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Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

Techniques discussed:

Exploiting parallelism in applications

Exploiting locality in applications

Leveraging hardware specialization (earlier lecture)
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Claim: most software uses modern 
hardware resources inefficiently

▪ Consider a piece of sequential C code

- Call the performance of this code our “baseline 

performance”

▪ Well-written sequential C code: ~ 5-10x faster

▪ Assembly language program: maybe another small 

constant factor faster

▪ Java, Python, PHP, etc. ?? 

Credit: Pat Hanrahan
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Code performance: relative to C (single core) 

Data from: The Computer Language Benchmarks Game: 

http://shootout.alioth.debian.org

Java Scala C# 

(Mono)

Haskell Go Javascript
(V8)

Lua PHP Python 3 Ruby

(JRuby)

= NBody

= Mandlebrot

= Tree Alloc/Delloc

= Power method (compute eigenvalue)
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GCC -O3 (no manual vector optimizations)

40/57/53 47     44/114x51

http://shootout.alioth.debian.org
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Even good C code is inefficient

Recall Assignment 1’s Mandelbrot program

Consider execution on a high-end laptop: quad-core, 

Intel Core i7, AVX instructions...

Single core, with AVX vector instructions: 5.8x speedup 

over C implementation

Multi-core + hyper-threading + AVX instructions: 21.7x 

speedup

Conclusion: basic C implementation compiled with -O3 

leaves a lot of performance on the table
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Making efficient use of modern 

machines is challenging

(proof by assignments 2, 3, and 4)

In our assignments, you only programmed 

homogeneous parallel computers.

…And parallelism even in that context was not easy.

Assignment 2: GPU cores only

Assignments 3 & 4: shared memory / message passing
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Recall: need for efficiency leading to 
heterogeneous parallel platforms

Integrated

CPU + GPU

GPU:
throughput cores + fixed-

function

CPU+data-parallel accelerator

Qualcomm Snapdragon SoC

Mobile system-on-a-chip:

CPU+GPU+media processing
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Hardware trend: specialization of execution

▪ Multiple forms of parallelism

- SIMD/vector processing

- Multi-threading

- Multi-core

- Multiple node

- Multiple server

▪ Heterogeneous execution capability 

- Programmable, latency-centric (e.g., “CPU-like” cores)

- Programmable, throughput-optimized (e.g., “GPU-like” cores)

- Fixed-function, application-specific (e.g., image/video/audio 

processing)

Fine-granularity parallelism: 

perform same logic on 

different data

Varying scales of coarse-

granularity parallelism

Motivation for parallelism and specialization: maximize compute 

capability given constraints on chip area, chip energy consumption.

Result: amazingly high compute capability in a wide range of devices!

Mitigate inefficiencies (stalls) 

caused by unpredictable data 

access
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Hardware diversity is a huge challenge

▪ Machines with very different performance characteristics

▪ Even worse: different technologies and performance 

characteristics within the same machine at different scales

- Within a core: SIMD, multi-threading: fine-

granularity sync and communication

- Across cores: coherent shared memory via fast on-

chip network

- Hybrid CPU+GPU multi-core: incoherent 

(potentially) shared memory

- Across racks: distributed memory, multi-stage 

network
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Variety of programming models to abstract HW

▪ Machines with very different performance 

characteristics

▪ Worse: different technologies and performance 

characteristics within the same machine at different 

scales
- Within a core: SIMD, multi-threading: fine grained sync and comm

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL, Metal, 

Renderscript)

- Across cores: coherent shared memory via fast on-chip network

- Abstractions: OpenMP pragma, Cilk, TBB

- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory

- Abstractions: OpenCL

- Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

Credit: Pat Hanrahan
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This is a huge challenge

▪ Machines with very different performance 

characteristics

▪ Worse: different performance characteristics 

within the same machine at different scales

▪ To be efficient, software must be optimized for 

HW characteristics

- Difficult even in the case of one level of one 

machine

- Combinatorial complexity of optimizations

when considering a complex machine, or 

different machines

- Loss of software portability 

Credit: Pat Hanrahan
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Open computer science question:

How do we enable programmers to 

productively write software that 

efficiently uses current and future 

heterogeneous, parallel machines?
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The [magical] ideal parallel programming 

language

Completeness

(applicable to most problems we 

want to write a program for)

Productivity

(ease of development)

??

