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Last time: Increasing acceptance of domain-
specific programming systems

▪ Challenge to programmers: modern computers are parallel, 

heterogeneous machines
- (Architects striving for high area and power efficiency) 

▪ Programming systems trend: give up generality in what types 

of programs can be expressed in exchange for achieving high 

productivity and high performance

▪ “Performance portability” is a key goal: programs should 

execute efficiently on a variety of parallel platforms

- Good implementations of same program for different systems required 

different data structures, algorithms, and approaches to parallelization — not 

just differences in low-level code generation (e.g., not just a matter of 

generating SSE vs. AVX vs ARM Neon vs. NVIDIA PTX instructions)
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Today’s topic: analyzing big graphs

▪ Many modern applications:
- Web search results, recommender systems, influence 

determination, advertising, anomaly detection, etc.

▪ Public dataset examples:

Twitter social graph, Wikipedia term occurrences, 

IMDB actors, Netflix, Amazon communities, G+

Good source of public graphs:

https://snap.stanford.edu/data/

(Jure Leskovec, CMU PhD, 2008)

https://snap.stanford.edu/data/
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Thought experiment: if we wanted 

to design a programming system for 

computing on graphs, where might 

we begin?

What abstractions do we need?
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Whenever I’m trying to assess the importance of 
a new programming system, I ask two questions:

Halide (recall last class):

Programmer’s responsibility:

Halide system’s responsibility:

- Describing image processing algorithm as pipeline of 

operations on images

- Describing the schedule for executing the pipeline (e.g., 

“block this loop, “parallelize this loop”, “fuse these 

stages”)

- Implementing the schedule using mechanisms available on 

the target machine (spawning pthreads, allocating temp 

buffers, emitting vector instructions, loop indexing code) 

Liszt (recall last class):

Programmer’s responsibility:

- Describe mesh connectivity and fields defined on mesh 

- Describe operations on mesh structure and fields

Liszt system’s responsibility:
- Parallelize operations without violating dependencies or 

creating data races (uses different algorithms to parallelize 

application on different platforms)

- Choose graph data structure / layout, partition graph across 

parallel machine, manage low-level communication (MPI 

send), allocate ghost cells, etc. 

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc.

▪ “What tasks/problems does the system take off the hands of the programmer?

(are these problems challenging or tedious enough that I feel the system is adding 

sufficient value for me to want to use it?)”

▪ “What problems does the system leave as the responsibility for the programmer?”

(likely because the programmer is better at these tasks)
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Programming system design questions:

▪ What are the fundamental operations we want to be easy 

to express and efficient to execute?

▪ What are the key optimizations performed by the best 

implementations of these operations? 

- high-level abstractions should not prevent these 

- maybe even allow system to perform them for the 

application
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Example graph computation: Page Rank

Page Rank: iterative graph algorithm
▪ Devised by Larry Page & Sergey Brinn, 1996

Graph nodes = web pages

Graph edges = links between pages

Rank of 

page i

Weighted combination 

of rank of pages that link 

to it

discount
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GraphLab

▪ A system for describing iterative computations on graphs

▪ History:

- 2009 Prof Carlos Guestrin at CMU, then at U Washington

- 2013 Commercialized as Turi

- 2016 Acquired by Apple

▪ Implemented as a C++ runtime

▪ Runs on shared memory machines or distributed across clusters

- GraphLab runtime takes responsibility for scheduling work in 

parallel, partitioning graphs across clusters of machines, 

communication between master, etc.
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GraphLab programs: state

▪ The graph: G = (V, E)

- Application defines data blocks on each vertex and directed 

edge

- Dv = data associated with vertex v

- Du→v = data associated with directed edge u→v

▪ Read-only global data

- Can think of this as per-graph data, rather than per vertex 

or per-edge data)

Notice:  I always first describe 

program state

And then describe what operations are 

available to manipulate this state
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GraphLab operations: the vertex program

▪ Defines per-vertex operations on the vertex’s local 

neighborhood

▪ Neighborhood (aka “scope”) of vertex:

