Lecture 18:

Fine-grained synchronization &
lock-free programming

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2020

Today’s Topics

= Atomic operations
= Fine-grained Locking
= |ock-free Programming

(MU 15-418/618,

Locking Problem

= Locks can be big and expensive
- How many atomic operations does one lock require?
- How much data requires one lock?
- How much does it force threads to serialize?

(MU 15-418/618,
Sorina 2020

CUDA 7 atomic operations

int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);
unsigned int atomicDec(unsigned int* address, unsigned int val);
int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)
(MU 15-418/618,
Sorina 2020

GCC atomic built-in functions

type _ _sync_fetch_and _add (type *ptr, type value,
type __sync_fetch_and _sub (type *ptr, type value,
type __sync_fetch_and or (type *ptr, type value,
type __sync_fetch_and _and (type *ptr, type value,
type __sync_fetch_and xor (type *ptr, type value,
type __sync_fetch_and nand (type *ptr, type value,
type _ sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type _ _sync_or_and_fetch (type *ptr, type value, ...)
type _ sync_and_and_fetch (type *ptr, type value, ...)
type _ sync_xor_and_fetch (type *ptr, type value, ...)
type _ _sync_nand_and_fetch (type *ptr, type value, ...)

type can be (unsigned) char, short, int, or long

(MU 15-418/618,
Sorina 2020

Recall: Atomic Increment in GCC/ x86

type _sync_fetch_and_add (type *ptr, type value)
type _sync_add_and_fetch (type *ptr, type value)

int fadd(int *addr, int x) {
return __sync_fetch_and_add(addr, x);

}
0000000000000000 <fadd>:
0: 89 fo mov %»esi,%eax # X
2: fo of c1 o7 lock xadd %eax, (%rdi) # t = *addr; *addr += Xx
6: c3 retq # return t

= Direct hardware implementation
= Noneed foraloop

® Fetch-and-subtract also implemented with xadd

(MU 15-418/618,
Sorina 2020

Fetch & Add Performance

= Task

- Kthreads each incrementing single global variable N times

T-10°
N-K

Summing Global Variable

- Measure NPI =

=e-Race

=-Fetch+Add

€
Q
&
o /.
2 Spin lock v
g =o-Mutex ﬁ/'
3
C
Q
®
8
S
z
= —— —— *
/ v
L - G — v O
1 2 3 4 5 6 7 8
Threads (MU 15-418/618,

Sorina 2020

Atomic Compare-And-Swap (CAS)

// atomicCAS:
// atomic compare and swap performs this logic atomically
int atomicCAS(int* addr, int compare, int val) {
int old = *addr;
if (old == compare)
*addr = val;
return old;

}

= Exercise: how can you build an atomic fetch+op out of atomicCAS()?
- try: atomic_fetch_and_min()

int atomic_fetch_and_min(int* addr, int x) {
int old, new;
do {
old *addr;
new = min(old, x);
} while (atomicCAS(addr, old, new) != old);
return old;

}

(MU 15-418/618,
Sorina 2020

X86 cmpxchg

= Compare and exchange (atomic when used with lock prefix)
lock cmpxchg src, dst

T often a memory address
lock prefix (makes operation atomic)
[x86 accumulator register
if (dst == %eax)
ZF =1 + flag register
dst = src Self-check: Can you implement ASM for
else atomic compare-and-swap using cmpxchg?
ZF = © bool compare_and_swap(int* x, a, b) {
%eax = dst if (*x == a) {
*x = b;
return true;

}

return false;

}

CVIU 15-415/013,
Sorina 2020

Other Atomic Ops in GCC/ x86

type _sync_fetch_and_xor (type *ptr, type value)
type __sync_xor_and_fetch (type *ptr, type value)

int fxor(int *addr, int x) {
return __sync_fetch_and_xor(addr, x);

}

0000000000000020 <fxor>:
20: 8b 07 mov (%rdi),%eax # old = *addr
22: 41 89 cO mov %eax, %rsd # loop: t = old
25: 89 c1 mov %eax,%ecx # r = old
27: 41 31 fo xor %»esi,%r8d # new = old”x
if *addr==t then *addr = new else old = *addr
2a: f0 44 of bl o7 lock cmpxchg %r8d, (%rdi)
2f: 75 f1 jne 22 <fxor+ox2> # Goto loop if failed
31: 89 ¢8 mov %€eCX,%eax # Return r
33: «c3 retq

