
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 23:

Domain-Specific
Programming on Graphs

CMU 15-418/618,

Spring 2020

Last time: Increasing acceptance of domain-
specific programming systems

▪ Challenge to programmers: modern computers are parallel,

heterogeneous machines
- (Architects striving for high area and power efficiency)

▪ Programming systems trend: give up generality in what types

of programs can be expressed in exchange for achieving high

productivity and high performance

▪ “Performance portability” is a key goal: programs should

execute efficiently on a variety of parallel platforms

- Good implementations of same program for different systems required

different data structures, algorithms, and approaches to parallelization — not

just differences in low-level code generation (e.g., not just a matter of

generating SSE vs. AVX vs ARM Neon vs. NVIDIA PTX instructions)

CMU 15-418/618,

Spring 2020

Today’s topic: analyzing big graphs

▪ Many modern applications:
- Web search results, recommender systems, influence

determination, advertising, anomaly detection, etc.

▪ Public dataset examples:

Twitter social graph, Wikipedia term occurrences,

IMDB actors, Netflix, Amazon communities, G+

Good source of public graphs:

https://snap.stanford.edu/data/

(Jure Leskovec, CMU PhD, 2008)

https://snap.stanford.edu/data/

CMU 15-418/618,

Spring 2020

Thought experiment: if we wanted

to design a programming system for

computing on graphs, where might

we begin?

What abstractions do we need?

CMU 15-418/618,

Spring 2020

Whenever I’m trying to assess the importance of
a new programming system, I ask two questions:

Halide (recall last class):

Programmer’s responsibility:

Halide system’s responsibility:

- Describing image processing algorithm as pipeline of

operations on images

- Describing the schedule for executing the pipeline (e.g.,

“block this loop, “parallelize this loop”, “fuse these

stages”)

- Implementing the schedule using mechanisms available on

the target machine (spawning pthreads, allocating temp

buffers, emitting vector instructions, loop indexing code)

Liszt (recall last class):

Programmer’s responsibility:

- Describe mesh connectivity and fields defined on mesh

- Describe operations on mesh structure and fields

Liszt system’s responsibility:
- Parallelize operations without violating dependencies or

creating data races (uses different algorithms to parallelize

application on different platforms)

- Choose graph data structure / layout, partition graph across

parallel machine, manage low-level communication (MPI

send), allocate ghost cells, etc.

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc.

▪ “What tasks/problems does the system take off the hands of the programmer?

(are these problems challenging or tedious enough that I feel the system is adding

sufficient value for me to want to use it?)”

▪ “What problems does the system leave as the responsibility for the programmer?”

(likely because the programmer is better at these tasks)

CMU 15-418/618,

Spring 2020

Programming system design questions:

▪ What are the fundamental operations we want to be easy

to express and efficient to execute?

▪ What are the key optimizations performed by the best

implementations of these operations?

- high-level abstractions should not prevent these

- maybe even allow system to perform them for the

application

CMU 15-418/618,

Spring 2020

Example graph computation: Page Rank

Page Rank: iterative graph algorithm
▪ Devised by Larry Page & Sergey Brinn, 1996

Graph nodes = web pages

Graph edges = links between pages

Rank of

page i

Weighted combination

of rank of pages that link

to it

discount

CMU 15-418/618,

Spring 2020

GraphLab

▪ A system for describing iterative computations on graphs

▪ History:

- 2009 Prof Carlos Guestrin at CMU, then at U Washington

- 2013 Commercialized as Turi

- 2016 Acquired by Apple

▪ Implemented as a C++ runtime

▪ Runs on shared memory machines or distributed across clusters

- GraphLab runtime takes responsibility for scheduling work in

parallel, partitioning graphs across clusters of machines,

communication between master, etc.