- The current vertex

- Adjacent edges

- Adjacent vertices

= vertex or edge data “in scope” of red vertex

(graph data that can be accessed when 

executing a vertex program at the current (red) 

vertex)

current vertex
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Simple example: PageRank *

PageRank_vertex_program(vertex i) {

// (Gather phase) compute the sum of my neighbors rank
double sum = 0;
foreach(vertex j : in_neighbors(i)) {
sum = sum + j.rank / num_out_neighbors(j);

}

// (Apply phase) Update my rank (i)
i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;

}

Programming in GraphLab amounts to defining how to 

update graph state at each vertex. The system takes 

responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we’ll see 

on the next slide 

(Shown for 𝛼 = 0.85)
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GraphLab: data access

▪ The application’s vertex program executes per-vertex

▪ The vertex program defines:

- What adjacent edges are inputs to the computation

- What computation to perform per edge

- How to update the vertex’s value

- What adjacent edges are modified by the computation

- How to update these output edge values

▪ Note how GraphLab requires the program to tell it all data that 

will be accessed, and whether it is read or write access 



CMU 15-418/618, 

Spring 2020

GraphLab-generated vertex program (C++ code)
struct web_page {

std::string pagename;
double pagerank;
web_page(): pagerank(0.0) { }

}

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;

class pagerank_program:
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

public:
// we are going to gather on all the in-edges
edge_dir_type gather_edges(icontext_type& context,

const vertex_type& vertex) const {
return graphlab::IN_EDGES;

}

// for each in-edge gather the weighted sum of the edge.
double gather(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
return edge.source().data().pagerank / edge.source().num_out_edges();

}

// Use the total rank of adjacent pages to update this page 
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;

}

// No scatter needed. Return NO_EDGES 
edge_dir_type scatter_edges(icontext_type& context,

const vertex_type& vertex) const {
return graphlab::NO_EDGES;

}
}; 

Define edges to 

gather over in 

“gather phase”

Graph has record 
of type web_page
per vertex, and 

no data on edges

Compute 

value to 

accumulate 

for each edge

Update vertex 

rank

PageRank 

example 

performs no 

scatter
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Running the program

GraphLab runtime provides “engines” that manage scheduling

of vertex programs

engine.signal_all() marks all vertices for execution

graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync");
engine.signal_all();
engine.start();

You can think of the GraphLab runtime as a work queue 

scheduler.

And invoking a vertex program on a vertex as a task that is 

placed in the work queue.

So it’s reasonable to read the code above as: “place all vertices 

into the work queue”

Or as: “foreach vertex” run the vertex program.
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Vertex signaling: GraphLab’s 
mechanism for generating new work

Iterate update of all R[i]’s 10 times

Uses generic “signal” primitive (could also wrap code on previous slide in a for loop) 

struct web_page {
std::string pagename;
double pagerank;
int         counter;
web_page(): pagerank(0.0),counter(0) { }

}

// Use the total rank of adjacent pages to update this page 
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;
vertex.data().counter++;
if (vertex.data().counter < 10)

vertex.signal();
}

If counter < 10, signal to 

scheduler to run the vertex 

program on the vertex again at 

some point in the future

Per-vertex “counter”
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Signal: general primitive for scheduling work
Parts of graph may converge at different rates
(iterate PageRank until convergence, but only for vertices that need it)

class pagerank_program:
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

private:
bool perform_scatter;

public:

// Use the total rank of adjacent pages to update this page 
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
double oldval = vertex.data().pagerank; 
vertex.data().pagerank = newval;
perform_scatter = (std::fabs(oldval - newval) > 1E-3);

}

// Scatter now needed if algorithm has not converged 
edge_dir_type scatter_edges(icontext_type& context,

const vertex_type& vertex) const {
if (perform_scatter) return graphlab::OUT_EDGES; 
else return graphlab::NO_EDGES;

}

// Make sure surrounding vertices are scheduled
void scatter(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
context.signal(edge.target());

}
};

Schedule update 

of neighbor 

vertices

Check for 

convergence

Private variable set during 

apply phase, used during 

scatter phase
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Synchronizing parallel execution

Local neighborhood of vertex (vertex’s “scope”) can be read 

and written to by a vertex program

Programs specify what granularity of 

atomicity (“consistency”) they want 

GraphLab runtime to provide: this 

determines amount of available 

parallelism

- “Full consistency”: 

implementation ensures no other 

execution reads or writes to data 

in scope of v when vertex 

program for v is running.

