Recitation 1:

ILP, SIMD, and Thread
Parallelism

15-418 Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2020

Goals for today

" Topic is parallelism models: ILP, SIMD, threading

= Solve some exam-style problems

" Walk through example code

=" Most of all,

ANSWER YOUR QUESTIONS!

Big lessons from today

" Focus your effort on the performance bottleneck

= Usually, you do not need to model processor in
detail to find the performance bottleneck

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * x, - . .
Float *result) { How fast is this
for (int i=0; i<N; i++) { code?

float value = x[i];
float numer = x[i]1*x[1]*x[i];
int denom = 6; // 3!
int sign = -1;
" Where should we
for (int j=1; j<=terms; j++) {

value += sign * numer / denom; fOCUS op’rimizq’rion

numer *= x[i] * x[i];

denom *; (2%3+2) * (2*%3+3); effOI‘TS?
sign *= -1;
}
result[i] = value; - WhCI‘l' is _I_he

} bottleneck?

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, - . .
Float *resulty { How fast is this
for (int i=0; i<N; i++) { code?

float value = x[i];
float numer = x[i]1*x[1]*x[i];
int denom = 6; // 3!
int sign = -1; .
= On ghc machines:
for (int j=1; j<=terms; j++) {

value += sign * numer / denom; 5 ns / elemen’r =~

numer *= x[1] * x[1];
denom *— (2%342) * (2%43): 23 cycles / element
sign *= -1;
}
result[i] = value; - NO'|' very gOOCI @
}

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, -
Float *result) { Where should we
for (int =0; T<N; i++) { focus optimization
float value = x[i];
float numer = x[i]*x[i]*x[i]; efforts?e

int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom; ™ A: Where most Of

numer *= x[i] * x[i];

denom *= (2%§42) * (2%j+3): the time is spent
sign *= -1;

}

result[i] = value;

CMU 15-418/15-618, Spring 2020

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, - .
float *result) { What is the
for (int i=0; i<N; i++) { bottleneck?

float value = x[i];

float numer = x[i1]*x[1]*x[1];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*%j+3);
sign *= -1;

}

result[i] = value;

Dataflow for a single iteration

j value denom sign numer x[i]

j’ value’ denom’ sign’ humer’

OK, but how does this perform on a real machine?

CMU 15-418/15-618, Spring 2020

Superscalar OOQ Processor

" What in microarchitecture should we worry about?

CPU
Instruction Ao Buffer

Execute Execute Execute
\

:
\ J | J

| f |
In-order Out-of-order In-order

CMU 15-418/15-618, Spring 2020 9

GHC Machine Microarchitecture

" What in microarchitecture should we worry about?

NO. Any reasonable machine will have
sufficient frontend throughput to keep
execution busy + all branches in this code
are easy to predict (not always the casel).

" Fetch & Decode?

* Execution? YES. This is where dataflow + most structural
hazards will limit our performance.

NO. Again, any reasonable machine will have

= Commit? o . .
sufficient commit throughput to keep execution busy.

Intel Skylake (GHC machines)
Execution Microarchitecture

Integer Floating Point
Latency Pipelined? Number Latency Pipelined? Number

Add 1 v 4 4% v 2
Multiply 3 v 1 4 v 2
Divide 21-83 X 1 13-14 XAE 1
Load 2 v 2

* 3 cycles if using x87 instructions
** Can issue another operation after 4 cycles

Source: Search for “Skylake” in
https: //www.agner.org /optimize /microarchitecture.pdf

https: //www.agner.org /optimize /instruction tables.pdf

CMU 15-418/15-618, Spring 2020 11

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/instruction_tables.pdf

What is our throughput bound?

j value denom sign numer x[1i]

i’ value’ denom’ sign’ qumer’ Int Add

Int Mul

Throughput bound: Ignore data e 2
hazards, think only about max issue THPUT

[
rate due to structural hazards BOUND
FP Div

CMU 15-418/15-618, Spring 2020 12

Load

What is our latency bound?

= Latency bound: Ignore structural hazards, think only
about the critical path through data hazards

j value denom sign numer x[i]

j’ value’ denom’ sign’ numer’

1 4+14+4=22 3+1+3+3=10 3 2+4+4=10 13

Takeaways
" Observed 23 cycles / element

" Latency bound dominates throughput bound
=» We are latency bound!

=" Notes

* This analysis can often be “eyeballed” w/out full
dataflow

* Actual execution is more complicated, but latency /thput
bounds are good approximation

= (Also: avoid divisionl!!l)

Speeding up sin(x): Attempt #1

" What if we eliminate unnecessary work?

void sinx_better(int N, int terms, float * x,
float *result) {
for (int i=0; 1i<N; i++) { T

float value = x[i]; A: Little to no
float x2 = x[1]1*x[i];
float numer = x2*x[1];
int denom = 6; // 3!
int sign = -1;

improvement.

for (int j=1; j<=terms; j++) { 5n$ / elemenf ~

value += sign * numer / denom;
e i 23 cycles / element
denom *= (2*3+2) * (2*]j+3);
sign = -sign;
J Why not better?

