
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 21:

Heterogeneous Parallelism
and Hardware Specialization

CMU 15-418/618,

Spring 2020

Let’s begin this lecture by reminding you…

That we observed in assignment 1 that a well-

optimized parallel implementation of a

compute-bound application was about 44 times

faster than single-threaded C code compiled

with gcc -O3, running on the same processor

CMU 15-418/618,

Spring 2020

You need to buy a
new computer…

CMU 15-418/618,

Spring 2020

You need to buy a computer system

Core Core

Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.

Which do you pick?

CMU 15-418/618,

Spring 2020

Amdahl’s law revisited

f = fraction of program that is parallelizable

n = parallel processors

Assumptions:

Parallelizable work distributes perfectly onto n

processors of equal capability

CMU 15-418/618,

Spring 2020

Rewrite Amdahl’s law in terms of resource limits

f = fraction of program that is parallelizable

n = total processing resources (e.g., transistors on a chip)

r = resources dedicated to each processing core,

➔ each of the n/r cores has sequential performance perf(r)

Two examples where

n=16

rA = 4

rB = 1

Relative to processor with 1 unit of

resources, n=1. Assume perf(1) = 1

[Hill and Marty 08] Amdahl’s Law in the Multicore Era

More general

form of

Amdahl’s Law in

terms of f, n, r

CMU 15-418/618,

Spring 2020

Speedup (relative to n=1)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)

Each line corresponds to a different workload

Each graph plots performance as resource allocation changes, but total chip

resources resources kept the same (constant n per graph)

perf(r) modeled as

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Figure credit: Hill and Marty 08]

11

CMU 15-418/618,

Spring 2020

Asymmetric set of processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example: n=16

One core: r = 4

Other 12 cores: r = 1

(of heterogeneous processor

with n resources, relative to

uniprocessor with one unit

worth of resources, n=1)
one perf(r) processor + (n-r)

perf(1)=1 processors

[Hill and Marty 08]

CMU 15-418/618,

Spring 2020

Speedup (relative to n=1)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r = 1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

(chip from prev. slide)

[Source: Hill and Marty 08]

CMU 15-418/618,

Spring 2020

Heterogeneous processing

Observation: most “real world” applications have complex workload

characteristics *

They have components that

can be widely parallelized.

And components that are

difficult to parallelize.

They have components that

are amenable to wide SIMD

execution.

And components that are not.

(divergent control flow)

They have components

with predictable data

access

And components with

unpredictable access (but those

accesses might cache well).

* You will likely make a similar observation during your projects

Idea: the most efficient processor is a heterogeneous
mixture of resources (“use the most efficient tool for
the job”)

CMU 15-418/618,

Spring 2020

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media

Shared LLC

System
Agent

(display,
memory,

I/O
controllers)

CMU 15-418/618,

Spring 2020

Example: Intel “Skylake" (2015)

▪ CPU cores and graphics cores

share same memory system

▪ Also share LLC (L3 cache)

- Enables, low-latency,

high-bandwidth

communication between

CPU and integrated GPU

▪ Graphics cores cache

coherent with CPU

(6th Generation Core i7 architecture)

CP
U

cor
e

CP
U

cor
e

CP
U

cor
e

CP
U

cor
e

Integrated
Gen9 GPU
graphics +

media

Shared LLC

System
Agent

(display,
memory,

I/O)

CMU 15-418/618,

Spring 2020

More heterogeneity: add discrete GPU

High-end

discrete GPU

(AMD or

NVIDIA) PCIe x16

bus

DDR5

Memory

Keep discrete (power hungry) GPU turned off unless needed for graphics-

intensive applications

Use integrated, low power graphics for basic graphics/window manager/UI

Memory

controller
L3 cache (8

MB)

Ring

interconnect

DDR3

Memory

CPU

Core 0

CPU

Core 3
…

Gen9

Graphics

CMU 15-418/618,

Spring 2020

15in Macbook Pro 2011 (two GPUs)

From ifixit.com teardown

AMD Radeon HD GPU

Quad-core Intel Core i7 CPU

(contains integrated GPU)

CMU 15-418/618,

Spring 2020

Mobile heterogeneous processors

Apple A9 (2015)

> 2 B transistors

Dual Core 64 bit CPU

GPU PowerVR GT6700 (6 “core”) GPU

NVIDIA Tegra X1

Four ARM Cortex A57 CPU cores for applications

Four low performance (low power) ARM A53 CPU cores

One Maxwell SMM (256 “CUDA” cores)

A9 image credit Chipworks, obtained from

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

CMU 15-418/618,

Spring 2020

Smartphone Processor
▪ Apple A12, 2018

- 6.9 billion transistors

▪ Processors

- 2 high-power CPUs

- 7-wide issue

- 4 low-power CPUs

- 3-wide issue

- 4-core GPU

- Neural engine

- for deep neural network

evaluation

▪ Specialized hardware

- Video encode/decode

- GPS

- Encryption/Decryption

- ...