High Performance

(software is scalable and efficient) 

Credit: Pat Hanrahan
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Successful programming languages

Completeness

(applicable to most problems we 

want to write a program for)

Productivity

(ease of development)

High Performance

(software is scalable and efficient) 

Credit: Pat Hanrahan

(Success = widely used)

??
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Growing interest in domain-specific programming systems
To realize high performance and productivity: willing to sacrifice completeness

High Performance

(software is scalable and efficient) 

Completeness

(applicable to most problems we 

want to write a program for)

Productivity

(ease of development)

Domain-specific 

languages (DSL) and 

programming 

frameworks

Credit: Pat Hanrahan

??
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Domain-specific programming systems

▪ Main idea: raise level of abstraction for expressing 

programs

▪ Introduce high-level programming primitives specific 

to an application domain

- Productive: intuitive to use, portable across machines, 

primitives correspond to behaviors frequently used to solve 

problems in targeted domain

- Performant: system uses domain knowledge to provide 

efficient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, 

parallelization strategies to employ for this domain

- Optimization goes beyond efficient mapping of software 

to hardware! The hardware platform itself can be 

optimized to the abstractions as well

▪ Cost: loss of generality/completeness
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Two domain-specific programming examples

1. Liszt: for scientific computing on meshes

2. Halide: for image processing

What are other domain specific languages?

(SQL is another good example)
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Example 1:

Lizst: a language for solving PDE’s on meshes

http://liszt.stanford.edu/

[DeVito et al. Supercomputing 11, 

SciDac ’11]

Slide credit for this section of lecture:

Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu


What a Liszt program does

val Position = FieldWithConst[Vertex,Float3](0.f, 0.f, 0.f)
val Temperature = FieldWithConst[Vertex,Float](0.f)
val Flux = FieldWithConst[Vertex,Float](0.f)
val JacobiStep = FieldWithConst[Vertex,Float](0.f)

Color key:
Fields
Mesh entity

A Liszt program is run on a mesh

A Liszt program defines, and compute the value of, fields defined on 

the mesh

Notes:

Fields are a higher-kinded type

(special function that maps a type to a new type)

Position is a field defined at each mesh vertex.

The field’s value is represented by a 3-vector. 



Liszt program: heat conduction on mesh

var i = 0;
while ( i < 1000 ) {
Flux(vertices(mesh)) = 0.f;
JacobiStep(vertices(mesh)) = 0.f;
for (e <- edges(mesh)) {
val v1 = head(e)
val v2 = tail(e)
val dP = Position(v1) - Position(v2)
val dT = Temperature(v1) - Temperature(v2)
val step = 1.0f/(length(dP))
Flux(v1) += dT*step
Flux(v2) -= dT*step
JacobiStep(v1) += step
JacobiStep(v2) += step

} 
i += 1

}

Program computes the value of fields defined on meshes

Color key:
Fields
Mesh
Topology functions
Iteration over set

Set flux for all vertices to 0.f;

Independently, for each

edge in the mesh

Access value of field

at mesh vertex v2

Given edge, loop body 

accesses/modifies field values at 

adjacent mesh vertices



Liszt’s topological operators
Used to access mesh elements relative to some input vertex, edge, face, etc.

Topological operators are the only way to access mesh data in a Liszt 

program

Notice how many operators return sets (e.g., “all edges of this face”)
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Liszt programming

▪ A Liszt program describes operations on fields of 

an abstract mesh representation

▪ Application specifies type of mesh (regular, 

irregular) and its topology

▪ Mesh representation is chosen by Liszt (not by the 

programmer)

- Based on mesh type, program behavior, and 

target machine 

Well, that’s interesting.  I write a program, and the compiler 

decides what data structure it should use based on what 

operations my code performs.
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Compiling to parallel computers

Recall challenges you have faced in your assignments

1. Identify parallelism

2. Identify data locality

3. Reason about required synchronization

Now consider how to automate this process in 

the Liszt compiler.
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Key: determining program dependencies

1. Identify parallelism:

Absence of dependencies implies code can be executed in 

parallel

2. Identify data locality:

Partition data based on dependencies (localize dependent 

computations for faster synchronization)