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

value denom sign numer X2

Nyf
Ll Jol N} 600@
K%

ol o

’ va1ue denom’ sign’ numer’

1 4+14+4=22 3+1+3+3=10 1 4

16

Attempt #1 Takeaways

= Optimizations did not improve performance!

" To get real speedup, we need to focus on the
performance bottleneck

Speeding up sin(x): Attempt #2

" Let’s focus on that pesky division...

void sinx_predenom(int N, int terms, float * x, float *result) {
float rdenom[MAXTERMS] ;
int denom = 6; . Riy i |
for (int j = 1; j <= terms; j++) { A: Blg Improvement'
rdenom[j] = 1.0/denom;
denom *= (2*j+2) * (2*j+3);
¥ ~
for (int i=0; i<N; i++) { 2.3ns / element
float value = x[i];
float x2 = value * value; 10.8 CYCIeS/eIemenT
float numer = x2 * value;
int sign = -1;
for (int j=1; j<=terms; j++) {
value += sign * numer * rdenom[]j];
numer *= x2;
sign = -sign;
}

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] sign numer X2
!

19

Attempt #2 Takeaways
" Here we gol! Attacking the bottleneck got > 2 XI

=" Gap between observed performance and latency
bound widens (10.8 cycles vs 8 cycles)

* This is normal! Latency /throughput bounds are a
simplification; often you will not achieve them

= |t is usually not worth the effort to model execution in
detail to understand why!

" ...But performance is still near the latency bound,
can we do better?

Speeding up sin(x): Attempt #3

®" Don’t need sign in inner-loop either

void sinx_predenoms(int N, int terms, float * x, float *result) {
float rdenom[MAXTERMS] ;
int denom = 6;
float sign = -1.0;

for (int j = 1; j <= terms; j++) { ~
rdenom[j] = sign/denom; 0.78 ns / element =
denom *= (2*%j+2) * (2*%j+3);
sign = -sign; 3.8 cycles / element
¥

for (int i=0; i<N; i++) {

float value = x[i];

float x2 = value * value;

float numer = x2 * value;

for (int j=1; j<=terms; j++) {
value += numer * rdenom[]];
numer *= Xx2;

}

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] numer X2
!

1
@
v
j’ value’ The LD is not on the numer’
critical path = it will be
: 4 executed speculatively 4 22

Attempt #3 Takeaways

" We're down to the latency of a single, fast
operation per iteration

" + Observed performance is very close to this
latency bound, so throughput isn’t limiting

" = We’'re done optimizing individual iterations

=" How to optimize multiple iterations?
= Eliminate dependence chains across iterations
= A) Loop unrolling (ILP)
= B) Explicit parallelism (SIMD, threading)

Speeding up sin(x):
Loop unrolling

= Compute multiple elements per iteration

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; i<N; i++) {
float value = x[1];
float x2 = value * value;
float x4 = x2 * x2; COrI‘eCT? NOT yef...
float numer = x2 * value;
for (int j=1; j<=terms; j+=2) {
value += numer * rdenom[]];
value += numer * x2 * redom[j+1];
numer *= x4;
}

result[i] = value;

Speeding up sin(x):
Loop unrolling

= Compute multiple elements per iteration

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; 1i<N; 1++) {
float value = x[1];

float x2 = value * value;

Float x4 = x2 * x2; 0.7 ns / element =
float numer = x2 * value;

int i; 3.3 cycles / element

for (j=1; j<=terms-1; j+=2) {
value += numer * rdenom[]];
value += numer * x2 * redom[j+1]; <:)
numer *= x4;
}
for (; j<=terms; j++) {
value += numer * rdenom[]];
humer *= Xx2;
}

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] rdenom[j+1l] X2 numer x4

2
@
V‘ H
.y value ,
J numer
1/2=0.5 8/2=4 (LD will be executed 4/2=2 9y
speculatively, only depends on j)

Speeding up sin(x):
Loop unrolling #2

" What if floating point associated + distributed?

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; i<N; i++) {
float value = x[1];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j++) {
value += numer * (rdenom[j] + x2 * redom[j+1]);
numer *= x4;
}
for (; j<=terms; j++) {
value += numer * rdenom[]];

numer *= x2; 0.55 ns / element =

}

result[i] = value; 2.6 cycles / element

What is our latency bound?

" Find the critical path in the dataflow graph

value rdenom[j] rdenom[j+1] x2

value’

1/2=0.5

4/2=2 (LD will be executed
speculatively, only depends on j)

numer

numer’

4/2=2

x4

28

Loop unrolling takeaways

=" Need to break dependencies across iterations to get
speedup
= Unrolling by itself doesn’t help

®" We are now seeing throughput effects
" Latency bound = 2 vs. observed = 2.6

= Can unroll loop 3x, 4x to improve further, but...