= Uses cmpxchg

= Requires loop

(MU 15-418/618,

= QOther bit-level ops are similar Sprina 2020

C++ 11 atomic<T>

= Provides atomic read, write, read-modify-write of entire objects

- Atomicity may be implemented by mutex or efficiently by processor-supported atomic instructions (if T is
a basic type)

= Provides memory ordering semantics for operations before and after
atomic operations

- By default: sequential consistency
- Seestd::memory_order or more detail

atomic<int> 1i;
i++; // atomically increment i

int a = i;

// do stuff

i.compare_exchange_strong(a, 10); // if i has same value as a, set i to 10
bool b = i.is_lock_free(); // true if implementation of atomicity

// 1is lock free

= Will be useful if implementing the lock-free programming ideas in (++

(MU 15-418/618,
Sorina 2020

How are the operations atomic?

= x86 Lock prefix

- If the memory location is cached, then the cache retains
that location until the operation completes

- Ifnot;:

- With bus: the processor uses the lock signal and holds
the bus until the operation completes

- With directories: the processor (probably) NACKs any
request for the cache line until the operation completes

N.B. Operations must be made on non-overlapping addresses

(MU 15-418/618,

Atomic Operations: Deadlock?

Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Can arise when each operation has
acquired a shared resource that another
operation needs.

(MU 15-418/618,

13 Sorina 2020

Atomic Operations: Livelock?

Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Computer system examples:
Operations continually abort and retry

(MU 15-418/618,

14 Sorina 2020

Atomic Operations: Starvation/Unfairness

State where a system is making overall
progress, but some processes make no

progress.
(green cars make progress, but yellow cars are stopped)

In this example: assume traffic moving left/right (yellow cars) must
yield to traffic moving up/down (green cars)

(MU 15-418/618,

15 Sorina 2020

Locking more than one location

= Data structures are often larger than a single memory
location

- How can an entire data structure be protected?
E.g. 15213 Proxylab cache

(MU 15-418/618,

Example: a sorted linked list

struct Node { struct List { What can go wrong if multiple threads
int value; Node* head; . . .
Node* next; }s operate on the linked list simultaneously?
};
void insert(List* list, int value) { void delete(List* list, int value) {
Node* n = new Node; // assume case of deleting first element is
n->value = value; // handled here (to keep slide simple)
// assume case of inserting before head of Node* prev = list->head;
// of list is handled here (to keep slide simple) Node* cur = list->head->next;
Node* prev = list->head; while (cur) {
Node* cur = list->head->next; if (cur->value == value) {
prev->next = cur-s>next; // Deletion
while (cur) { delete cur;
if (cur->value > value) return;
break; }
prev = cur; prev = cur;
cur = cur->next; cur = cur->next;
} }
}

n->next = cur;
prev->next = n; // Insertion

(MU 15-418/618,
Sorina 2020

Example: simultaneous insertion

Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

-G

Thread 1: g J

N\
G-

prev

(MU 15-418/618,

Example: simultaneous insertion

Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

read 1: (6]
Thread 1 /

G o G J(wH O e T

prev

Thread 2: /[4 J

S e G](H D o ORI

prev

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

s i[7)
(s s (o 1 (s

(MU 15-418/618,
Sorina 2020

Solution 1: protect the list with a single lock

struct Node { struct List {
int value; Node* head;
Node* next; Lock 1lock; Per-list lock

}; };

void insert(List* list, int value) { void delete(List* list, int value) {
Node* n = new Node; lock(list->lock);

n->value = value;
// assume case of deleting first element is

lock(list->lock); // handled here (to keep slide simple)
// assume case of inserting before head of Node* prev = list->head;
// of list is handled here (to keep slide simple) Node* cur = list->head->next;
Node* prev = list->head; while (cur) {
Node* cur = list->head->next; if (cur->value == value) {
prev->next = cur->next;

while (cur) { delete cur;

if (cur->value > value) unlock(list->lock);

break; return;
}

prev = cur;

cur = cur->next; prev = cur;
} cur = cur->next;
n->next = cur; }
prev->next = n; unlock(list->lock);
unlock(list->lock); }

(MU 15-418/618,
Sorina 2020

Single global lock per data structure

= Good:

- Itis relatively simple to implement correct mutual
exclusion for data structure operations (we just did it!)

= Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

(MU 15-418/618,

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)

s 1 e 0 J—{ e
TO TO TO TO

TO prev T0 cur

= At any time, hold lock on at least one element
- Move along list “hand-over-hand”
- Prevents later operations from catch up
- Guarantees that don’t interfere with earlier operations

(MU 15-418/618,
Sorina 2020

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

).

TO TO

TO prev T0 cur

(MU 15-418/618,

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

(MU 15-418/618,

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

3 s | [18
S D s

(MU 15-418/618,

Version 2a: Padded List

List Node

D G T G e N

® Assume

- Only insert/delete finite values
- List starts with —oo

- List ends with +o0
- Guaranteed to find insertion/deletion point within list

(MU 15-418/618,

Solution 2a: Padded List HOH Locking

struct Node {

};

Node* next; };
Lock* lock;

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

Node *prev, *cur, *old_prev;

prev = list->head;
lock(prev->lock);
cur = prev->next;
lock(cur->lock);

while (value < cur->value) {
// Holding locks on prev & cur
old_prev = prev;
prev = cur;
cur = cur->next;
unlock(old_prev->lock);
lock(cur->lock);

}

n->next = cur;
prev->next = n;

unlock(prev->lock);
unlock(cur->lock);

struct List {
int value; Node* head;

void delete(List* list, int value) {

Node *prev, *cur, *old_prev;
Node *del = NULL;

prev = list->head;
lock(prev->lock);
cur = prev->next;
lock(cur->lock);

while (value < cur->value) {
// Holding locks on prev & cur
old_prev = prev;
prev = cur;
cur = cur->next;
unlock(old_prev->lock);
lock(cur->lock);

}

if (value == cur->value) {
// Found
prev->next = cur->next;
del = cur;

}

unlock(prev->lock);
unlock(cur->lock);

if (del) delete del;

(MU 15-418/618,
Sorina 2020

Fine-grained (HOH) Locking

= Goal: enable parallelism in data structure operations
- Reduces contention for global data structure lock

- In previous linked-list example: a single monolithiclock is overly conservative
(operations on different parts of the linked list can proceed in parallel)

= (Challenge: tricky to ensure correctness

- Determining when mutual exclusion is required
- Deadlock? (how do you immediately know the earlier linked-list code is deadlock free?)
- Livelock?

m (Costs?

- Overhead of taking a lock each traversal step (extra instructions + traversal now
involves memory writes)

- Besure to use spin locks!
- [Extra storage cost (a lock per node)

(MU 15-418/618,
Sorina 2020

Where Can HOH Locking (Possibly) Be Used?

= Acyclicdata structures
- Must be able to order lock acquistion/release
- Singly linked list
- E.g., hash table bucket chain
- Binary search tree (very tricky)
- Skip list
= Not for cyclic structures
- E.g., doubly-linked list

(MU 15-418/618,

Lock-free data structures

(MU 15-418/618,

Blocking algorithms/data structures

= A blocking algorithm allows one thread to prevent other
threads from completing operations on a shared data structure
indefinitely

= Example:

- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the 0S, or crashes, or is just really slow (takes a page fault), etc.

- Now, no other threads can complete operations on the data structure (although thread 0 is
not actively making progress modifying it)

= Analgorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

(MU 15-418/618,
Sorina 2020

Lock-free algorithms

= Non-blocking algorithms are lock-free if some thread is
guaranteed to make progress (“systemwide progress”)

- Inlock-free case, it is not possible to preempt one of the threads at an
inopportune time and prevent progress by rest of system

- Note: this definition does not prevent starvation of any one thread

(MU 15-418/618,
Sorina 2020

Single Reader/Single Writer Bounded Queue

Empty

Push3,1,4,1,5,9,2

Pop 4X

Returns 3, 1,4, 1

Push 6,5, 3,5

0 2 3 4 5 6 7
head tail
0 I 2 3 4 5 6 7
3 I 4 I 519 | 2
head tail
0 | 2 3 4 5 6 7
519 | 2
head tail
0 | 2 3 4 5 [7
51315 5192 6
tail head

Single reader, single writer bounded queue *

// return false if queue is full
bool push(Queue* q, int value) {

struct Queue {
int data[N];

unsigned head; // head of queue // queue is full if tail is element before head

unsigned tail; // next free element if (q->head == MOD_N(q->tail + 1))
}s return false;
void init(Queue* q) { q.data[q->tail] = value;
g->head = g->tail = 0; g->tail = MOD_N(g->tail + 1);
} return true;
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

// if not empty

if (gq->head != g->tail) {
*value = q->data[q->head];
g->head = MOD_N(g->head + 1);
return true;

}

return false;

}

= Only two threads (one producer, one consumer) accessing queue at the same time
= Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)

- What is special about operations on head & tail that avoids need for synchronization?