3. Reason about required synchronization:

Synchronization is needed to respect dependencies (must 

wait until the values a computation depends on are 

known)

In general programs, compilers are unable to infer 

dependencies at global scale: a[f(i)] += b[i] (must 

execute f(i) to know if dependency exists across loop 

iterations i)



Statically analyze code to find stencil of each top-level for loop

- Extract nested mesh element reads

- Extract field operations

for (e <- edges(mesh)) {
val v1 = head(e)
val v2 = tail(e)
val dP = Position(v1) - Position(v2)
val dT = Temperature(v1) - Temperature(v2)
val step = 1.0f/(length(dP))
Flux(v1) += dT*step
Flux(v2) -= dT*step
JacobiStep(v1) += step
JacobiStep(v2) += step

}
… 

Liszt is constrained to allow dependency analysis 

Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop

= dependencies for the iteration

Edge 6’s read stencil is D and F



Restrict language for dependency 
analysis
Language restrictions:

- Mesh elements are only accessed through built-in topological 
functions:

cells(mesh), …

- Single static assignment:

val v1 = head(e)

- Data in fields can only be accessed using mesh elements:

Pressure(v)

- No recursive functions

Restrictions allow compiler to automatically infer stencil 
for a loop iteration.



Portable parallelism: use dependencies 
to implement different parallel 
execution strategies
I’ll discuss two strategies…

Strategy 1: mesh partitioning

Strategy 2: mesh coloring

Owned Cell

Ghost Cell
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Imagine compiling a Lizst program to the

(entire) Latedays cluster

(multiple nodes, distributed address 

space)

How might Liszt distribute a graph across 

these nodes?



Distributed memory implementation of Liszt
Mesh + Stencil → Graph → Partition

for(f <- faces(mesh)) {
rhoOutside(f) =  

calc_flux(f, rho(outside(f))) +
calc_flux(f, rho(inside(f)))

}

Initial Partition 
(by ParMETIS)

Consider distributed memory implementation

Store region of mesh on each node in a cluster

(Note: ParMETIS is a tool for partitioning 

meshes)



Ghost 
Cells

Each processor also needs data for neighboring 

cells to perform computation (“ghost cells”)

Listz allocates ghost region storage and emits 

required communication to implement 

topological operators.
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Imagine compiling a Lizst program to a GPU

(single address space, many tiny threads)



GPU implementation: parallel reductions

for (e <- edges(mesh)) {
…
Flux(v1) += dT*step
Flux(v2) -= dT*step
…

}

Different edges share a vertex: 

requires atomic update of per-

vertex field data

In previous example, one region of mesh assigned per processor (or node in 

MPI cluster)

On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



GPU implementation: conflict graph

Identify mesh edges with colliding writes

(lines in graph indicate presence of 

collision)

Can simply run program once to get this 

information.

(results valid for subsequent executions 

provided mesh does not change)

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



GPU implementation: conflict graph

“Color” nodes in graph such that 

no connected nodes have the 

same color

Can execute on GPU in parallel, 

without atomic operations, by 

running all nodes with the same 

color in a single CUDA launch. 

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not 

shown here).
But uses a different algorithm when compiled to GPU! (graph coloring)
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Liszt summary

▪ Productivity:
- Abstract representation of mesh: vertices, edges, faces, fields (concepts 

that a scientist thinks about already!)

- Intuitive topological operators

▪ Portability
- Same code runs on large cluster of CPUs (MPI) and GPUs (and 

combinations thereof!)

▪ High-performance
- Language is constrained to allow compiler to track dependencies

- Used for locality-aware partitioning in distributed memory 

implementation

- Used for graph coloring in GPU implementation

- Compiler knows how to chooses different parallelization strategies for 

different platforms

- Underlying mesh representation can be customized by system based on 

usage and platform (e.g, don’t store edge pointers if code doesn’t need 

it, choose struct of arrays vs. array of structs for per-vertex fields) 
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Example 2:
Halide: a domain-specific language for 

image processing

Jonathan Ragan-Kelley, Andrew 

Adams et al.