CMU 15-418/618,

Spring 2020

GraphLab programs: state

▪ The graph: G = (V, E)

- Application defines data blocks on each vertex and directed

edge

- Dv = data associated with vertex v

- Du→v = data associated with directed edge u→v

▪ Read-only global data

- Can think of this as per-graph data, rather than per vertex

or per-edge data)

Notice: I always first describe

program state

And then describe what operations are

available to manipulate this state

CMU 15-418/618,

Spring 2020

GraphLab operations: the vertex program

▪ Defines per-vertex operations on the vertex’s local

neighborhood

▪ Neighborhood (aka “scope”) of vertex:

- The current vertex

- Adjacent edges

- Adjacent vertices

= vertex or edge data “in scope” of red vertex

(graph data that can be accessed when

executing a vertex program at the current (red)

vertex)

current vertex

CMU 15-418/618,

Spring 2020

Simple example: PageRank *

PageRank_vertex_program(vertex i) {

// (Gather phase) compute the sum of my neighbors rank
double sum = 0;
foreach(vertex j : in_neighbors(i)) {
sum = sum + j.rank / num_out_neighbors(j);

}

// (Apply phase) Update my rank (i)
i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;

}

Programming in GraphLab amounts to defining how to

update graph state at each vertex. The system takes

responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we’ll see

on the next slide

(Shown for 𝛼 = 0.85)

CMU 15-418/618,

Spring 2020

GraphLab: data access

▪ The application’s vertex program executes per-vertex

▪ The vertex program defines:

- What adjacent edges are inputs to the computation

- What computation to perform per edge

- How to update the vertex’s value

- What adjacent edges are modified by the computation

- How to update these output edge values

▪ Note how GraphLab requires the program to tell it all data that

will be accessed, and whether it is read or write access

CMU 15-418/618,

Spring 2020

GraphLab-generated vertex program (C++ code)
struct web_page {

std::string pagename;
double pagerank;
web_page(): pagerank(0.0) { }

}

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;

class pagerank_program:
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

public:
// we are going to gather on all the in-edges
edge_dir_type gather_edges(icontext_type& context,

const vertex_type& vertex) const {
return graphlab::IN_EDGES;

}

// for each in-edge gather the weighted sum of the edge.
double gather(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
return edge.source().data().pagerank / edge.source().num_out_edges();

}

// Use the total rank of adjacent pages to update this page
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;

}

// No scatter needed. Return NO_EDGES
edge_dir_type scatter_edges(icontext_type& context,

const vertex_type& vertex) const {
return graphlab::NO_EDGES;

}
};

Define edges to

gather over in

“gather phase”

Graph has record
of type web_page
per vertex, and

no data on edges

Compute

value to

accumulate

for each edge

Update vertex

rank

PageRank

example

performs no

scatter

CMU 15-418/618,

Spring 2020

Running the program

GraphLab runtime provides “engines” that manage scheduling

of vertex programs

engine.signal_all() marks all vertices for execution

graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync");
engine.signal_all();
engine.start();

You can think of the GraphLab runtime as a work queue

scheduler.

And invoking a vertex program on a vertex as a task that is

placed in the work queue.

So it’s reasonable to read the code above as: “place all vertices

into the work queue”

Or as: “foreach vertex” run the vertex program.

CMU 15-418/618,

Spring 2020

Vertex signaling: GraphLab’s
mechanism for generating new work

Iterate update of all R[i]’s 10 times

Uses generic “signal” primitive (could also wrap code on previous slide in a for loop)

struct web_page {
std::string pagename;
double pagerank;
int counter;
web_page(): pagerank(0.0),counter(0) { }

}

// Use the total rank of adjacent pages to update this page
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;
vertex.data().counter++;
if (vertex.data().counter < 10)

vertex.signal();
}

If counter < 10, signal to

scheduler to run the vertex

program on the vertex again at

some point in the future

Per-vertex “counter”

CMU 15-418/618,

Spring 2020

Signal: general primitive for scheduling work
Parts of graph may converge at different rates
(iterate PageRank until convergence, but only for vertices that need it)

class pagerank_program:
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

private:
bool perform_scatter;

public:

// Use the total rank of adjacent pages to update this page
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
double oldval = vertex.data().pagerank;
vertex.data().pagerank = newval;
perform_scatter = (std::fabs(oldval - newval) > 1E-3);

}

// Scatter now needed if algorithm has not converged
edge_dir_type scatter_edges(icontext_type& context,

const vertex_type& vertex) const {
if (perform_scatter) return graphlab::OUT_EDGES;
else return graphlab::NO_EDGES;