- “Edge consistency”: no other 

execution reads or writes any 

data in v or in edges adjacent to v

- “Vertex consistency”: no other 

execution reads or writes to data 

in v ...

= vertex or edge data in scope 

of red vertex

current vertex
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GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all scheduled vertices “simultaneously” 

(vertex programs observe no updates from programs run on 

other vertices in same “round”)

Run vertex programs for 

all scheduled vertices.

(output to copy of graph 

structure)

Updated graph

(stored in data 

structure B)

Updated graph

(stored in data 

structure A)

Run vertex programs for 

all scheduled vertices.

(output to copy of graph 

structure)

Graph

(stored in data 

structure A)
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GraphLab: job scheduling order

▪ GraphLab implements several work scheduling policies

- Synchronous: update all vertices simultaneously (vertex programs 

observe no updates from programs run on other vertices in same 

“round”)

- Round-robin: vertex programs observe most recent updates

- Graph coloring: Avoid simultaneous updates by adjacent vertices

- Dynamic: based on new work created by signal

- Several implementations: fifo, priority-based,  “splash” ...

▪ Application developer has flexibility for choosing consistency 

guarantee and scheduling policy

- Implication: choice of schedule impacts program’s 

correctness/output

- Our opinion: this seems like a weird design at first glance, but this is 

common (and necessary) in the design of efficient graph algorithms
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Summary: GraphLab concepts

▪ Program state: data on graph vertices and edges + globals

▪ Operations: per-vertex update programs and global reduction 

functions (reductions not discussed today) 

- Simple, intuitive description of work (follows mathematical 

formulation)

- Graph restricts data access in vertex program to local neighborhood

- Asynchronous execution model: application creates work 

dynamically by “signaling vertices” (enable lazy execution, work 

efficiency on real graphs)

▪ Choice of scheduler and consistency implementation

- In this domain, the order in which nodes are processed can be 

critical property for both performance and quality of result

- Application responsible for choosing right scheduler for its needs



CMU 15-418/618, 

Spring 2020

Elements of good domain-specific 

programming system design
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#1: good systems identify the most 
important cases, and provide most 
benefit in these situations
▪ Structure of code should mimic natural structure of 

problems in the domain

- e.g., graph processing algorithms are designed in 

terms of per-vertex operations

▪ Efficient expression: common operations are easy and 

intuitive to express

▪ Efficient implementation: the most important 

optimizations in the domain are performed by the 

system for the programmer

- Our experience: a parallel programming system with 

“convenient” abstractions that precludes best-known 

implementation strategies will almost always fail
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#2: good systems are usually 

simple systems
▪ They have a small number of key primitives and 

operations
- GraphLab: run computation per vertex, trigger new work by signaling 

- But GraphLab’s scheduling design gets messy…

- Halide: only a few scheduling primitives

- Hadoop: map + reduce

▪ Allows compiler/runtime to focus on optimizing 

these primitives

- Provide parallel implementations, utilize appropriate hardware

▪ Common question that good architects ask: “do we 

really need that?” Or can we reuse an existing 

primitive?