[SIGGRAPH 2012, PLDI 13]
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Halide used in practice

▪ Halide used to implement Android HDR+ app

▪ Halide code used to process all images uploaded to Google Photos
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A quick tutorial on high-performance 

image processing
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What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,

1.0/9, 1.0/9, 1.0/9,

1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

for (int ii=0; ii<3; ii++)

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[j*WIDTH + i] = tmp;

}

}
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3x3 box blur

(Zoom view)
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3x3 image blur

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,

1.0/9, 1.0/9, 1.0/9,

1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

for (int ii=0; ii<3; ii++)

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[j*WIDTH + i] = tmp;

}

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN filter:  N2 x WIDTH x HEIGHT
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Two-pass 3x3 blur

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<(HEIGHT+2); j++)

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int ii=0; ii<3; ii++)

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];

tmp_buf[j*WIDTH + i] = tmp;

}

for (int j=0; j<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];

output[j*WIDTH + i] = tmp;

}

}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal 

blur

1D vertical 

blur

WIDTH x HEIGHT extra storage

3X lower arithmetic intensity than 3D blur

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H
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Two-pass image blur: locality

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<(HEIGHT+2); j++)

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int ii=0; ii<3; ii++)

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];

tmp_buf[j*WIDTH + i] = tmp;

}

for (int j=0; j<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];

output[j*WIDTH + i] = tmp;

}

}

Data from input reused three times.  

(immediately reused in next two i-loop iterations 

after first load, never loaded again.)

- Perfect cache behavior: never load required data 

more than once

- Perfect use of cache lines (don’t load 

unnecessary data into cache)

Data from tmp_buf reused three times 

(but three rows of image data are 

accessed in between)

- Never load required data more than 

once… if cache has capacity for three 

rows of image

- Perfect use of cache lines (don’t load 

unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead 

(this memory traffic is an artifact of the two-pass 

implementation: it is not intrinsic to computation 

being performed)

Intrinsic bandwidth requirements of 

algorithm:

Application must read each element of 

input image and must write each element 

of output image.
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Two-pass image blur, “chunked” (version 1)

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * 3];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j++) {

for (int j2=0; j2<3; j2++)

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int ii=0; ii<3; ii++)

tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];

tmp_buf[j2*WIDTH + i] = tmp;

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

tmp += tmp_buf[jj*WIDTH + i] * weights[jj];

output[j*WIDTH + i] = tmp;

}

}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of 

tmp_buf

(only what’s needed for 

one row of output)

Total work per row of output:

- step 1: 3 x 3 x WIDTH work

- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x 

HEIGHT    ????

Loads from tmp_buffer are cached 

(assuming tmp_buffer fits in cache)

Combine them together to get one row of 

output

Only 3 rows of 

intermediate buffer 

need to be allocated
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Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * (CHUNK_SIZE+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

for (int j2=0; j2<CHUNK_SIZE+2; j2++)

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int ii=0; ii<3; ii++)

tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];

tmp_buf[j2*WIDTH + i] = tmp;

for (int j2=0; j2<CHUNK_SIZE; j2++)

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f;

for (int jj=0; jj<3; jj++)

tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];

output[(j+j2)*WIDTH + i] = tmp;

}

}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)

Produce  enough rows of 

tmp_buf to produce a 

CHUNK_SIZE number of 

rows of output

Total work per chunck of output:

(assume CHUNK_SIZE = 16)

- Step 1: 18 x 3 x WIDTH work

- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT 

= 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized to fit in cache

(capture all 

producer-consumer 

locality)

Trends to ideal 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 



CMU 15-418/618, 

Spring 2020

Conflicting goals (once again...)

▪ Want to be work efficient (perform fewer operations)

▪ Want to take advantage of locality when present

- Otherwise work-efficient code will be bandwidth bound

- Ideally: bandwidth cost of implementation is very close to 

intrinsic cost of algorithm: data is loaded from memory 

once and reused as much as needed prior to being 

discarded from processor’s cache

▪ Want to execute in parallel (multi-core, SIMD within core)
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Optimized C++ code: 3x3 image blur

Good: 10x faster: on a quad-core CPU than original two-pass code 

Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector 

intrinsics

Modified iteration 

order: 256x32 block-

major iteration (to 

maximize cache hit 

rate)

Multi-core execution 

(partition image 

vertically)

two passes fused into 
one: tmp data read 

from cache
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// Halide 3x3 blur program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y;

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

return out;

}

Halide blur (algorithm description)

NOTE: execution order and storage are unspecified by the 

abstraction.  The implementation can evaluate, reevaluate, cache 

individual points as desired!

