Lecture 23:

Domain-Specific Programming on Graphs

Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2020

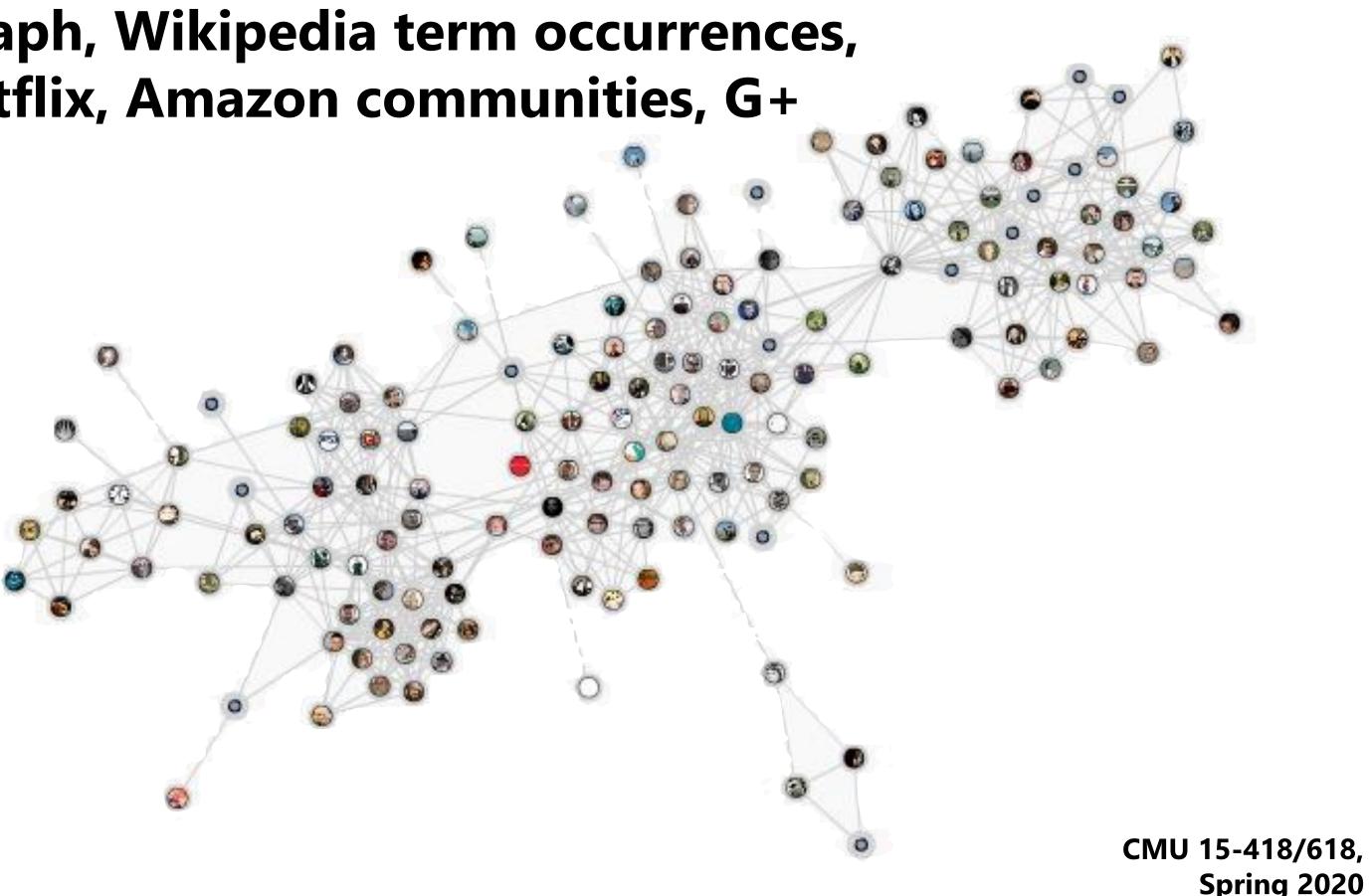
Last time: Increasing acceptance of domainspecific programming systems

- Challenge to programmers: modern computers are parallel, heterogeneous machines
 - (Architects striving for high area and power efficiency)
- Programming systems trend: give up generality in what types of programs can be expressed in exchange for achieving high productivity and high performance
- "Performance portability" is a key goal: programs should execute efficiently on a variety of parallel platforms
 - Good implementations of same program for different systems required different data structures, algorithms, and approaches to parallelization — not just differences in low-level code generation (e.g., not just a matter of generating SSE vs. AVX vs ARM Neon vs. NVIDIA PTX instructions)

Today's topic: analyzing big graphs

- Many modern applications:
 - Web search results, recommender systems, influence determination, advertising, anomaly detection, etc.
- **Public dataset examples:**

Twitter social graph, Wikipedia term occurrences, IMDB actors, Netflix, Amazon communities, G+



Good source of public graphs: https://snap.stanford.edu/data/ (Jure Leskovec, CMU PhD, 2008)

Thought experiment: if we wanted to design a programming system for computing on graphs, where might we begin?

What abstractions do we need?

Whenever I'm trying to assess the importance of a new programming system, I ask two questions:

- "What tasks/problems does the system take off the hands of the programmer? (are these problems challenging or tedious enough that I feel the system is adding sufficient value for me to want to use it?)"
- "What problems does the system leave as the responsibility for the programmer?" (likely because the programmer is better at these tasks)

Liszt (recall last class): **Programmer's responsibility:**

- Describe mesh connectivity and fields defined on mesh
- Describe operations on mesh structure and fields

Liszt system's responsibility:

- Parallelize operations without violating dependencies or creating data races (uses different algorithms to parallelize application on different platforms)
- Choose graph data structure / layout, partition graph across parallel machine, manage low-level communication (MPI send), allocate ghost cells, etc.