▪ Neural Engine

- Fixed sequence of arithmetic

operations

- 8-bit FP

- 8-wide parallelism

- 5 x 1012 ops/second

CMU 15-418/618,

Spring 2020

Supercomputers use heterogeneous processing

Los Alamos National Laboratory: Roadrunner

Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS

Unique at the time due to use of two types of processing elements

(IBM’s Cell processor served as “accelerator” to achieve desired compute density)

- 6,480 AMD Opteron dual-core CPUs (12,960 cores)

- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640

cores)

- 2.4 MWatt (about 2,400 average US homes)

CMU 15-418/618,

Spring 2020

GPU-accelerated supercomputing

▪ Oak Ridge Summit

- World’s most powerful computer

▪ Each Node

- 2 IBM 22-core POWER9 processors

- 6 nVidia Graphics Processing Units

- 608 GB DRAM

- 1600 GB Flash

▪ Overall

- 13MW water cooled

- $325 M for two machines

* Source: NPR

Local Network

Node 1 Node 2 Node 4,608

• • •

CPU

G
P

U

G
P

U

G
P

U

CPU

G
P

U

G
P

U

G
P

U

CPU

G
P

U

G
P

U

G
P

U

CPU

G
P

U

G
P

U

G
P

U

CPU

G
P

U

G
P

U

G
P

U

CPU

G
P

U

G
P

U

G
P

U

CMU 15-418/618,

Spring 2020

Intel Xeon Phi (Knights Landing)

▪ 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)

▪ 16-wide vector instructions (AVX-512), four threads per core

▪ Targeted as an accelerator for supercomputing applications

CMU 15-418/618,

Spring 2020

Heterogeneous architectures for supercomputing
Source: Top500.org Fall 2018 rankings

Xeon Phi

NVIDIA GPU

NVIDIA GPU

NVIDIA GPU

NVIDIA GPU

Xeon Phi

CMU 15-418/618,

Spring 2020

Green500: most energy efficient supercomputers

Source: Green500 Fall 2018 rankings

Efficiency metric: MFLOPS per Watt

CMU 15-418/618,

Spring 2020

Energy-constrained computing

▪ Supercomputers are energy constrained

- Due to shear scale

- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained

- Reduce cost of cooling

- Reduce physical space requirements

▪ Mobile devices are energy constrained

- Limited battery life

- Heat dissipation

CMU 15-418/618,

Spring 2020

Limits on chip power consumption

▪ General mobile processing rule: the longer a task runs the less power it

can use

- Processor’s power consumption is limited by heat generated

(efficiency is required for more than just maximizing battery life)

P
o

w
e
r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp

(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold

(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce

power consumption to sustain long battery life for given

task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 6 battery: 7 watt-hours

9.7in iPad Pro battery: 28 watt-hours

15in Macbook Pro: 99 watt-hours

CMU 15-418/618,

Spring 2020

Efficiency benefits of compute specialization

▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute

bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

CMU 15-418/618,

Spring 2020

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]

lg2(N) (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N) (data set size)

ASIC delivers same

performance as one CPU

core with ~ 1/1000th the

chip area.

GPU cores: ~ 5-7 times

more area efficient than

CPU cores.

ASIC delivers same

performance as one CPU

core with only ~ 1/100th

the power.

CMU 15-418/618,

Spring 2020

Benefits of increasing efficiency

▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once

▪ Run at a fixed level of performance for longer

- e.g., video playback

- Achieve “always-on” functionality that was previously impossible

Moto X:

Always listening for “ok, google now”

Device contains ASIC for detecting this

audio pattern.

iPhone:

Siri activated by button press

or holding phone up to ear

Google Glass: ~40

min recording per

charge (nowhere

near “always on”)

CMU 15-418/618,

Spring 2020

Example: iPad Air (2013)

DRAM
Flash memory

Dual-core 64-bit ARM CPU

Imagination

PowerVR

GPU

Video

Encode/Decode

Image
Processor

4MB L3

Core Core

Motion co-processor

(accelerometer, gyro, compass, etc.)