Images are pure functions

Functions map integer coordinates (in up 

to a 4D domain) to values (e.g., colors of 

corresponding pixels)
(in,  blurx and out are functions)

Algorithms are a series of functions (think: 

pipeline stages)

Value of blurx at 

coordinate (x,y) is given 

by expression accessing 
three values of in// top-level calling code

Image<uint8_t> input = load_image(“myimage.png”);             // define input image

Func my_program = halide_blur(input);                         // define pipeline

Image<uint8_t> output = my_program.realize(input.width(), input.height(),

input.channels()); // execute pipeline

output.save(“myblurredimage.png”);
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Think of a Halide program as a pipeline

in

blurx

out

// Halide 3x3 blur program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y;

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

return out;

}
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Halide schedule describes how to 
execute a pipeline
// Halide program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y, xi, yi

// the “algorithm description”  (what to do)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.chunk(x).vectorize(x, 8);

return out;

}

When evaluating out, use 2D tiling 

order (loops named by x, y, xi, yi).

Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce only chunks of  blurx at a 

time. Vectorize the x (innermost) 

loop
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// Halide program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y, xi, yi

// the “algorithm description”  (what to do)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.chunk(x).vectorize(x, 8);

return out;

}

void halide_blur(uint8_t* in, uint8_t* out) {

#pragma omp parallel for

for (int y=0; y<HEIGHT; y+=32) {     // tile loop

for (int x=0; y<WIDTH; x+=256) {  // tile loop

// buffer 

uint8_t* blurx[34 * 256];

// produce intermediate buffer

for (int yi=0; yi<34; yi++) {

// SIMD vectorize this loop (not shown)

for (int xi=0; xi<256; xi++) {

blurx[yi*256+xi] =

(in[(y+yi-1)*WIDTH+x+xi-1] +

in[(y+yi-1)*WIDTH+x+xi] +

in[(y+yi-1)*WIDTH+x+xi+1]) / 3.0;

}

}

// consume intermediate buffer

for (int yi=0; yi<32; yi++) {

// SIMD vectorize this loop (not shown)

for (int xi=0; xi<256; xi++) {

out[(y+yi)*256+(x+xi)] =

(blurx[yi*256+xi] + 

blurx[(yi+1)*256+xi] +

blurx[(yi+2)*256+xi]) / 3.0;

}

}

} // loop over tiles

}  // loop over tiles

}

Halide schedule describes how to 
execute a pipeline

Given a schedule, Halide carries out 

mechanical process of 

implementing the specified 

schedule
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Halide: two domain-specific co-languages 

▪ Functional language for describing image processing 

operations

▪ Domain-specific language for describing schedules

▪ Design principle: separate “algorithm specification” 

from its schedule
- Programmer’s responsibility: provide a high-performance schedule

- Compiler’s responsibility: carry out mechanical process of generating threads, 

SIMD instructions, managing buffers, etc.

- Result: enable programmer to rapidly explore space of schedules

- (e.g., “tile these loops”, “vectorize this loop”, “parallelize this loop across 

cores”)

▪ Domain scope:
- All computation on regular N-D coordinate spaces

- Only feed-forward pipelines (includes special support for reductions and fixed 

recursion depth)

- All dependencies inferable by compiler
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Producer/consumer scheduling primitives

Four basic scheduling primitives shown below

in tmp blurred in tmp blurred

“Root” “Inline”

in tmp blurred

“Sliding Window” “Chunked”

in tmp blurred
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Producer/consumer scheduling primitives

// Halide program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y, xi, yi

// the “algorithm description”  (what to do)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)

blurx.compute_at(ROOT);

return out;

}

void halide_blur(uint8_t* in, uint8_t* out) {

uint8_t blurx[WIDTH * HEIGHT];

for (int y=0; y<HEIGHT; y++) {

for (int x=0; y<WIDTH; x++) {

blurx[] = ...

for (int y=0; y<HEIGHT; y++) {

for (int x=0; y<WIDTH; x++) {

out[] = ...