}

// Make sure surrounding vertices are scheduled
void scatter(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
context.signal(edge.target());

}
};

Schedule update

of neighbor

vertices

Check for

convergence

Private variable set during

apply phase, used during

scatter phase

CMU 15-418/618,

Spring 2020

Synchronizing parallel execution

Local neighborhood of vertex (vertex’s “scope”) can be read

and written to by a vertex program

Programs specify what granularity of

atomicity (“consistency”) they want

GraphLab runtime to provide: this

determines amount of available

parallelism

- “Full consistency”:

implementation ensures no other

execution reads or writes to data

in scope of v when vertex

program for v is running.

- “Edge consistency”: no other

execution reads or writes any

data in v or in edges adjacent to v

- “Vertex consistency”: no other

execution reads or writes to data

in v ...

= vertex or edge data in scope

of red vertex

current vertex

CMU 15-418/618,

Spring 2020

GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all scheduled vertices “simultaneously”

(vertex programs observe no updates from programs run on

other vertices in same “round”)

Run vertex programs for

all scheduled vertices.

(output to copy of graph

structure)

Updated graph

(stored in data

structure B)

Updated graph

(stored in data

structure A)

Run vertex programs for

all scheduled vertices.

(output to copy of graph

structure)

Graph

(stored in data

structure A)

CMU 15-418/618,

Spring 2020

GraphLab: job scheduling order

▪ GraphLab implements several work scheduling policies

- Synchronous: update all vertices simultaneously (vertex programs

observe no updates from programs run on other vertices in same

“round”)

- Round-robin: vertex programs observe most recent updates

- Graph coloring: Avoid simultaneous updates by adjacent vertices

- Dynamic: based on new work created by signal

- Several implementations: fifo, priority-based, “splash” ...

▪ Application developer has flexibility for choosing consistency

guarantee and scheduling policy

- Implication: choice of schedule impacts program’s

correctness/output

- Our opinion: this seems like a weird design at first glance, but this is

common (and necessary) in the design of efficient graph algorithms

CMU 15-418/618,

Spring 2020

Summary: GraphLab concepts

▪ Program state: data on graph vertices and edges + globals

▪ Operations: per-vertex update programs and global reduction

functions (reductions not discussed today)

- Simple, intuitive description of work (follows mathematical

formulation)

- Graph restricts data access in vertex program to local neighborhood

- Asynchronous execution model: application creates work

dynamically by “signaling vertices” (enable lazy execution, work

efficiency on real graphs)

▪ Choice of scheduler and consistency implementation

- In this domain, the order in which nodes are processed can be

critical property for both performance and quality of result

- Application responsible for choosing right scheduler for its needs

CMU 15-418/618,

Spring 2020

Elements of good domain-specific

programming system design

CMU 15-418/618,

Spring 2020

#1: good systems identify the most
important cases, and provide most
benefit in these situations
▪ Structure of code should mimic natural structure of

problems in the domain

- e.g., graph processing algorithms are designed in

terms of per-vertex operations

▪ Efficient expression: common operations are easy and

intuitive to express

▪ Efficient implementation: the most important

optimizations in the domain are performed by the

system for the programmer

- Our experience: a parallel programming system with

“convenient” abstractions that precludes best-known

implementation strategies will almost always fail

CMU 15-418/618,

Spring 2020

#2: good systems are usually

simple systems
▪ They have a small number of key primitives and

operations
- GraphLab: run computation per vertex, trigger new work by signaling

- But GraphLab’s scheduling design gets messy…

- Halide: only a few scheduling primitives

- Hadoop: map + reduce

▪ Allows compiler/runtime to focus on optimizing

these primitives

- Provide parallel implementations, utilize appropriate hardware

▪ Common question that good architects ask: “do we

really need that?” Or can we reuse an existing

primitive?