Halide (recall last class): **Programmer's responsibility:**

- Describing image processing algorithm as pipeline of operations on images
 - stages")

Halide system's responsibility:

-

- Describing the schedule for executing the pipeline (e.g.,
 - "block this loop, "parallelize this loop", "fuse these

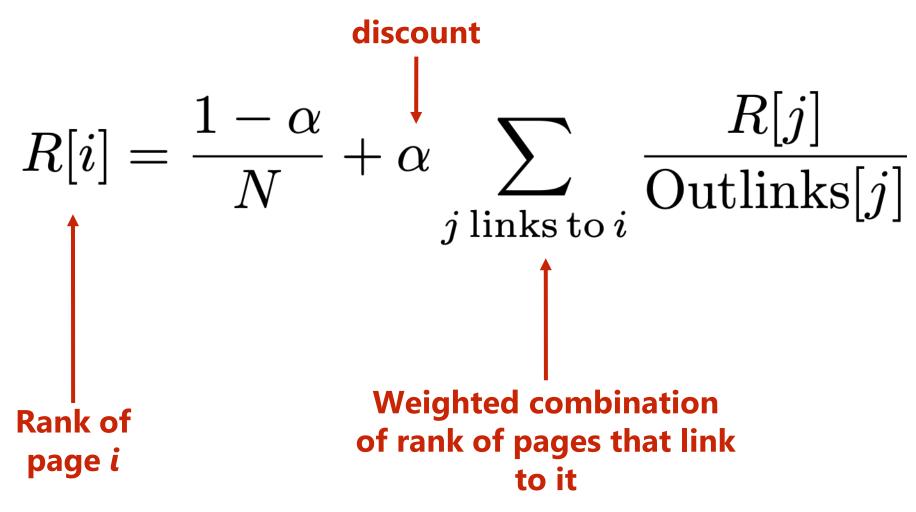
Implementing the schedule using mechanisms available on the target machine (spawning pthreads, allocating temp buffers, emitting vector instructions, loop indexing code)

Programming system design questions:

- What are the fundamental operations we want to be easy to express and efficient to execute?
- What are the key optimizations performed by the best implementations of these operations?
 - high-level abstractions should not prevent these -----
 - maybe even allow system to perform them for the application

Example graph computation: Page Rank

Page Rank: iterative graph algorithm Devised by Larry Page & Sergey Brinn, 1996 **Graph nodes = web pages Graph edges = links between pages**



GraphLab

- A system for describing <u>iterative</u> computations on graphs
- **History:**
 - 2009 Prof Carlos Guestrin at CMU, then at U Washington
 - 2013 Commercialized as Turi
 - 2016 Acquired by Apple
- Implemented as a C++ runtime
- Runs on shared memory machines or distributed across clusters
 - GraphLab runtime takes responsibility for scheduling work in parallel, partitioning graphs across clusters of machines, communication between master, etc.

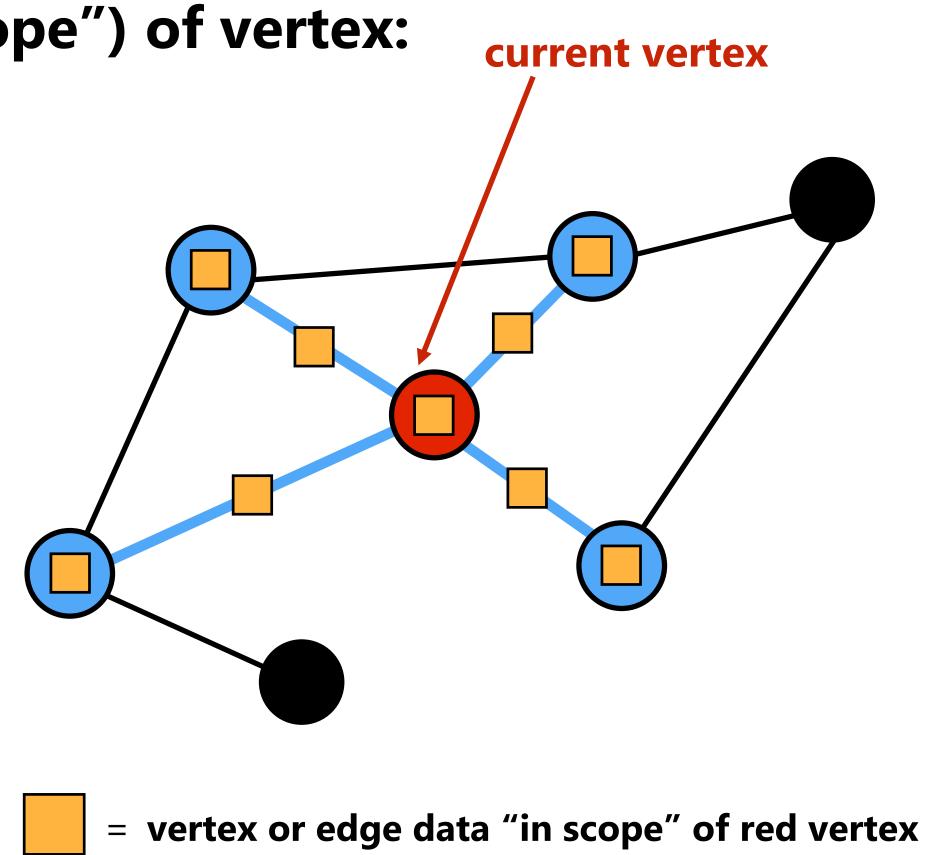
GraphLab programs: state

- The graph: G = (V, E)
 - Application defines data blocks on each vertex and directed edge
 - D_v = data associated with vertex v
 - $D_{u \to v}$ = data associated with directed edge $u \to v$
- **Read-only global data**
 - Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice: I always first describe program state And then describe what operations are available to manipulate this state

GraphLab operations: the vertex program

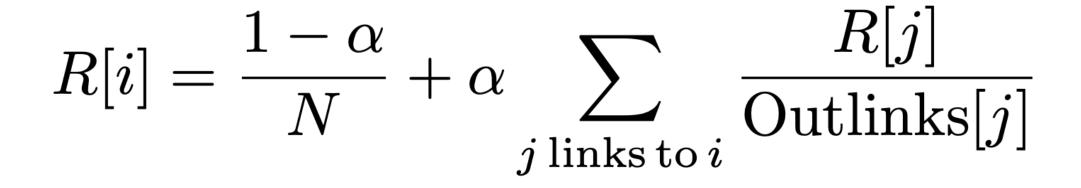
- **Defines per-vertex operations on the vertex's local** neighborhood
- **Neighborhood** (aka "scope") of vertex:
 - The current vertex
 - Adjacent edges
 - Adjacent vertices



vertex)

(graph data that can be accessed when executing a vertex program at the current (red)

Simple example: PageRank *



PageRank_vertex_program(vertex i) {

```
// (Gather phase) compute the sum of my neighbors rank
double sum = 0;
foreach(vertex j : in_neighbors(i)) {
   sum = sum + j.rank / num_out_neighbors(j);
}
// (Apply phase) Update my rank (i)
i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;
}
```

Programming in GraphLab amounts to defining how to update graph state at each vertex. The system takes responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we'll see on the next slide

