
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 20a:

Under the Hood, Part 1:

Implementing Message Passing

CMU 15-418/618,

Spring 2020

Today’s Theme

CMU 15-418/618,

Spring 2020

Message passing model (abstraction)

Thread 1 address

space

Variable X

▪ Threads operate within their own private address spaces

▪ Threads communicate by sending/receiving messages

- send: specifies recipient, buffer to be transmitted, and optional message

identifier (“tag”)

- receive: sender, specifies buffer to store data, and optional message identifier

- Sending messages is the only way to exchange data between threads 1 and 2

x

Thread 2 address

space

Variable Y

Y

Illustration adopted from Culler, Singh, Gupta

send(X, 2, my_msg_id)

semantics: send contexts of local

variable X as message to thread 2

and tag message with the id

“my_msg_id”

recv(Y, 1, my_msg_id)

semantics: receive message with

id “my_msg_id” from thread 1 and

store contents in local variable Y

CMU 15-418/618,

Spring 2020

Message passing systems

▪ Popular software library: MPI (message passing interface)

▪ Hardware need not implement system-wide loads and stores to

execute message passing programs (need only be able to communicate

messages)
- Can connect commodity systems together to form large parallel machine

(message passing is a programming model for clusters)

IBM Blue Gene/P

Supercomputer

Cluster of workstations

(Infiniband network)

Image credit: IBM

CMU 15-418/618,

Spring 2020

Network Transaction

▪ One-way transfer of information from a source

output buffer to a destination input buffer

- causes some action at the destination

- e.g., deposit data, state change, reply

- occurrence is not directly visible at source

Interconnection Network

Source Node

Output Buffer

Destination Node

Input Buffer

Serialized Message

CMU 15-418/618, Fall

2016

Shared Address Space Abstraction

▪ Fundamentally a two-way request/response protocol
- writes have an acknowledgement

Read request

Read

response

Read request

Read

response

Memory access

Source Destination

Load r1 <— Address

Wait

Time

(1) Initiate memory access

(2) Address translation

(3) Local/remote check

(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

CMU 15-418/618, Fall

2016

Key Properties of SAS Abstraction

▪ Source and destination addresses are specified by

source of the request

- a degree of logical coupling and trust

▪ No storage logically “outside the application address

space(s)”

- may employ temporary buffers for transport

▪ Operations are fundamentally request-response

▪ Remote operation can be performed on remote

memory

- logically does not require intervention of the

remote processor

CMU 15-418/618, Fall

2016

Message Passing Implementation Options

Synchronous:

- Send completes after matching receive and source

data sent

- Receive completes after data transfer complete

from matching send

Asynchronous:

- Send completes after send buffer may be reused

CMU 15-418/618, Fall

2016

Synchronous Message Passing

▪ Data is not transferred until target address is known
▪ Limits contention and buffering at the destination

▪ Performance?

Send-ready request

Tag check

Source Destination

Send(Pdest, local VA, len)

Wait

Time

(1) Initiate send

(2) Address translation

(3) Local/remote check

(4) Send-ready request

(5) Remote check for posted

receive (assume success)

(6) Reply transaction

(7) Bulk data transfer

Source VA —> Dest VA

Receive(Psrc, local VA, len)

Receive-ready reply

Data-transfer request

CMU 15-418/618, Fall

2016

Asynchronous Message Passing:

Optimistic

▪ Good news:

▪ source does not stall waiting for the destination to
receive

▪ Bad news:
▪ storage is required within the message layer (?)

Tag Match

Allocate Buffer

Source Destination

Send(Pdest, local VA, len)

Time

(1) Initiate send

(2) Address translation

(3) Local/remote check

(4) Send data

(5) Remote check for posted

receive; on fail, allocate data

buffer

Receive(Psrc, local VA, len)

Data-transfer request

CMU 15-418/618, Fall

2016

Asynchronous Message Passing:

Conservative

▪ Where is the buffering?
▪ Contention control? Receiver-initiated protocol?
▪ What about short messages?

Source Destination

Send(Pdest, local VA, len)(1) Initiate send

(2) Address translation

(3) Local/remote check

(4) Send-ready request

(5) Remote check for

posted receive (assume

fail); record send-ready

(6) Receive-ready request

(7) Bulk data reply

Source VA —> Dest VA

Send-ready request

Tag match

Resume computing

Time

Receive-ready

request

Data-transfer reply

Receive(Psrc, local VA, len)

CMU 15-418/618,

Spring 2020

Key Features of Message Passing Abstraction

▪ Source knows send address, destination knows

receive address

- after handshake they both know both

▪ Arbitrary storage “outside the local address

spaces”

- may post many sends before any receives

▪ Fundamentally a 3-phase transaction

- includes a request / response

- can use optimistic 1-phase in limited “safe” cases

- credit scheme

CMU 15-418/618,

Spring 2020

Challenge: Avoiding Input Buffer Overflow

▪ This requires flow-control on the sources

▪ Approaches:

1. Reserve space per source (credit)

- when is it available for reuse? (utilize ack

messages?)