- For every domain-specific primitive in the system: there better be a 

strong performance or expressivity justification for its existence
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#3: good primitives compose

▪ Composition of primitives allows for wide application scope, 

even if scope remains limited to a domain

- e.g., frameworks discussed today support a wide variety of 

graph algorithms

▪ Composition often allows for generalizable optimization

▪ Sign of a good design:

- System ultimately is used for applications original 

designers never anticipated

▪ Sign that a new feature should not be added (or added in a 

better way):

- The new feature does not compose with all existing 

features in the system



CMU 15-418/618, 

Spring 2020

Optimizing graph computations
(now we are talking about implementation)
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Wait a minute…

▪ So far in this lecture, we’ve discussed issues such as 

parallelism, synchronization …

▪ But graph processing typically has low arithmetic 

intensity

Or just consider PageRank: ~ 1 multiply-accumulate per 

iteration of summation loop

VTune profiling results: Memory bandwidth bound!

Walking over edges 

accesses information 

from “random” graph 

vertices
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Two ideas to increase the performance of 
operations on large graphs * 

1. Reorganize graph structure to increase locality

2. Compress the graph

* Both optimizations might be performed by a framework without application 

knowledge
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Directed graph representation

1

2 3 3 5

2 3

2 4 5 6 

4

1 2 3 6

5

1 5
Outgoing 

Edges

Vertex Id 6

2 4

Vertex Id
Incoming 

Edges
4 5
1 2

1 3 5 6
3
1 2 5

4
3 6

5
2 3 4

6
3 6

1

2

3

4

5

6
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Memory footprint challenge of large graphs

▪ Challenge: cannot fit all edges in memory for large graphs (but graph 

vertices may fit)

- From example graph representation:

- Each edge represented twice in graph structure (as 

incoming/outgoing edge)

- 8 bytes per edge to represent adjacency

- May also need to store per-edge values (e.g., 4 bytes for a per-edge 

weight)

- 1 billion edges (modest): ~12 GB of memory for edge information

- Algorithm may need multiple copies of per-edge structures (current, 

prev data, etc.)

▪ Could employ cluster of machines to store graph in memory

- Rather than store graph on disk

▪ Would prefer to process large graphs on a single machine

- Managing clusters of machines is difficult

- Partitioning graphs is expensive (also needs a lot of memory) and 

difficult
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“Streaming” graph computations

▪ Graph operations make “random” accesses to graph data 

(edges adjacent to vertex v may distributed arbitrarily 

throughout storage)

- Single pass over graph’s edges might make billions of fine-grained 

accesses to disk

*By fast storage, in this context I mean DRAM.  However, techniques for 

streaming from disk into memory would also apply to streaming from 

memory into a processor’s cache

▪ Streaming data access pattern

- Make large, predictable data accesses to slow 

storage (achieve high bandwidth data transfer)

- Load data from slow storage into fast storage*, 

then reuse it as much as possible before 

discarding it (achieve high arithmetic intensity)

- Can we restructure graph data structure so that 

data access requires only a small number of 

efficient bulk loads/stores from slow storage?

Processor

Fast storage
(low latency, high BW, low 

capacity)

Slow storage
(high latency, low BW, high 

capacity)

Disk, SSD, etc.
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Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval 

fits in memory)

- Vertices and (only) incoming edges to these vertices are stored together in 

a shard

- Sort edges in a shard by source vertex id

Notice: to construct subgraph containing vertices in shard 1 and 

their incoming and outgoing edges, only need to load 

contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes 

Yellow = data required to process 

subgraph containing vertices in 

shard 1

GraphChi:  Large-scale graph 
computation on just a PC

[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

1

2

3

4

5

6
src dst value src dst value src dst value

1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25
5   2  0.6  

6   2  0.1 

1   3  0.4   

2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9
3   6  0.85  

4   5  0.3   

5   6  0.2  
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Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval 

fits in memory)

- Store vertices and only incoming edges to these vertices are stored 

together in a shard

- Sort edges in a shard by source vertex id
1

2

3

4

5

6

GraphChi:  Large-scale graph 
computation on just a PC

[Kryola et al. 2013]

Yellow = data required to process 

subgraph containing vertices in 

shard 2

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value

1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25
5   2  0.6  

6   2  0.1 

1   3  0.4   

2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9
3   6  0.85  

4   5  0.3   

5   6  0.2  
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Sharded graph representation