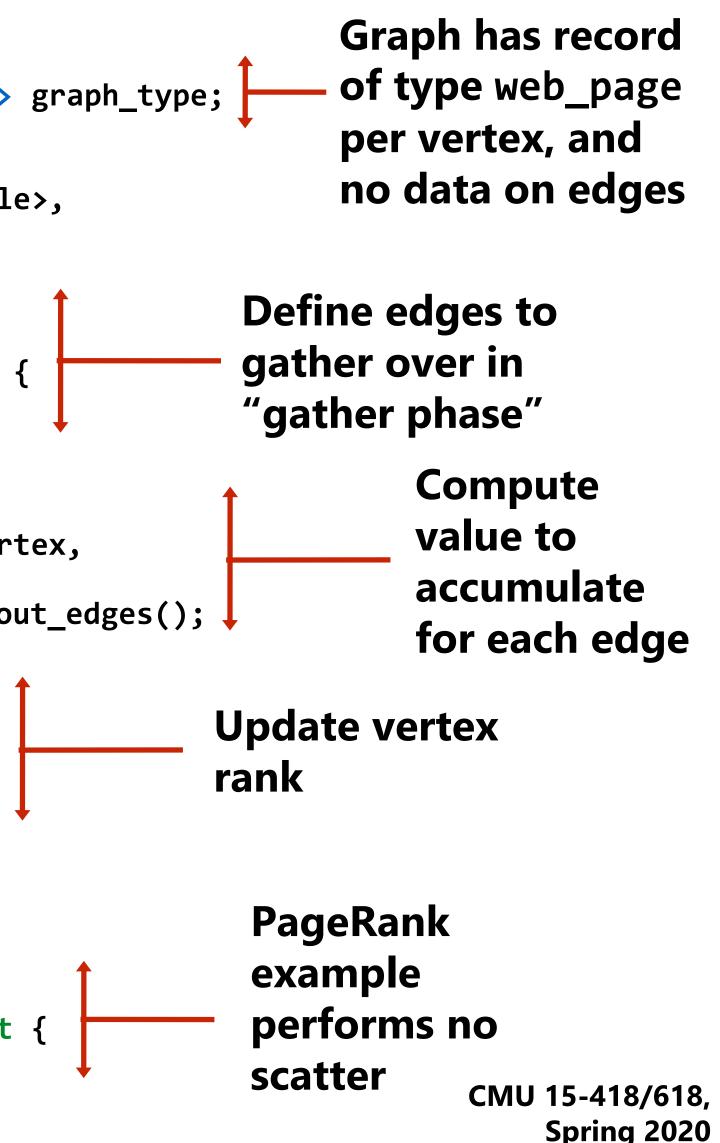
(Shown for α = 0.85)

GraphLab: data access

- The application's vertex program executes per-vertex
- The vertex program defines:
 - What adjacent edges are inputs to the computation
 - What computation to perform per edge
 - How to update the vertex's value
 - What adjacent edges are modified by the computation
 - How to update these output edge values
- Note how GraphLab requires the program to tell it all data that will be accessed, and whether it is read or write access

GraphLab-generated vertex program (C++ code)

```
struct web_page {
  std::string pagename;
  double
              pagerank;
 web_page(): pagerank(0.0) { }
typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;
class pagerank_program:
            public graphlab::ivertex_program<graph_type, double>,
            public graphlab::IS_POD_TYPE {
public:
  // we are going to gather on all the in-edges
  edge_dir_type gather_edges(icontext_type& context,
                             const vertex_type& vertex) const {
    return graphlab::IN_EDGES;
  }
  // for each in-edge gather the weighted sum of the edge.
  double gather(icontext_type& context, const vertex_type& vertex,
               edge_type& edge) const {
    return edge.source().data().pagerank / edge.source().num_out_edges();
  // Use the total rank of adjacent pages to update this page
  void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
    double newval = total * 0.85 + 0.15;
    vertex.data().pagerank = newval;
  // No scatter needed. Return NO_EDGES
  edge_dir_type scatter_edges(icontext_type& context,
                              const vertex_type& vertex) const {
    return graphlab::NO_EDGES;
```



Running the program

graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync"); engine.signal_all(); engine.start();

GraphLab runtime provides "engines" that manage scheduling of vertex programs

engine.signal_all() marks all vertices for execution

You can think of the GraphLab runtime as a work queue scheduler.

And invoking a vertex program on a vertex as a task that is placed in the work queue.

So it's reasonable to read the code above as: "place all vertices into the work queue" Or as: "foreach vertex" run the vertex program.

Vertex signaling: GraphLab's mechanism for generating new work $R[i] = \frac{1 - \alpha}{N} + \alpha \sum_{\substack{j \text{ links to } i}} \frac{R[j]}{\text{Outlinks}[j]}$

Iterate update of all R[i]'s 10 times Uses generic "signal" primitive (could also wrap code on previous slide in a for loop)

```
struct web_page {
  std::string pagename;
 double pagerank;
  int
      counter;
 web_page(): pagerank(0.0),counter(0) { }
}
 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
            const gather_type& total) {
   double newval = total * 0.85 + 0.15;
   vertex.data().pagerank = newval;
                                             If counter < 10, signal to
   vertex.data().counter++;
   if (vertex.data().counter < 10)</pre>
      vertex.signal();
  }
```

Per-vertex "counter"

scheduler to run the vertex program on the vertex again at some point in the future

Signal: general primitive for scheduling work

Parts of graph may converge at different rates (iterate PageRank until convergence, but only for vertices that need it)