* Assume a sequentially consistent memory system
(MU 15-418/618,

Sorina 2020

Single reader, single writer unbounded queue

(l_ea ky) head, tail

push 3, push 10
head tail
s (w0)—nu
pop (returns 3)
head tail
C —Cea)—Cno) —nu
pop (returns 10)
tail, head

e ({uy }—=

pop (returns false... queue empty)

tail, head

(e (uy }—=

push 5
head tail

C O—Cor-Cao)—Cs)=

(MU 15-418/618,

Single reader, single writer unbounded queue *

Source: Dr. Dobbs Journal

(I.ea kY) void push(Queue* q, int value) {

Node* n new Node;
n->next NULL;
n->value = value;

struct Node {
Node* next;

int value; q->tail->next = n;

}s g->tail = q->tail->next;
struct Queue { }
Node* head;
Node* tail; // returns false if queue is empty
. bool pop(Queue* q, int* value) {
};
.) = a- .
void init(Queue* q) { if (g->head !'= g->tail) {

*value = g->head->next->value;
q->head = g->head->next;
return true;

}

return false;

g->head = g->tail = new Node;

}

}
= Tail points to last element added
= Head points to element BEFORE head of queue

= (Construction of list performed by single thread

- Only push modifies tail; only pop modifies head

* Assume a sequentially consistent memory system CMU 15-418/618

Sorina 2020

Single reader, single writer unbounded queue

head, tail, reclaim

=

push 3, push 10
head, reclaim tail
s (w0)—nu
pop (returns 3)
reclaim head tail
C —Cea)—Cno) —nu
pop (returns 10)
reclaim tail, head

e ({uy }—=

pop (returns false... queue empty)

(reclaim tail, head Reclaiming performed

H (3))—'(ﬂ)—'. as part of push

push 5 (triggers reclaim)
reclaim, head tail

(MU 15-418/618,
Sorina 2020

Single reader, single writer unbounded queue *

struct Node {
Node* next;
int value;

};

struct Queue {
Node* head;
Node* tail;
Node* reclaim;

};

void init(Queue* q) {
g->head = g->tail = g->reclaim = new Node;

}

= Tail points to last element added

= Head points to element BEFORE head of queue

Source: Dr. Dobbs Journal
void push(Queue* q, int value) {
Node* n new Node;

n->next NULL;
n->value = value;

g->tail->next = n;
g->tail = g->tail->next;

while (gq->reclaim != g->head) {
Node* tmp = g->reclaim;
g->reclaim = g->reclaim->next;
delete tmp;

}
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

if (g->head !'= g->tail) {
*value = g->head->next->value;
q->head = g->head->next;
return true;

}

return false;

}

= Allocation and deletion performed by the same thread (producer)

- Only push modifies tail & reclaim; only pop modifies head

* Assume a sequentially consistent memory system

(MU 15-418/618,
Sorina 2020

Lock-free stack (first try)

struct Node { void init(Stack* s) {
Node* next; s->top = NULL;
int value; }
};
void push(Stack* s, Node* n) {
struct Stack { while (1) {
Node* top; Node* old_top = s->top;
}; n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)
return;
}
}

Node* pop(Stack* s) {
while (1) {
Node* old_top = s->top;
if (old_top == NULL)
return NULL;
Node* new_top = old_top->next;
if (compare_and_swap(&s->top, old_top, new_top) == old_top)
return old_top; // Assume that consumer then recycles old_top
}
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.
Note difference from fine-grained locks example earlier: before, implementation locked a part of a
data-structure for fine-grained access. Here, threads do not hold lock on data-structure at all.

* Assume a sequentially consistent memory system CMU 15-418/618
Sorina 2020

Th e A BA p ro b I e m A, B, C, and D are stack node addresses.