Touchscreen

controllers

Image Credit: ifixit.com

Apple A7

Processor

CMU 15-418/618,

Spring 2020

Original iPhone touchscreen controller

From US Patent Application 2006/0097991

Separate digital signal processor to interpret raw signal from capacitive touch

sensor (do not burden main CPU)

CMU 15-418/618,

Spring 2020

Modern computing: efficiency often

matters more than in the past, not less

Steve Jobs’ “Thoughts on Flash”, 2010

http://www.apple.com/hotnews/thoughts-on-flash/

(Justification for why Apple won’t support Adobe Flash)

http://www.apple.com/hotnews/thoughts-on-flash/

CMU 15-418/618,

Spring 2020

Example: image processing on a Nikon D7000

Process 16 MPixel RAW data from sensor to obtain JPG image:

On camera: ~ 1/6 sec per image

Adobe Lightroom a quad-core Macbook Pro laptop: 1-2 sec per image

This is a older camera: much, much faster image processing performance on a

modern smart phone (burst mode)

CMU 15-418/618,

Spring 2020

Qualcomm Hexagon Digital Signal Processor

▪ Originally used for audio/LTE support on Qualcomm SoCs

▪ Multi-threaded, VLIW DSP

▪ Third major programmable unit on Qualcomm SoCs

- Multi-core CPU

- Multi-core GPU (Adreno)

- Hexagon DSP

CMU 15-418/618,

Spring 2020

Up next? application programmable image
signal processors

▪ All modern systems have fixed-function support for common image processing tasks:

image/video encode/decode, sensor to image conversion, etc.

▪ Computational photography: use of advanced algorithms to make better photographs

and videos

- Large space of (rapidly evolving techniques)

High Dynamic Range (HDR) and low light enhancement

Automatic panoramas

Remove camera shake

CMU 15-418/618,

Spring 2020

Anton supercomputer
▪ Supercomputer highly specialized for molecular dynamics

- Simulates time evolution of proteins

▪ ASIC for computing particle-particle interactions (512 of them in

machine)

▪ Throughput-oriented subsystem for efficient fast-Fourier transforms

▪ Custom, low-latency

communication network designed

for communication patterns of N-

body simulations

[Developed by DE Shaw Research]

CMU 15-418/618,

Spring 2020

GPUs are heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Cache

SIMD

Exec

Texture Texture

Texture Texture

Clip/Cull

Rasterize

Clip/Cull

Rasterize

Clip/Cull

Rasterize

Clip/Cull

Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /

Blend

Zbuffer /

Blend

Zbuffer /

Blend

Zbuffer /

Blend

Zbuffer /

Blend

Zbuffer /

Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in assignment 2

Graphics-specific, fixed-
function compute resources

CMU 15-418/618,

Spring 2020

Rasterization:

Determining what pixels a triangle overlaps

Example graphics tasks performed in fixed-function HW

Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:

computing fine-scale

geometry from coarse

geometry

CMU 15-418/618,

Spring 2020

FPGAs (Field Programmable Gate Arrays)

▪ Middle ground between an ASIC and a processor

▪ FPGA chip provides array of logic blocks, connected by

interconnect

▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)

Flip flop (a register)

Image credit: Bai et al. 2014

CMU 15-418/618,

Spring 2020

Project Catapult

▪ Microsoft Research investigation of use of

FPGAs to accelerate datacenter workloads

▪ Demonstrated offload of part of Bing

Search’s document ranking logic

▪ Now widely used to accelerate DNNs across

Microsoft services

1U server (Dual socket CPU + FPGA connected via PCIe bus)

[Putnam et al. ISCA 2014]

FPGA board

CMU 15-418/618,

Spring 2020

Summary: choosing the right tool for the job

Energy-optimized CPU

Throughput-oriented

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X

more efficient

Video encode/decode,

Audio playback,

Camera RAW processing,

neural nets (future?)

Programmable DSP

FPGA/Future

reconfigurable logic

~100X???