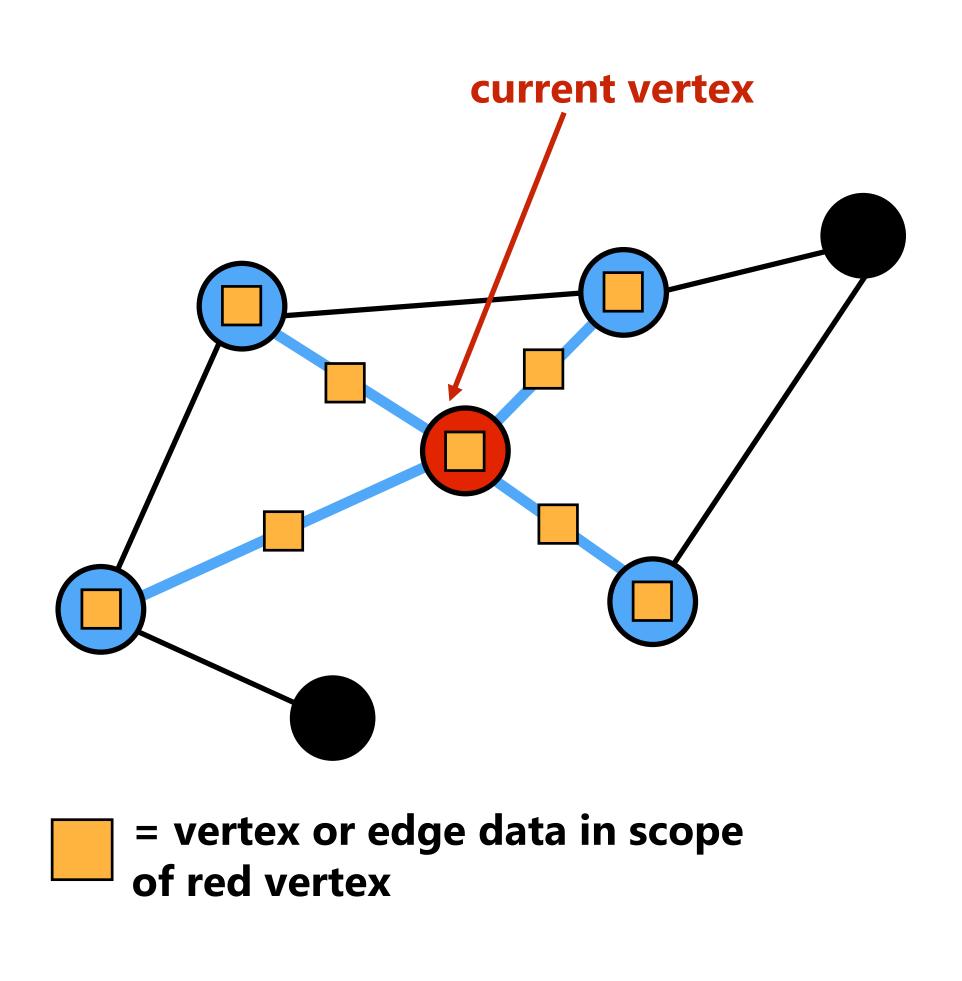
```
class pagerank_program:
      public graphlab::ivertex_program<graph_type, double>,
      public graphlab::IS POD TYPE {
                                  Private variable set during
private:
                                apply phase, used during
 bool perform_scatter;
                                  scatter phase
public:
  // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
   double newval = total * 0.85 + 0.15;
   double oldval = vertex.data().pagerank;
   vertex.data().pagerank = newval;
    perform_scatter = (std::fabs(oldval - newval) > 1E-3);
  }
 // Scatter now needed if algorithm has not converged
  edge_dir_type scatter_edges(icontext_type& context,
                              const vertex type& vertex) const {
   if (perform_scatter) return graphlab::OUT_EDGES;
   else return graphlab::NO_EDGES;
   // Make sure surrounding vertices are scheduled
  void scatter(icontext_type& context, const vertex_type& vertex,
               edge_type& edge) const {
   context.signal(edge.target());
  }
};
```

Check for convergence

Schedule update of neighbor vertices

Synchronizing parallel execution

Local neighborhood of vertex (vertex's "scope") can be read and written to by a vertex program



Programs specify what granularity of atomicity ("consistency") they want **GraphLab runtime to provide: this** determines amount of available parallelism

- **in** *v* ...

"Full consistency":

implementation ensures no other execution reads or writes to data in scope of v when vertex program for *v* is running.

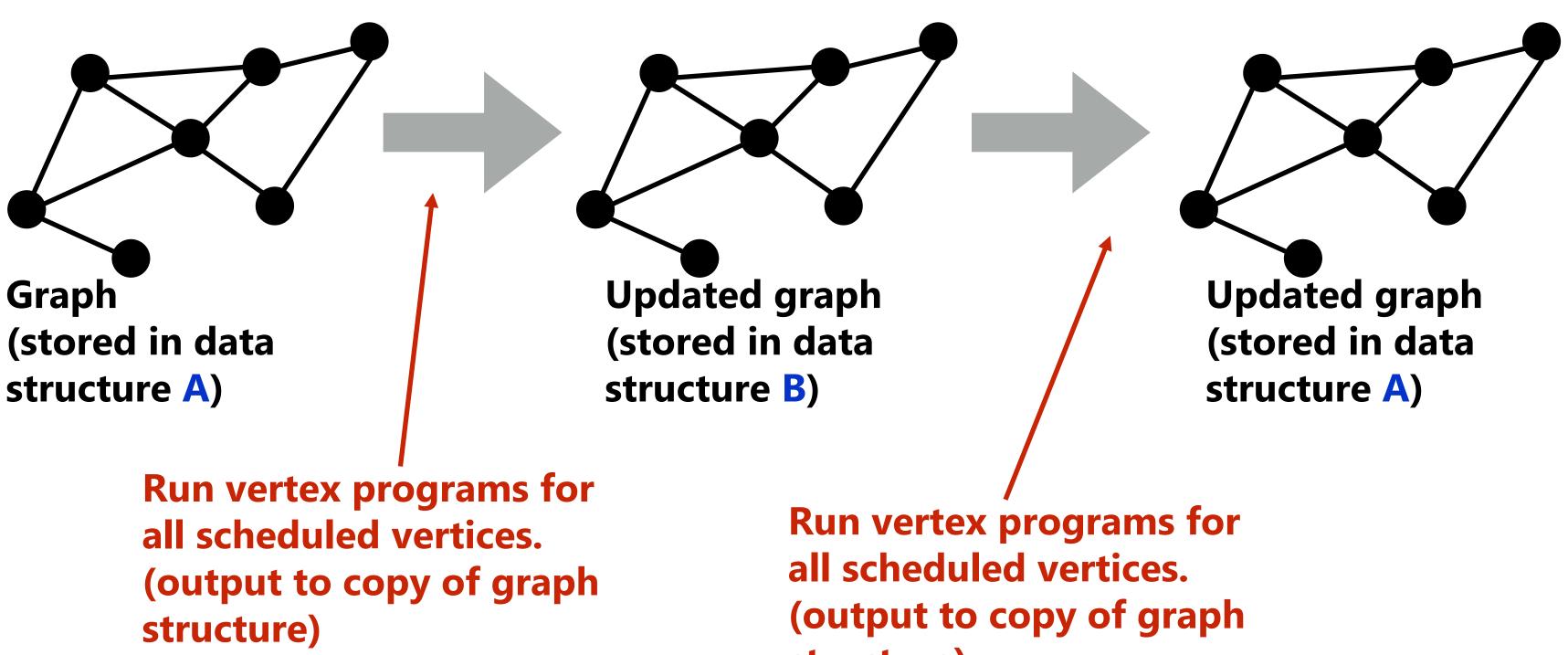
"<u>Edge consistency</u>": no other execution reads or writes any data in v or in edges adjacent to v

