say there are m days, and Si is the set of people that carpool together on

day i. For each set, one of the people in the set must be chosen to be the driver that

day. Driving is not desirable, so the people want the work of driving to be divided

as equitably as possible. Your task in this problem is to give an algorithm to do this

e�ciently and fairly.

The fairness criterion is the following: A person p is in some of the sets. Say the

sizes of the sets that p is in are a1; a2; : : : ; ak. Person p should really have to drive
1

a1
+ 1

a2
+ � � � + 1

ak
times, because this is the amount of resource that this person

e�ectively uses. Of course this number may not be an integer, so let's round it up to

an integer. The fairness criterion is simply that she should drive no more than this

many times.

For example, say that on day 1, Alice and Bob carpool together, and on day 2, Alice

and Carl carpool together. Alice's fair cost would be 1=2 + 1=2 = 1. So Alice driving

both days would not be fair. Any solution except that one is fair.

(a) Prove that there always exists a fair solution.

(b) Give a polynomial-time algorithm for computing a fair solution.

Hint: Try to model the problem using network 
ow in such a way that part (a) falls

out directly from the integrality theorem for network 
ow, and part (b) just follows

from the fact that we can solve max 
ow in polynomial time. So, it all boils down to

coming up with the right 
ow graph to model the problem.

(Note: this is not an online problem. We are assuming we know all the sets S1; : : : ; Sm

up front).

(25 pts) 2. [Options pricing] An option (speci�cally, an \American call option") gives the holder

the right to purchase some underlying asset (e.g., one share of IBM) at some speci�ed

exercise price (e.g., $100) within some speci�ed time period (e.g., 1 month). The value

of an option depends on the current price of the asset, the exercise price of the option,

the length of the time period, and one's beliefs about how the asset's price is likely to

behave in the future.
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For example, to take an easy case, suppose we have an option to buy one share of IBM

at $100 that expires right now. If IBM is currently going for $105, then the value of

this option is $5. If IBM is currently going for $95, then the value of this option is

$0 (we wouldn't want to exercise it). However, suppose the option expires tomorrow,

and suppose we have some simple model of how IBM shares behave. E.g., perhaps our

model says that each day, with probability 1=4 the share price goes up by $10, and

with probability 3=4 the share price goes down by $5. In that case, if IBM is currently

worth $95, then the value of this option is $1.25 because that is our expected gain if

we use the optimal strategy \wait until tomorrow, and then exercise the option if IBM

went up" (our expected gain is 1

4
� 5 + 3

4
� 0). If IBM is currently worth $105, then

the value of the option is $5 (and our optimal strategy is to exercise the option right

away).

Let us assume stock prices are integers between 0 and B. Suppose we also have have

a probabilistic model pij for how the stock behaves: speci�cally, if the stock has value

i on day t, then pij is the probability that the stock will have value j on day t+1. So,

for each i,
P

j
pij = 1.

Describe a dynamic-programming algorithm to calculate the value of an option of

exercise price X that expires T days in the future, given that the current price of the

stock is S. The running time of your algorithm should be O(B2T ).

(30 pts) 3. [Set Cover] The set-cover problem is the following: Given n points labeled 1; 2; : : : ; n,

and m subsets of these points s1; s2; : : : ; sm, and an integer k, is it possible to cover

all the points using only k of the sets si? (I.e., every point should be in at least one

of these k sets). For instance, if n = 6 and the sets are s1 = f1; 2; 3g, s2 = f1; 4g,

s3 = f2; 5g, and s4 = f3; 6g, then it is possible to cover all the points with three sets

(namely, s2, s3, and s4) but not with two of them.

(a) Prove that the set-cover problem is NP-complete by reducing from the vertex-

cover problem (vertex cover is de�ned in Chapter 34). Also, say why set-cover is

in NP.

(b) Show how to reduce the search version of the set-cover problem to the decision

version. That is, show how you can use an oracle for the set-cover decision problem

de�ned above to actually �nd an optimal set cover (a cover that uses the fewest

sets).

(c) The fractional set cover problem is like the set-cover problem, except rather than

choosing or not choosing each set, you instead assign each set a fraction between

0 and 1. The requirement is that for each point i, if you add up the fractions

assigned to sets that cover that point, you must get a total of � 1. The goal is to

minimize the sum of all the fractions.

For example, if there are 3 points and the sets are s1 = f1; 2g, s2 = f2; 3g, and

s3 = f3; 1g, then the best fractional set cover is to assign each set the fraction

1=2; this covers all the points and the total sum is 1=2 + 1=2 + 1=2 = 3=2. In

contrast, the best standard set cover requires 2 sets. (Note that a standard set

cover is also a legal fractional cover, but not necessarily vice-versa.)
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Show how to solve the fractional set cover problem using linear programming. Be

sure to specify what the variables are, what the constraints are, and what you are

trying to minimize or maximize.

(15 pts) 4. [Multicommodity Flow] The multicommodity 
ow problem is just like the standard

network 
ow problem except we have p sources s1; : : : ; sp and p sinks t1; : : : ; tp. The

stu� 
owing from s1 has to go to t1, the stu� from s2 has to go to t2, and so on. For

each sink ti we have a demand di. (E.g., we need to get d1 trucks from s1 to t1, d2
trucks from s2 to t2, and so on.) Our goal is to solve for a feasible solution | a solution

satisfying the demands | if one exists. (Just like with standard network 
ow, the total

amount of stu� going on some edge (u; v) cannot exceed its capacity cuv. However, our

\
ow-in = 
ow-out" constraints must hold separately for each commodity. That is, for

every commodity i, and every vertex v 62 fsi; tig, the amount of type-i stu� going into

v must equal the amount of type-i stu� going out from v.

Show how to solve this using linear programming.
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