" ...Diminishing returns (1.5 cycles / element at 5x)

Speeding up sin(x):
Going parallel (explicitly)

® Use ISPC to vectorize the code

export void sinx_reference(uniform int N, uniform int terms,
uniform float x[],
uniform float result[]) {
foreach (i=0 ... N) {

float value x[1];

float numer = x[1]*x[1]*x[i];

uniform int denom = 6; // 3!

uniform int sign = -1;

for (uniform int j=1; j<=terms; j++) {

value += sign * numer / denom;

numer *= x[i1] * x[i1];
denom ¥ (2*j+2) % (2*j+3);
sign *= -1;
} 0.26 ns / element =

1.25 cycles / element

result[i] = value;

Speeding up sin(x):

Going parallel (explicitly) + optimize

export void sinx_unrollx2a(uniform int N, uniform int terms,

uniform float x[],
uniform float result[]) {

uniform float rdenom[MAXTERMS];
uniform int denom = 6;

uniform float sign
for (uniform int j

}

_1;

rdenom[j] = sign/denom;
denom *= (2%*3j+2) * (2*j+3);
sign = -sign;

foreach (i=0 ... N) {

float value = x[i];

float x2 = value * value;

float x4 = x2 * x2;

float numer = x2 * value;

uniform int j;

for (j=1; j<=terms-1; j+=2) {
value +=

numer * (rdenom[j] +
x2 * rdenom[j+1]);

numer *= x4;

}

for (; j <= terms; j++) {
value += numer * rdenom[j];
numer *= Xx2;

}

result[i] = value;

1; j <= terms; j++) {

0.096 ns / element =
0.46 cycles / element

SIMD takeaways

= Well, that was easy! (Thanks ISPC)

caar | Vedor

Unoptimized 23 1.25

. [J
Cycles per element: - 0.46

" Speedu
P P Original Vector
U Speiduunpmq [Vector +
N\ax|m hand lis"* Unrolled
. 05 alle Unrolled
uﬂ'6 al
(eq xphc‘ P
4+ €

CMU 15-418/15-618, Spring 2020 32

What if2 #1

Impact of structural hazards

* Q: What would happen to sin(x) if we only had a
single, unpipelined floating-point multiplier?

= Al: Performance will be much worse
= A2: We will hit throughput bound much earlier
= A3: Loop unrolling will help by reducing multiplies

What if2 #2

Impact of structural hazards
* Q: What would happen to sin(x) if LDs (cache hits)

took 3 cycles instead of 2 cycles?

= A: Nothing. This program is latency bound, and LDs
are not on the critical path.

Loads do not limit sin(x)

= Consider just the slice of the program that generates the
subexpression: (rdenom[j] + x2 X rednom[j + 1])

' rdenom[J] rdenom[j+1] x2
= What is this program’s ° °
latency + throughput
bound?
subexp

" Latency bound: 1 cycle / iteration!
» Through j' computation, not the subexpression computation — there is
no cross-iteration dependence in the subexpression!)
* Throughput bound: also 1 cycle / iteration
" 1 add / 4 adders; 2 LDs / 2 LD units; 1 FP FMA / 1 FP unit
= (This will change to 2 cycles if we add the value FMA)

What if2 #3

Vector vs. multicore

= Q: What would happen to sin(x) if the vector width was
doubled?

= Al: If we're using ISPC, we would expect roughly 2X
performance (slightly less would be realized in practice).

" Q: Can we do this forever & expect same results?
= A: No. Computing rdenom will limit gains (Amdahl’s Law).

" Q: For this sin(x) program, would you prefer larger vector
or more cores?

= A: Either should give speedup, but this program maps easily
to SIMD, and adding vector lanes is much cheaper (area +
energy) than adding cores. (Remember GPU vs CPU pictures.)

What if¢e #4
Benefits(?) of SMT

" Q: How should we schedule threads on a dual-core
processor with SMT, running these two apps, each of
which have 2 threads?

* The sin(x) function

= A program that is copying large amounts of data with very
little computation

" (Note: There are four “cores” and four threads)

= A: We want to schedule one sin(x) thread and one
memcpy() thread on each core, since SMT is most
beneficial when threads use different execution units

What ife #5
Limits of speculation

= Q: What will limit the “performance” of this (silly)
program on a superscalar OOQO processor?

int foo() {
int 1 = 0;
while (i < 100000) {
// assume s1ng1e cycle rand instruction

if (rand() % 2 == 0) {
T4+
} else {

i--;
}

}
}

= A: Unpredictable branch in if-else will cause frequent
pipeline flushes

What ife #6
Benefits(?) of SMT

" Q: Would the previous program benefit from
running on multiple SMT threads on a single core?

= A: Yes! Its performance is limited by the CPU
frontend, which is replicated in SMT