"<u>Vertex consistency</u>": no other execution reads or writes to data

GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all scheduled vertices "simultaneously" (vertex programs observe no updates from programs run on other vertices in same "round")



structure)

GraphLab: job scheduling order

- **GraphLab** implements several work scheduling policies
 - Synchronous: update all vertices simultaneously (vertex programs) observe no updates from programs run on other vertices in same "round")
 - **Round-robin**: vertex programs observe most recent updates
 - Graph coloring: Avoid simultaneous updates by adjacent vertices
 - **Dynamic: based on new work created by signal**
 - Several implementations: fifo, priority-based, "splash" ...
- **Application developer has flexibility for choosing consistency** guarantee and scheduling policy
 - Implication: choice of schedule impacts program's correctness/output
 - Our opinion: this seems like a weird design at first glance, but this is common (and necessary) in the design of efficient graph algorithms

Summary: GraphLab concepts

- **Program state:** data on graph vertices and edges + globals
- **Operations: per-vertex update programs and global reduction** functions (reductions not discussed today)
 - Simple, intuitive description of work (follows mathematical formulation)
 - Graph restricts data access in vertex program to local neighborhood
 - Asynchronous execution model: application creates work dynamically by "signaling vertices" (enable lazy execution, work efficiency on real graphs)
- **Choice of scheduler and consistency implementation**
 - In this domain, the order in which nodes are processed can be critical property for both performance and quality of result
 - Application responsible for choosing right scheduler for its needs

Elements of good domain-specific programming system design

#1: good systems identify the most important cases, and provide most benefit in these situations

- Structure of code should mimic natural structure of problems in the domain
 - e.g., graph processing algorithms are designed in terms of per-vertex operations
- Efficient expression: common operations are easy and intuitive to express
- Efficient implementation: the most important optimizations in the domain are performed by the system for the programmer
 - Our experience: a parallel programming system with "convenient" abstractions that precludes best-known implementation strategies will almost always fail

#2: good systems are usually simple systems

- They have a small number of key primitives and operations
 - GraphLab: run computation per vertex, trigger new work by signaling
 - But GraphLab's scheduling design gets messy...
 - Halide: only a few scheduling primitives
 - Hadoop: map + reduce
- Allows compiler/runtime to focus on optimizing these primitives
 - Provide parallel implementations, utilize appropriate hardware
- Common question that good architects ask: "do we really need that?" Or can we reuse an existing primitive?
 - For every domain-specific primitive in the system: there better be a strong performance or expressivity justification for its existence

#3: good primitives compose

- **Composition of primitives allows for wide application scope**, even if scope remains limited to a domain
 - e.g., frameworks discussed today support a wide variety of graph algorithms
- **Composition often allows for generalizable optimization**
- Sign of a good design:
 - System ultimately is used for applications original designers never anticipated
- Sign that a new feature <u>should not</u> be added (or added in a **better** way):
 - The new feature does not compose with all existing features in the system

Optimizing graph computations (now we are talking about implementation)

Wait a minute...

- So far in this lecture, we've discussed issues such as parallelism, synchronization ...
- But graph processing typically has low arithmetic intensity

Walking over edges accesses information from "random" graph vertices

VTune profiling results: Memory bandwidth bound!

		10 11 2011년 문화전문 - 11	12 6.5	
Memory Access	lemory Usage v	iewpoint (<u>chang</u>	e) 🛛	Intel VTune Amplifie
🛛 🕀 Analysis Target 🛛 Å An	alysis Type 📟 Colle	ection Log 🔋 Summa	ry 🗳 Bottom-up	🖻 Platform
✓ Elapsed Time [®] :	0.713s			
CPU Time	2.484s			
	50.5%			
	Tune Amplifier XE Mem			ots could be stalled due to deman wn by memory hierarchy, memory b
L1 Bound ⁽²⁾ :	0.027			
L2 Bound	0.020			
L2 Bound [®] : L3 Bound [®] :	0.020			
L3 Bound ⁽¹⁾ : This metric shows h	0.127		nded with a sibling Co	ore. Avoiding cache misses (L2 miss
L3 Bound ⁽¹⁾ : This metric shows h	0.127 now often CPU was stall		nded with a sibling Co	ore. Avoiding cache misses (L2 miss
L3 Bound ⁽¹⁾ : This metric shows h improves the latent DRAM Bound ⁽²⁾ :	0.127 now often CPU was stall cy and increases perform 0.320	nance.		
L3 Bound ⁽¹⁾ : This metric shows h improves the latent DRAM Bound ⁽²⁾ : This metric shows	0.127 now often CPU was stall cy and increases perform 0.320	nance.		ore. Avoiding cache misses (L2 miss

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop R[j] $R[i] = \frac{1 - \alpha}{N} + \alpha$ Outlinks[j]j links to i

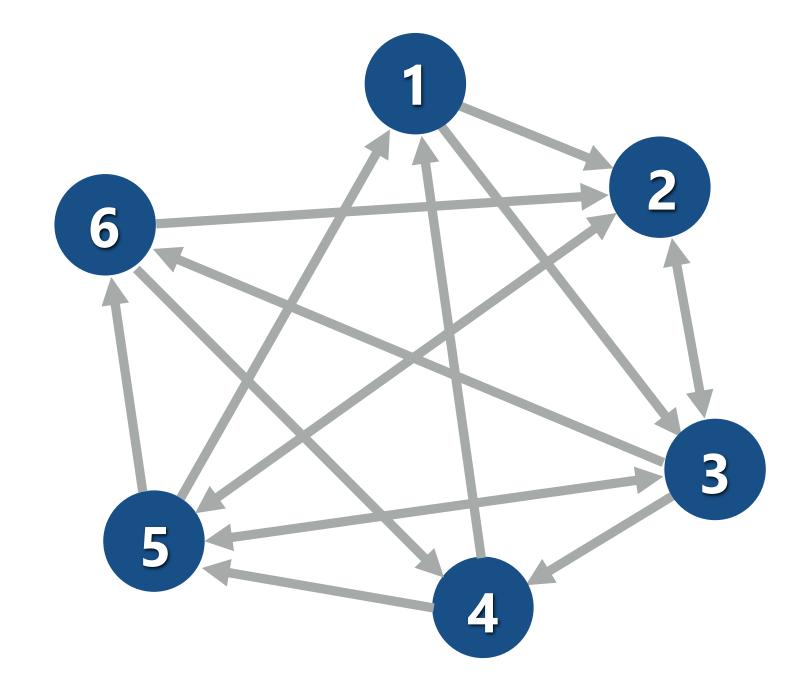
Two ideas to increase the performance of operations on large graphs *