- For every domain-specific primitive in the system: there better be a

strong performance or expressivity justification for its existence

CMU 15-418/618,

Spring 2020

#3: good primitives compose

▪ Composition of primitives allows for wide application scope,

even if scope remains limited to a domain

- e.g., frameworks discussed today support a wide variety of

graph algorithms

▪ Composition often allows for generalizable optimization

▪ Sign of a good design:

- System ultimately is used for applications original

designers never anticipated

▪ Sign that a new feature should not be added (or added in a

better way):

- The new feature does not compose with all existing

features in the system

CMU 15-418/618,

Spring 2020

Optimizing graph computations
(now we are talking about implementation)

CMU 15-418/618,

Spring 2020

Wait a minute…

▪ So far in this lecture, we’ve discussed issues such as

parallelism, synchronization …

▪ But graph processing typically has low arithmetic

intensity

Or just consider PageRank: ~ 1 multiply-accumulate per

iteration of summation loop

VTune profiling results: Memory bandwidth bound!

Walking over edges

accesses information

from “random” graph

vertices

CMU 15-418/618,

Spring 2020

Two ideas to increase the performance of
operations on large graphs *

1. Reorganize graph structure to increase locality

2. Compress the graph

* Both optimizations might be performed by a framework without application

knowledge

CMU 15-418/618,

Spring 2020

Directed graph representation

1

2 3 3 5

2 3

2 4 5 6

4

1 2 3 6

5

1 5
Outgoing

Edges

Vertex Id 6

2 4

Vertex Id
Incoming

Edges
4 5
1 2

1 3 5 6
3
1 2 5

4
3 6

5
2 3 4

6
3 6

1

2

3

4

5

6

CMU 15-418/618,

Spring 2020

Memory footprint challenge of large graphs

▪ Challenge: cannot fit all edges in memory for large graphs (but graph

vertices may fit)

- From example graph representation:

- Each edge represented twice in graph structure (as

incoming/outgoing edge)

- 8 bytes per edge to represent adjacency

- May also need to store per-edge values (e.g., 4 bytes for a per-edge

weight)

- 1 billion edges (modest): ~12 GB of memory for edge information

- Algorithm may need multiple copies of per-edge structures (current,

prev data, etc.)

▪ Could employ cluster of machines to store graph in memory

- Rather than store graph on disk

▪ Would prefer to process large graphs on a single machine

- Managing clusters of machines is difficult

- Partitioning graphs is expensive (also needs a lot of memory) and

difficult

CMU 15-418/618,

Spring 2020

“Streaming” graph computations

▪ Graph operations make “random” accesses to graph data

(edges adjacent to vertex v may distributed arbitrarily

throughout storage)

- Single pass over graph’s edges might make billions of fine-grained

accesses to disk

*By fast storage, in this context I mean DRAM. However, techniques for

streaming from disk into memory would also apply to streaming from

memory into a processor’s cache

▪ Streaming data access pattern

- Make large, predictable data accesses to slow

storage (achieve high bandwidth data transfer)

- Load data from slow storage into fast storage*,

then reuse it as much as possible before

discarding it (achieve high arithmetic intensity)

- Can we restructure graph data structure so that

data access requires only a small number of

efficient bulk loads/stores from slow storage?

Processor

Fast storage
(low latency, high BW, low

capacity)

Slow storage
(high latency, low BW, high

capacity)

Disk, SSD, etc.

CMU 15-418/618,

Spring 2020

Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval

fits in memory)

- Vertices and (only) incoming edges to these vertices are stored together in

a shard

- Sort edges in a shard by source vertex id

Notice: to construct subgraph containing vertices in shard 1 and

their incoming and outgoing edges, only need to load

contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes

Yellow = data required to process

subgraph containing vertices in

shard 1

GraphChi: Large-scale graph
computation on just a PC

[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

1

2

3

4

5

6
src dst value src dst value src dst value

1 2 0.3

3 2 0.2

4 1 0.8

5 1 0.25
5 2 0.6

6 2 0.1

1 3 0.4

2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
3 6 0.85

4 5 0.3

5 6 0.2

CMU 15-418/618,

Spring 2020

Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval

fits in memory)

- Store vertices and only incoming edges to these vertices are stored

together in a shard

- Sort edges in a shard by source vertex id
1

2

3

4

5

6

GraphChi: Large-scale graph
computation on just a PC

[Kryola et al. 2013]