2. Refuse input when full

- what does this do to the interconnect?

- backpressure in a reliable network

- tree saturation? deadlock?

- what happens to traffic not bound for

congested destination?

3. Drop packets (?)

4. ???

CMU 15-418/618,

Spring 2020

Challenge: Avoiding Fetch Deadlock

▪ Must continue accepting messages, even when cannot source

msgs

- what if incoming transaction is a request?

- each may generate a response, which cannot be sent!

- what happens when internal buffering is full?

Approaches:

1. Logically independent request/reply networks

- physical networks

- virtual channels with separate input/output queues

2. Bound requests and reserve input buffer space

- K(P-1) requests + K responses per node

- service discipline to avoid fetch deadlock?

3. NACK on input buffer full

- NACK delivery?

CMU 15-418/618,

Spring 2020

Implementation Challenges: Big Picture

▪ One-way transfer of information

▪ No global knowledge, nor global control

- barriers, scans, reduce, global-OR give fuzzy

global state

▪ Very large number of concurrent transactions

▪ Management of input buffer resources

- many sources can issue a request and over-

commit destination before any see the effect

▪ Latency is large enough that you are tempted to

“take risks”

- e.g., optimistic protocols; large transfers;

dynamic allocation

Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 20b:

Implementing Parallel

Runtimes, Part 2

CMU 15-418/618,

Spring 2020

Objectives

▪ What are the costs of using parallelism APIs?

▪ How do the runtimes operate?

CMU 15-418/618,

Spring 2020

Basis of Lecture

▪ This lecture is based on runtime and source code analysis

of Intel’s open source parallel runtimes

- OpenMP – https://www.openmprtl.org/

- Cilk – https://bitbucket.org/intelcilkruntime/intel-cilk-

runtime

▪ And using the LLVM compiler

- OpenMP – part of LLVM as of 3.8

- CilkPlus: http://cilkplus.github.io/ ➔ OpenCilk:

http://cilk.mit.edu

https://www.openmprtl.org/
https://bitbucket.org/intelcilkruntime/intel-cilk-runtime
http://cilkplus.github.io/
http://cilk.mit.edu/

CMU 15-418/618,

Spring 2020

OpenMP and Cilk

▪ What do these have in common?

- pthreads

▪ What benefit does abstraction versus implementation

provide?

CMU 15-418/618,

Spring 2020

Simple OpenMP Loop Compiled

▪ What is this code doing?

▪ What do the OpenMP semantics specify?

▪ How might you accomplish this?

extern float foo(void);

int main (int argc, char** argv) {

int i;

float r = 0.0;

#pragma omp parallel for schedule(dynamic) reduction(+:r)

for (i = 0; i < 10; i ++) {

r += foo();

}

return 0;

}

Example from OpenMP runtime documentation

Under the hood:

1. Scheduling

2. Work (in parallel)

3. Reduction

4. Barrier

CMU 15-418/618,

Spring 2020

extern float foo(void);

int main (int argc, char** argv) {

static int zero = 0;

auto int gtid;

auto float r = 0.0;

__kmpc_begin(& loc3, 0);

gtid = __kmpc_global thread num(& loc3);

__kmpc_fork call(&loc7, 1, main_7_parallel_3, &r);

__kmpc_end(& loc0);

return 0;

}

Simple OpenMP Loop Compiled

Example from OpenMP runtime documentation

Call a (new) function in parallel with the argument(s)

CMU 15-418/618,

Spring 2020

Simple OpenMP Loop Compiled

struct main_10_reduction_t_5 { float r_10_rpr; };

void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {
auto int i_7_pr;
auto int lower, upper, liter, incr;
auto struct main_10_reduction_t_5 reduce;
reduce.r_10_rpr = 0.F;
liter = 0;
__kmpc_dispatch_init_4(& loc7,*gtid, 35, 0, 9, 1, 1);
while (__kmpc_dispatch_next_4(& loc7, *gtid, &liter,

&lower, &upper, &incr)) {
for(i_7_pr = lower; upper >= i_7_pr; i_7_pr ++)

reduce.r_10_rpr += foo();
}
switch(__kmpc_reduce_nowait(& loc10, *gtid, 1, 4,

&reduce, main_10_reduce_5, &lck)) {
case 1:

*r_7_shp += reduce.r_10_rpr;
__kmpc_end_reduce_nowait(& loc10, *gtid, &lck);

break;
case 2:

__kmpc_atomic_float4_add(& loc10, *gtid,
r_7_shp, reduce.r_10_rpr);

break;
default:;
}

}

Example from OpenMP runtime documentation

▪ OpenMP “microtask”