- 1. Reorganize graph structure to increase locality
- 2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge

Directed graph representation

Vertex Id Outgoing Edges	1 2	3	2 3	5	3 2	4	5	6	4 1	5	5 1	2	3	6	6 2	4
Vertex Id Incoming Edges	1 4	5	2 1	3	5	6	3 1	2	5	4 3	6	5 2	3	4	6 3	6



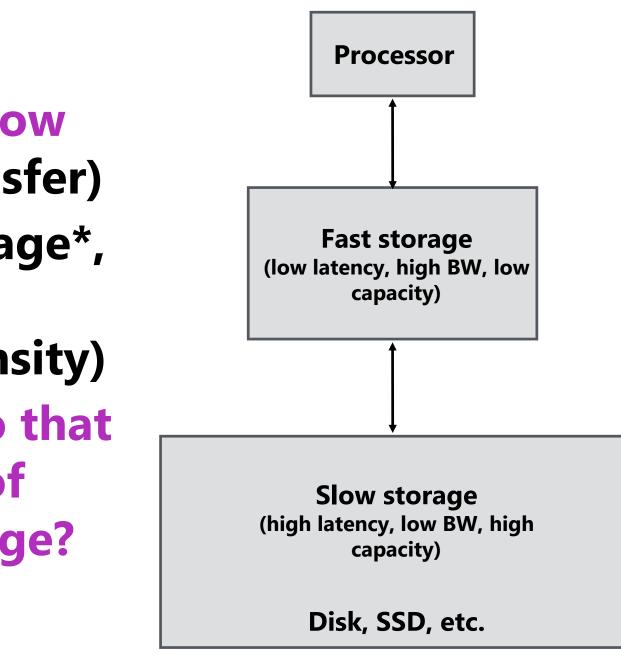
Memory footprint challenge of large graphs

- **<u>Challenge</u>: cannot fit all edges in memory for large graphs (but graph</u>** vertices may fit)
 - From example graph representation: -
 - Each edge represented twice in graph structure (as incoming/outgoing edge)
 - 8 bytes per edge to represent adjacency May also need to store per-edge values (e.g., 4 bytes for a per-edge weight)
 - **1 billion edges (modest): ~12 GB of memory for edge information** _ Algorithm may need multiple copies of per-edge structures (current,
 - prev data, etc.)
- **Could employ cluster of machines to store graph in memory**
 - Rather than store graph on disk
- Would prefer to process large graphs on a single machine
 - Managing clusters of machines is difficult
 - Partitioning graphs is expensive (also needs a lot of memory) and difficult

"Streaming" graph computations

- Graph operations make "random" accesses to graph data (edges adjacent to vertex v may distributed arbitrarily throughout storage)
 - Single pass over graph's edges might make billions of fine-grained accesses to disk
- **Streaming data access pattern**
 - Make large, predictable data accesses to slow **storage** (achieve high bandwidth data transfer)
 - Load data from slow storage into fast storage*, then reuse it as much as possible before discarding it (achieve high arithmetic intensity)
 - Can we restructure graph data structure so that data access requires only a small number of efficient bulk loads/stores from slow storage?

* By fast storage, in this context I mean DRAM. However, techniques for streaming from disk into memory would also apply to streaming from memory into a processor's cache



Sharded graph representation

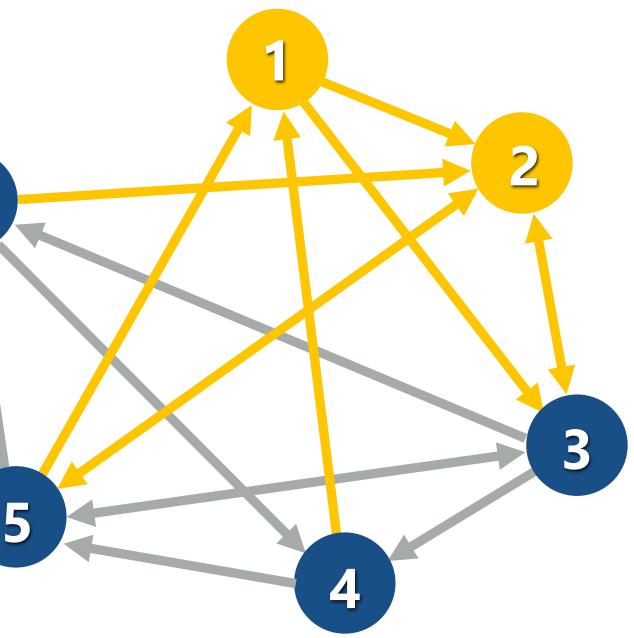
- **Partition** graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Vertices and (only) incoming edges to these vertices are stored together in a shard
- **Sort** edges in a shard by source vertex id

vei	Shar rtices	d 1: s (1-2)	ver	Share tices	d 2: 5 (3-4)	Shard 3: vertices (5-6)				
src	dst	value	src	dst	value	src	dst	value		
1	2	0.3	1	3	0.4	2	5	0.6		
3	2	0.2	2	3	0.9	3	5	0.9		
4	1	0.8	3	4	0.15	3	6	0.85		
5	1	0.25	5	3	0.2	4	5	0.3		
5	2	0.6	6	4	0.9	5	6	0.2		
6	2	0.1								

Yellow = data required to process subgraph containing vertices in shard 1

Notice: to construct subgraph containing vertices in shard 1 and their incoming and outgoing edges, only need to load contiguous information from other P-1 shards Writes to updated outgoing edges require P-1 bulk writes

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Sharded graph representation

Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)