}

// Halide program definition

Func halide_blur(Func in) {

Func blurx, out;

Var x, y, xi, yi

// the “algorithm description”  (what to do)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;

out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)

blurx.inline();

return out;

}

void halide_blur(uint8_t* in, uint8_t* out) {

for (int y=0; y<HEIGHT; y++) {

for (int x=0; y<WIDTH; x++) {

out[] = (((in[(y-1)*WIDTH+x-1] +

in[(y-1)*WIDTH+x] +

in[(y-1)*WIDTH+x+1]) / 3) +

((in[y*WIDTH+x-1] +

in[y*WIDTH+x] +

in[y*WIDTH+x+1]) / 3) +

((in[(y+1)*WIDTH+x-1] +

in[(y+1)*WIDTH+x] +

in[(y+1)*WIDTH+x+1]) / 3));

}

“Root”:

compute all points of the 

producer, then run consumer 

(minimal locality)

“Inline”:

revaluate producer at every 

use site in consumer 

(maximal locality)
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Domain iteration primitives

Specify both order and how 

to parallelize

(multi-thread, SIMD vector)

2D blocked 

iteration order
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Example Halide results

▪ Camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-

tuned ARM NEON assembly

- Halide: 2.75x less code, 5% 

faster

▪ Bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++

- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster

- GPU implementation: 2x faster than hand-written CUDA
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Stepping back: what is Halide?

▪ Halide is a DSL for helping good developers optimize 

image processing code more rapidly

- Halide doesn’t decide how to optimize a program for a 

novice programmer

- Halide provides primitives for a programmer (that has 

strong knowledge of code optimization, such as a 418 

student) to rapidly express what optimizations the system 

should apply

- Halide carries out the nitty-gritty of mapping that strategy 

to a machine
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Automatically generating Halide schedules

Extend Halide compiler to automatically generate schedule for programmer

- Compiler input: Halide program + size of expected input/output images

[Mullapudi, CMU 2016]

= Naive schedule

= Expert manual schedule

(best human-created schedule)

= Automatically generated schedule (no autotuning, ~ seconds)

= Automatically generated, with auto-tuning (~ 10 minutes)

= Automatically generated, auto-tuning over 3 days
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“Racing” top Halide programmers

Halide auto-scheduler produced 

schedules that were better than 

those of expert Google Halide 

programmers in two of three 

cases (it got beat in one!)
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Darkroom/Rigel

▪ Directly synthesize FGPA implementation of 

image processing pipeline from a high-level 

description (a constrained “Halide-like” language)

[Hegarty 2014, Hegarty 2016]

▪ Goal: ultra high efficiency image processing
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Many other recent domain-specific 

programming systems

DSL for graph-based machine learning 

computations

Less domain specific than examples 

given today, but still designed 

specifically for: 

data-parallel computations on big 

data for distributed systems (“Map-

Reduce”)

Model-view-controller 

paradigm for web-

applications

Also see Green-Marl, Ligra

(DSLs for describing operations on 

graphs)

Simit: a language for physical simulation [MIT]

Ongoing efforts in many domains...
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Domain-specific programming system 

development

▪ Can develop DSL as a stand-alone language

- Graphics shading languages

- MATLAB, SQL

▪ “Embed” DSL in an existing generic language

- e.g., C++ library (GraphLab, OpenGL host-side API, Map-

Reduce)

- Lizst syntax above was all valid Scala code

▪ Active research idea:

- Design generic languages that have facilities that assist 

rapid embedding of new domain-specific languages

- “What is a good language for rapidly making new DSLs?”
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Summary

▪ Modern machines: parallel and heterogeneous

- Only way to increase compute capability in energy-

constrained world

▪ Most software uses small fraction of peak capability of 

machine

- Very challenging to tune programs to these machines

- Tuning efforts are not portable across machines

▪ Domain-specific programming environments trade-off 

generality to achieve productivity, performance, and 

portability

- Case studies today: Liszt, Halide

- Common trait: languages provide abstractions that make 

dependencies known

- Understanding dependencies is necessary but not sufficient: 

need domain restrictions and domain knowledge for system

to synthesize efficient implementations