Yellow = data required to process

subgraph containing vertices in

shard 2

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value

1 2 0.3

3 2 0.2

4 1 0.8

5 1 0.25
5 2 0.6

6 2 0.1

1 3 0.4

2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
3 6 0.85

4 5 0.3

5 6 0.2

CMU 15-418/618,

Spring 2020

Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval

fits in memory)

- Store vertices and only incoming edges to these vertices are stored

together in a shard

- Sort edges in a shard by source vertex id
1

2

3

4

5

6

Observe: due to sort of incoming edges, iterating over all

intervals results in contiguous sliding window over the

shards

GraphChi: Large-scale graph
computation on just a PC

[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

Yellow = data required to process

subgraph containing vertices in

shard 3

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value

1 2 0.3

3 2 0.2

4 1 0.8

5 1 0.25
5 2 0.6

6 2 0.1

1 3 0.4

2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
3 6 0.85

4 5 0.3

5 6 0.2

CMU 15-418/618,

Spring 2020

Putting it all together: looping over all
graph edges

For each partition i of vertices:

- Load shard i (contains all incoming edges)

- For each other shard s

- Load section of s containing data for edges leaving i
and entering s

- Construct subgraph in memory

- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data

for next iteration of loop

CMU 15-418/618,

Spring 2020

PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding

window approach
PageRank in GraphChi:

Take per-vertex rank and distribute to all

outbound edges (memory inefficient:

replicates per-vertex rank to all edges)

Alternative model: assume vertex data can be kept in memory and redefine

neighborRank() function

CMU 15-418/618,

Spring 2020

Performance on a Mac mini (8 GB RAM)

Throughput (edges/sec) remains stable as graph size is increased

- Desirable property: throughput largely invariant of dataset size

CMU 15-418/618,

Spring 2020

Graph compression

▪ Recall: graph operations are often BW-bound

▪ Implication: using CPU instructions to reduce BW requirements

can benefit overall performance (the processor is waiting on

memory anyway!)

▪ Idea: store graph compressed in memory, decompress on-the-fly

when operation wants to read data

CMU 15-418/618,

Spring 2020

Compressing an edge list

1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000
Outgoing

Edges

Vertex Id

1. Sort edges for each vertex

2. Compute differences

3. Group into sections requiring same number of bytes

4. Encode deltas

32

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

0 1 4 20 971 9 14 1 5 98070 100000 75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

-27 1 4 20 971 9 14 1 5 98070 100000 75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2 bytes 1 byte 4 bytes1 byte

1-byte group header

2 bits: encoding width (1, 2, 4 bytes)

6 bits: number of edges in group

Compressed encoding: 26 bytes

[ONE_BYTE, 4], -27, 1, 4, 20

[TWO_BYTE, 1], 971

[ONE_BYTE, 4], 9, 14, 1, 5

[FOUR_BYTE, 3], 98070, 100000, 75000

(5 bytes)

(3 bytes)

(5 bytes)

(13 bytes)

Uncompressed encoding: 12 x 4 bytes = 48 bytes

relative to

vertex index

CMU 15-418/618,

Spring 2020

Performance impact of graph compression
R

e
la

ti
v
e
 r

u
n

ti
m

e

Running time on 40 cores
(relative to no compression)

Running time on one core
(relative to no compression)

R
e
la

ti
v
e
 r

u
n

ti
m

e

▪ Benefit of graph compression increases with higher core count, since

computation is increasingly bandwidth bound

▪ Performance improves even if graphs already fit in memory

- Added benefit is that compression enables larger graphs to fit in

memory

*Different data points on graphs are different

compression schemes (byte-RLE is the scheme on

the previous slide)

[Shun et al. DCC 2015]

CMU 15-418/618,

Spring 2020

Summary

▪ Today there is significant interest in high performance

computation on large graphs

▪ Graph processing frameworks abstract details of efficient

graph processing from application developer

- handle parallelism and synchronization for the application

developer

- handle graph distribution (across a cluster)

- may also handle graph compression and efficient iteration

order (e.g., to efficiently stream off slow storage)

▪ Great example of domain-specific programming frameworks

- for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+