(jury still out)
Easiest to program

Difficult to program

(making it easier is

active area of

research)

Not programmable +

costs 10-100’s

millions of dollars to

design / verify /

create

CMU 15-418/618,

Spring 2020

Challenges of heterogeneous designs

CMU 15-418/618,

Spring 2020

Challenges of heterogeneity

▪ So far in this course:

- Homogeneous system: every processor can be used for every task

- To get best speedup vs. sequential execution, “keep all processors busy all the

time” (this is hard to achieve)

▪ Heterogeneous system: use preferred processor for each task

- Challenge for system designer: what is the right mixture of resources to meet

performance, cost, and energy goals?

- Too few throughput-oriented resources (lower peak performance/efficiency

for parallel workloads -- should have used resources for more throughput

cores)

- Too few sequential processing resources (get bitten by Amdahl’s Law)

- How much chip area should be dedicated to a specific function, like video?

(these resources are taken away from general-purpose processing)

▪ Implication: increased pressure to understand workloads accurately at chip

design time

CMU 15-418/618,

Spring 2020

Pitfalls of heterogeneous designs

Say 10% of the workload is rasterization

Let’s say you under-provision the fixed-function rasterization unit on GPU:

Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of

chip area

Problem: rasterization is now the bottleneck, so the expensive programmable processors (99% of

chip) are idle waiting on rasterization. 99% of the chip runs at 80% efficiency!

➔ Tendency is to be conservative, and over-provision fixed-function components

(diminishing their advantage)

[Molnar 2010]

CMU 15-418/618,

Spring 2020

Challenges of heterogeneity

▪ Heterogeneous system: preferred processor for each task

- Challenge for hardware designer: what is the right mixture of resources?

- Too few throughput oriented resources (lower peak throughput for parallel

workloads)

- Too few sequential processing resources (limited by sequential part of

workload)

- How much chip area should be dedicated to a specific function, like video?

(these resources are taken away from general-purpose processing)

- Work balance must be anticipated at chip design time

➔ System cannot adapt to changes in usage over time, new algorithms, etc.

▪ Challenge to software developer: how to map programs onto a heterogeneous

collection of resources?

- Challenge: “Pick the right tool for the job”: design algorithms that

decompose well into components that each map well to different processing

components of the machine

- The scheduling problem is more complex on a heterogeneous system

- Available mixture of resources can dictate choice of algorithm

- Software portability & maintenance nightmare (we’ll revisit this next class)

CMU 15-418/618,

Spring 2020

Reducing energy consumption idea 1:

use specialized processing

Reducing energy consumption idea 2:

move less data

CMU 15-418/618,

Spring 2020

Data movement has high energy cost

▪ Rule of thumb in mobile system design: always seek to

reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor

performance). Now, we wish to reduce communication to reduce energy

consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *

- Floating point op: ~20 pJ *

- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts

- Entire power budget for mobile GPU: ~1 watt (remember phone is also

running CPU, display, radios, etc.)

- iPhone 6 battery: ~7 watt-hours (compare: Macbook Pro laptop: 99 watt-

hour battery)

- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that

recomputing

values, rather

than storing and

reloading them,

is a better answer

when optimizing

code for energy

efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

CMU 15-418/618,

Spring 2020

Three trends in energy-optimized computing

▪ Compute less!
- Computing costs energy: parallel algorithms that do more work than

sequential counterparts may not be desirable even if they run faster

- …But performance matters too, because processors burn energy whenever

they are turned on (“static power”)

▪ Specialize compute units:

- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-

like cores)

- Fixed-function units: audio processing, “movement sensor processing” video

decode/encode, image processing/computer vision?

- Specialized instructions: expanding set of AVX vector instructions, new

instructions for accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements

- Exploit locality (restructure algorithms to reuse on-chip data as much as

possible)

- Aggressive use of compression: perform extra computation to compress

application data before transferring to memory (likely to see fixed-function

HW to reduce overhead of general data compression/decompression)

CMU 15-418/618,

Spring 2020

Summary

▪ Heterogeneous parallel processing: use a mixture of

computing resources that each fit with mixture of needs of

target applications

- Latency-optimized sequential cores, throughput-optimized parallel cores,

domain-specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers,

supercomputers

▪ Traditional rule of thumb in “good system design” is to

design simple, general-purpose components

- This is not the case with emerging processing systems (optimized for

perf/watt)

- Today: want collection of components that meet perf requirement AND

minimize energy use

▪ Challenge of using these resources effectively is pushed up to

the programmer

- Current CS research challenge: how to write efficient, portable programs for

emerging heterogeneous architectures?