-Each thread runs the task

▪ Initializes local iteration bounds

and local reduction

▪ Each iteration receives a chunk

and operates locally

▪ After finishing all chunks,

combine into global reduction

CMU 15-418/618,

Spring 2020

Simple OpenMP Loop Compiled

extern float foo(void);
int main (int argc, char** argv) {

static int zero = 0;
auto int gtid;
auto float r = 0.0;
__kmpc_begin(& loc3, 0);
gtid = __kmpc_global thread num(& loc3);
__kmpc_fork call(&loc7, 1, main_7_parallel_3, &r);
__kmpc_end(& loc0);
return 0;

}

struct main_10_reduction_t_5 { float r_10_rpr; };
static kmp_critical_name lck = { 0 };
static ident_t loc10;

void main_10_reduce_5(struct main_10_reduction_t_5 *reduce_lhs,
struct main_10_reduction_t_5 *reduce_rhs)
{

reduce_lhs->r_10_rpr += reduce_rhs->r_10_rpr;
}

void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {
auto int i_7_pr;
auto int lower, upper, liter, incr;
auto struct main_10_reduction_t_5 reduce;
reduce.r_10_rpr = 0.F;
liter = 0;
__kmpc_dispatch_init_4(& loc7,*gtid, 35, 0, 9, 1, 1);
while (__kmpc_dispatch_next_4(& loc7, *gtid, &liter,

&lower, &upper, &incr)) {
for(i_7_pr = lower; upper >= i_7_pr; i_7_pr ++)

reduce.r_10_rpr += foo();
}
switch(__kmpc_reduce_nowait(& loc10, *gtid, 1, 4,

&reduce, main_10_reduce_5, &lck)) {
case 1:

*r_7_shp += reduce.r_10_rpr;
__kmpc_end_reduce_nowait(& loc10, *gtid, &lck);

break;
case 2:

__kmpc_atomic_float4_add(& loc10, *gtid, r_7_shp,
reduce.r_10_rpr);

break;
default:;
}

}

Example from OpenMP runtime documentation

▪All code combined

CMU 15-418/618,

Spring 2020

Fork Call

▪ “Forks” execution and calls a specified routine

(microtask)

▪ Determine how many threads to allocate to the parallel

region

▪ Setup task structures

▪ Release allocated threads from their idle loop

CMU 15-418/618,

Spring 2020

Iteration Mechanisms

▪ Static, compile time iterations

- __kmp_for_static_init

- Compute one set of iteration bounds

▪ Everything else

- __kmp_dispatch_next

- Compute the next set of iteration bounds

CMU 15-418/618,

Spring 2020

OMP Barriers

▪ Two phase -> gather and release

- Gather non-master threads pass, master waits

- Release is opposite

▪ Barrier can be:

- Linear (Centralized)

- Tree

- Hypercube

- Hierarchical

CMU 15-418/618,

Spring 2020

OMP Atomic

▪ Can the compiler do this in a read-modify-write (RMW)

op?

▪ Otherwise, create a compare-and-swap loop

T* val;

T update;

#pragma omp atomic

*val += update;

If T is int, this is “lock add …”.

If T is float, this is “lock cmpxchg …”

Why?

CMU 15-418/618,

Spring 2020

OMP Tasks

▪ #pragma omp task depend (inout:x) …

▪ Create microtasks for each task

- Track dependencies by a list of address / length tuples

- Ordered, dataflow scheduling of tasks on memory

locations

▪ Allows dynamic creation of task graph for computations

with irregular structure

CMU 15-418/618,

Spring 2020

Cilk

▪ Covered in Lecture 6

▪ We discussed the what and why, now the how

CMU 15-418/618,

Spring 2020

Simple Cilk Program Compiled

▪ What is this code doing?

▪ What do the Cilk semantics specify?

▪ Which is the child? Which is the continuation?

int fib(int n) {

if (n < 2)

return n;

int a = cilk_spawn fib(n-1);

int b = fib(n-2);

cilk_sync;

return a + b;

}

CMU 15-418/618,

Spring 2020

How to create a continuation?

▪ Continuation needs all of the state to continue

- Register values, stack, etc.

▪ What function allows code to jump to a prior point of

execution?

▪ Setjmp(jmp_buf env)

- Save stack context

- Return via longjmp(env, val)

- Setjmp returns 0 if saving, val if returning via longjmp

CMU 15-418/618,

Spring 2020

Basic Block

▪ Unit of Code Analysis

▪ Sequence of instructions

- Execution can only enter at the first instruction

- Cannot jump into the middle

- Execution can only exit at the last instruction

- Branch or Function Call

- Or the start of another basic block (fall through)

CMU 15-418/618,

Spring 2020

Simple Cilk Program Revisited

entry setjmp fib(n-2)

fib1 + fib2cilkrts_sync

Is sync?setjmp

fib(n-1)

Leave

frame

fib1 + fib2

ret

!0

!0

0

0

maybe

parallel

serial

Save Continuation

CMU 15-418/618,

Spring 2020

Cilk Workers

▪ While there may be work

- Try to get the next item from our queue

- Else try to get work from a random queue

- If there is no work found, wait on semaphore

▪ If work item is found

- Resume with the continuation’s stack