- Partition graph vertices into intervals (sized so that subgraph for interval 

fits in memory)

- Store vertices and only incoming edges to these vertices are stored 

together in a shard

- Sort edges in a shard by source vertex id
1

2

3

4

5

6

Observe: due to sort of incoming edges, iterating over all 

intervals results in contiguous sliding window over the 

shards 

GraphChi:  Large-scale graph 
computation on just a PC

[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

Yellow = data required to process 

subgraph containing vertices in 

shard 3

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value

1   2  0.3   

3   2  0.2   

4   1  0.8  

5   1  0.25
5   2  0.6  

6   2  0.1 

1   3  0.4   

2   3  0.9   

3   4  0.15   

5   3  0.2   

6   4  0.9   

2   5  0.6   

3   5  0.9
3   6  0.85  

4   5  0.3   

5   6  0.2  



CMU 15-418/618, 

Spring 2020

Putting it all together: looping over all 
graph edges

For each partition i of vertices:

- Load shard i (contains all incoming edges)

- For each other shard s

- Load section of s containing data for edges leaving i
and entering s

- Construct subgraph in memory

- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data 

for next iteration of loop
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PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding 

window approach
PageRank in GraphChi:

Take per-vertex rank and distribute to all 

outbound edges (memory inefficient: 

replicates per-vertex rank to all edges)

Alternative model: assume vertex data can be kept in memory and redefine 

neighborRank() function
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Performance on a Mac mini (8 GB RAM)

Throughput (edges/sec) remains stable as graph size is increased

- Desirable property: throughput largely invariant of dataset size
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Graph compression

▪ Recall: graph operations are often BW-bound

▪ Implication: using CPU instructions to reduce BW requirements 

can benefit overall performance (the processor is waiting on 

memory anyway!)

▪ Idea: store graph compressed in memory, decompress on-the-fly 

when operation wants to read data
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Compressing an edge list

1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000
Outgoing 

Edges

Vertex Id

1. Sort edges for each vertex

2. Compute differences

3. Group into sections requiring same number of bytes

4. Encode deltas

32

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

0 1  4 20  971    9   14    1    5  98070 100000  75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

-27 1  4 20  971    9   14    1    5  98070 100000  75000
5  6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2 bytes 1 byte 4 bytes1 byte

1-byte group header

2 bits: encoding width (1, 2, 4 bytes)

6 bits: number of edges in group

Compressed encoding: 26 bytes

[ONE_BYTE, 4], -27, 1, 4, 20

[TWO_BYTE, 1], 971

[ONE_BYTE, 4], 9, 14, 1, 5

[FOUR_BYTE, 3], 98070, 100000, 75000

(5 bytes)

(3 bytes)

(5 bytes)

(13 bytes)

Uncompressed  encoding: 12 x 4 bytes = 48 bytes 

relative to 

vertex index
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Performance impact of graph compression
R

e
la

ti
v
e
 r

u
n

ti
m

e

Running time on 40 cores 
(relative to no compression)

Running time on one core
(relative to no compression)

R
e
la

ti
v
e
 r

u
n

ti
m

e

▪ Benefit of graph compression increases with higher core count, since 

computation is increasingly bandwidth bound

▪ Performance improves even if graphs already fit in memory

- Added benefit is that compression enables larger graphs to fit in 

memory 

*Different data points on graphs are different 

compression schemes (byte-RLE is the scheme on 

the previous slide)

[Shun et al. DCC 2015]
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Summary

▪ Today there is significant interest in high performance 

computation on large graphs

▪ Graph processing frameworks abstract details of efficient 

graph processing from application developer

- handle parallelism and synchronization for the application 

developer

- handle graph distribution (across a cluster)

- may also handle graph compression and efficient iteration 

order (e.g., to efficiently stream off slow storage)

▪ Great example of domain-specific programming frameworks

- for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+