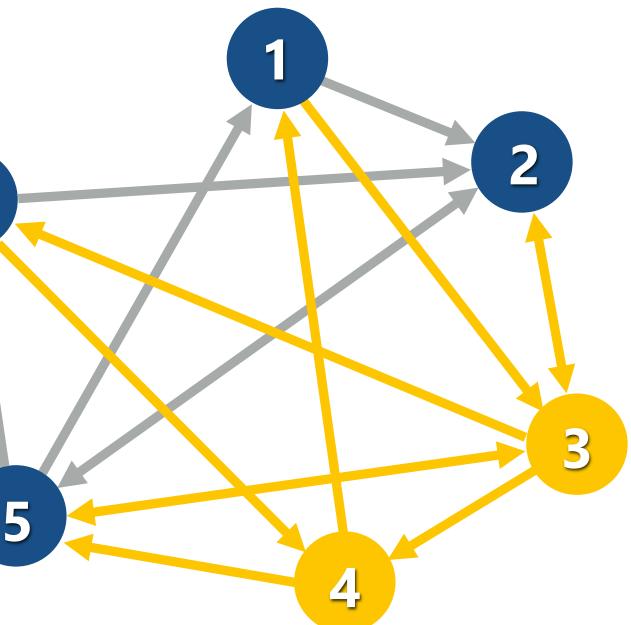
6

- Store vertices and only incoming edges to these vertices are stored together in a shard
- **Sort** edges in a shard by source vertex id

vei	Shar rtices	d 1: 5 (1-2)			d 2: 5 (3-4)	Shard 3: vertices (5-6)				
src	dst	value	src	dst	value	src	dst	value		
1	2	0.3	1	3	0.4	2	5	0.6		
3	2	0.2	2	3	0.9	3	5	0.9		
4	1	0.8	3	4	0.15	3	6	0.85		
5	1	0.25	5	3	0.2	4	5	0.3		
5	2	0.6	6	4	0.9	5	6	0.2		
6	2	0.1				L				

Yellow = data required to process subgraph containing vertices in shard 2

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Sharded graph representation

Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)

6

- Store vertices and only incoming edges to these vertices are stored together in a shard
- **Sort** edges in a shard by source vertex id

vei	Shar rtices	d 1: 5 (1-2)			d 2: 5 (3-4)	Shard 3: vertices (5-6)				
src	dst	value	src	dst	value	src	dst	value		
1	2	0.3	1	3	0.4	2	5	0.6		
3	2	0.2	2	3	0.9	3	5	0.9		
4	1	0.8	3	4	0.15	3	6	0.85		
5	1	0.25	5	3	0.2	4	5	0.3		
5	2	0.6	6	4	0.9	5	6	0.2		
6	2	0.1								

Yellow = data required to process subgraph containing vertices in shard 3

Observe: due to sort of incoming edges, iterating over all intervals results in contiguous sliding window over the shards

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Putting it all together: looping over all graph edges

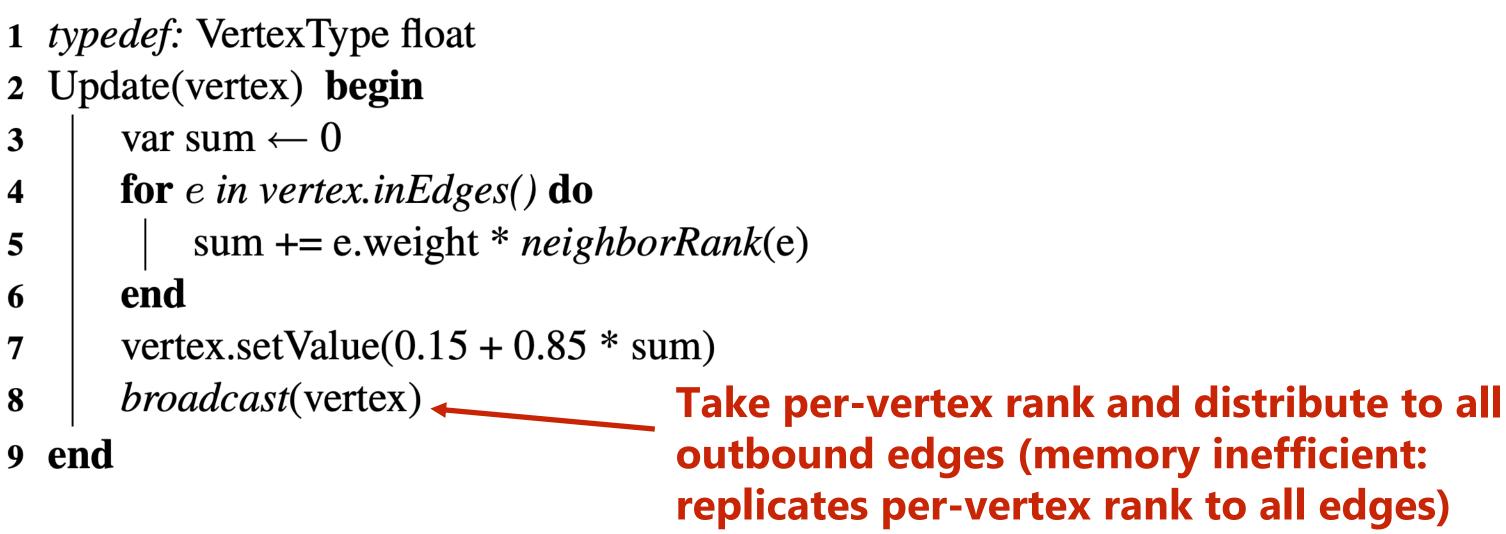
For each partition i of vertices:

- Load shard i (contains all incoming edges)
- For each other shard s
 - Load section of s containing data for edges leaving i and entering s
- Construct subgraph in memory
- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data for next iteration of loop

PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding window approach **PageRank in GraphChi:**

