
15-451 Algorithms, Fall 2004

Homework # 3 due: Tuesday October 12, 2004

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(35 pts) 1. Hashing. As discussed in class, the notion of universal hashing gives us guarantees
that hold for arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash
function. In this problem, you will work out what some of these guarantees are.

(a) Describe an explicit universal hash function family from U = {0, 1, 2, 3, 4, 5, 6, 7}
to {0, 1}. Hint: you can do this with a set of 4 functions.

(b) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S ⊆ U be some set we wish to hash. Prove that if we choose h from
H at random, the expected number of pairs (x, y) in S that collide is O(|S|2/m).

(c) Prove that for some constant c, with probability at least 3/4, no bin gets more
than 1+c|S|/

√
m elements. (So, if |S| = m, you are showing that with probability

3/4 no bin gets more than 1 + c
√
m elements.) Hint: use part (b).

To solve this question, you should use “Markov’s inequality”. Markov’s inequality
is a fancy name for a pretty obvious fact: if you have a non-negative random
variable X with expectation E[X], then for any k > 0, Pr(X > kE[X]) ≤ 1/k.
For instance, the chance that X is more that 100 times its expectation is at
most 1/100. You can see that this has to be true just from the definition of
“expectation”.

(30 pts) 2. Treaps and amortized analysis. Suppose you have an array of n keys that is already
sorted, and you want to convert it into a treap (e.g., so that you can later do additional
inserts). Here is a procedure for converting the array into a treap in linear time, no
matter what the priorities are — we won’t be relying on the priorities being chosen
randomly here. The procedure walks down the array, inserting the elements one at a
time in a special way. Your job is to show that the amortized cost per insert for this
procedure is O(1).

First of all, in addition to keeping a pointer to the root node, we will also keep a pointer
to the rightmost node of the treap. (The rightmost node is the one with the largest
key so far). Also, every node will have a parent pointer in addition to left-child and
right-child pointers.

Algorithm. LetA be the input array, where the ith key and priority appear in A[i].key
and A[i].prio respectively, and the keys are in sorted order. We will insert the
elements one by one, into an initially empty treap T .

We insert element i into the treap T made of elements 1 · · · (i− 1) as follows:

(a) if A[i].prio is less than the priority of the root of T , then i becomes the new
root and T is made into its left child;

(b) if A[i].prio is greater than the priority of the rightmost node in the treap,
then element i is made into the right child of this node;

(c) if A[root].prio < A[i].prio < A[right].prio, then element i is temporarily
made the right child of the rightmost node, and the heap property of the
treap is then restored by successive rotations of the newly inserted node.
(Note: A[right] is really the same thing as A[i − 1] since the keys are in
sorted order.)

Cases (a) and (b) above are clearly constant-time. The problem is that case (c)
could involve a lot of rotations. You job is to show that nonetheless, the amortized
time per operation is O(1).

(35 pts) 3. lower bounds.

Consider the following problem.

INPUT: n2 distinct numbers in some arbitrary order.

OUTPUT: an n × n matrix of the inputs having all rows and columns sorted in in-
creasing order.

EXAMPLE: n = 3, so n2 = 9. Say the 9 numbers are the digits 1, ..., 9. Possible
outputs include:

1 4 7 1 4 5 1 3 4

2 5 8 or 2 6 7 or 2 5 8 or ...

3 6 9 3 8 9 6 7 9

It is clear that we can solve this problem in time O(n2 logn) by just sorting the input
(remember that logn2 = O(log n)) and then outputting the first n elements as the
first row, the next n elements as the second row, and so on. Your job in this prob-
lem is to prove a matching Ω(n2 logn) lower bound in the comparison-based model of
computation.

Some hints: show that if you could solve this problem using o(n2 logn) comparisons
(in fact, in less than n2 lg(n/e) comparisons), then you could use this to violate the
lg(m!) lower bound for comparisons needed to sort m elements. You may want to use
the fact that m! > (m/e)m. Also, recall that you can merge two sorted arrays of size
n using at most 2n − 1 comparisons.

For simplicity, you can assume n is a power of 2.

2