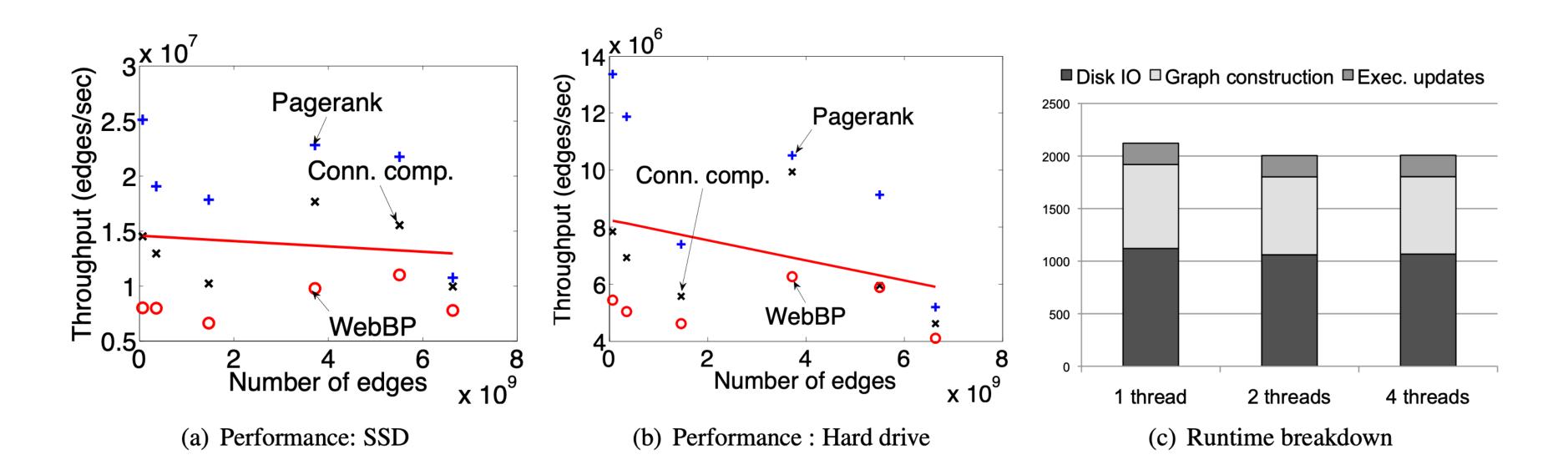


Alternative model: assume vertex data can be kept in memory and redefine neighborRank() function

- 1 *typedef:* EdgeType { float weight; }
- 2 float[] in_mem_vert
- 3 neighborRank(edge) begin
- return edge.weight * in_mem_vert[edge.vertex_id]
- 5 end

outbound edges (memory inefficient: replicates per-vertex rank to all edges)

Performance on a Mac mini (8 GB RAM)



Throughput (edges/sec) remains stable as graph size is increased Desirable property: throughput largely invariant of dataset size

Graph compression

- **<u>Recall</u>: graph operations are often BW-bound**
- **Implication:** using CPU instructions to reduce BW requirements can benefit overall performance (the processor is waiting on memory anyway!)
- **Idea: store graph compressed in memory, decompress on-the-fly** when operation wants to read data

Compressing an edge list

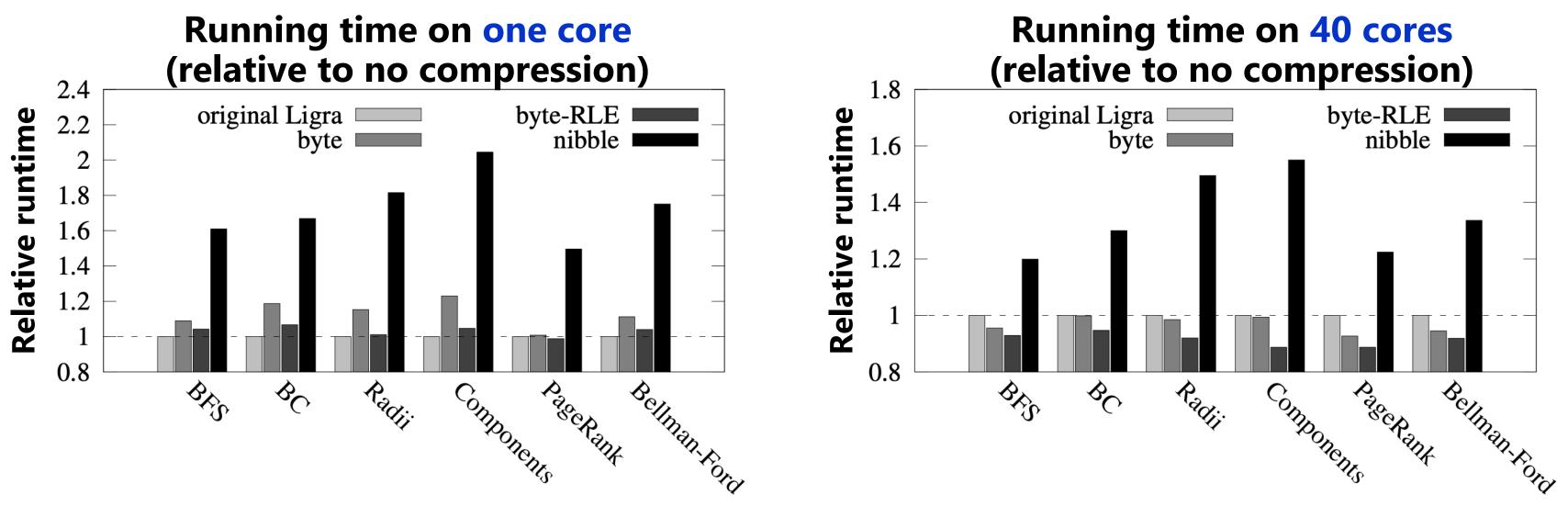
Vertex Id Outgoing 32 1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000 Edges

- **1. Sort edges for each vertex**
- 2.

		5	6	10	30	1001	1010	1024	1025	1030	100000	200000	275000	
)	Compute di	ffe	ere	ence	es									
		5	6	10	30	1001	1010	1024	1025	1030	100000	200000	275000	
		0	1	4	20	971	9	14	1	5	98070	100000	75000	
	Group into													
	relative to	5	E	5 16	36	9 1001	101 0	1024	1025	5 1036	100000	200000	275000	
	relative to vertex index	-27	7 1	L Z	1 20	971	. 9	14	l 1	L 5	5 98070	100000	75000	
			1	l byte	•	2 bytes	5	1	byte					
ŀ.	Encode delt	as			Ur	compress	ed encoc	ling: 12 x	4 bytes =	48 bytes				
	1-byte group heade	r				Compres	sed encoc	ding: 26 b	ytes					
								[ONE_BYT	E, 4],	-27, 1, 4	, 20	(5 bytes)	
								[TWO_BYT	(3 bytes)				
6 bits: number of edges in group 2 bits: encoding width (1, 2, 4 bytes)						[(ONE_BYT	(5 bytes)						
								[OUR_BY	000 (13 bytes))			

4.

Performance impact of graph compression



- **Benefit of graph compression increases with higher core count, since** computation is increasingly bandwidth bound
- Performance improves even if graphs already fit in memory
 - Added benefit is that compression enables larger graphs to fit in ----memory
- * Different data points on graphs are different compression schemes (byte-RLE is the scheme on the previous slide)

[Shun et al. DCC 2015]

Summary

- **Today there is significant interest in high performance** computation on large graphs
- Graph processing frameworks abstract details of efficient graph processing from application developer
 - handle parallelism and synchronization for the application developer
 - handle graph distribution (across a cluster)
 - may also handle graph compression and efficient iteration order (e.g., to efficiently stream off slow storage)
- Great example of domain-specific programming frameworks for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+