Thread 0 Thread 1

top

begin pop() (local variable: old_top = A, new_top = B)
! begin pop() (local variable old_top ==A)

complete pop() (returnsA)

G o, B8

top
begin push(D)

complete push(D)

top
modify node A: e.g., set value = 42

begin push(A)
complete push(A)

Ca)~ s

: top
CAS succeeds (sets top to B!)

complete pop() (returns A)
n Stack structure is corrupted! (lost D)

" time CMU 15-418/618,
top Sorina 2020

Why Does ABA Problem Arise?

= Use node address as identifier

- Assume that if atomic CAS gets matching address, list has
not been modified

= But, what if node has been deleted and recycled?

- Atomic CAS can get matching address, even though has
been modified

(MU 15-418/618,

Lock-free stack using counter for ABA soln

struct Node { void init(Stack* s) {
Node* next; s->top = NULL;
int value; }
}s
void push(Stack* s, Node* n) {
struct Stack { while (1) {
Node* top; Node* old_top = s->top;
int pop_count; n->next = old_top;
}; if (compare_and_swap(&s->top, old_top, n) == old_top)
return;
}
}
Node* pop(Stack* s) { test to see if either have changed (in this
while (1) {

: example: return true if no changes)
int pop_count = s->pop_count;

Node* top = s->top;
if (top == NULL)
return NULL;
Node* new_top = top->next;
if (double_compare_and_swap(&s->top, top, new_top,
&s->pop_count, pop_count, pop_count+l))
return top;

}
}

= Maintain counter of pop operations
= Requires machine to support “double compare and swap” (DCAS) or doubleword CAS

= Could also solve ABA problem with node allocation and/or element reuse policies CMU 15-418/618,
Sorina 2020

Compare and swap on x86

= x86 supports a “wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used in the code on the previous
slide

- But could simply ensure the stack’s count and top fields are contiguous in
memory to use the 64-bit wide single compare-and-swap instruction below.

= ¢cmpxchg8b

- “compare and exchange eight bytes”

- (Can be used for compare-and-swap of two 32-bit values
= cmpxchg16b

- “compare and exchange 16 bytes”

- (Can be used for compare-and-swap of two 64-bit values

(MU 15-418/618,
Sorina 2020

Another Concern: Referencing Freed Memory

struct Node {
Node* next;
int value;

};

struct Stack {
Node* top;
int pop_count;

};

T1 & T2 both popping

Case 1:

1. T1completes pop and gets copy of top
2. T2 startspop

* But will get different value for top

Case 2:
1. T1has not yet done CAS
2. T2 startspop
* Both have same copy of to
* Both have same value for M
3. T1doesCAS
Then CAS by T2 will fail

e So, doesn’t matter that T2 had stale data

void init(Stack* s) {
s->top = NULL;

void push(Stack* s, Node* n) {
while (1) {

Node* old_top = s->top;

n->next = old_top;

if (compare_and_swap(&s->top, old_top, n) == old_top)
return;

What if top has been freed at this point
by another thread that popped it?

Node* pop(Stack* s) {
while (1) {

int pop_count = s->pop_count;
Node* top = s->top;
if (top == NULL)
return NULL;
Node* new_top =w
if (double_compare_and_swap(&s->top, top, new_top,
&s->pop_count, pop_count, pop_count+l))

return top;

Possible for T1 to recycle top and therefore T2 to get bogus value for new_top, but CAS will fail.
So, this all looks OK.

(MU 15-418/618,
Sorina 2020

Another ABA Solution: Hazard Pointers

void init(Stack* s) {

struct Node { S->t0p = NULL;
Node* next; }
int value;
¥ void push(Stack* s, Node* n) {
while (1) {
struct Stack { Node* old_top = s->top;
Node* top; n->next = old_top;
¥ if (compare_and_swap(&s->top, old_top, n) == old_top)
return;
Node *hazard[NUM_THREADS]; }
}

Node* pop(Stack* s) {
while (1) {

hazard[t] = s->top;

Node* top = hazard[t];

if (top == NULL)
return NULL;

Node* new_top = top->next;

if (compare_and_swap(&s->top, top, new_top))
return top; // Caller must clear hazard[t] when it’s done with top

= Node cannot be recycled or reused if matches any hazard pointer

(MU 15-418/618,
Sorina 2020

Lock-free linked list insertion *

struct Node { struct List {
int value; Node* head;
Node* next; };

}s

// insert new node after specified node

void insert_after(List* list, Node* after, int value) { comPaFEd to fine—grail‘IEd
locking implementation:

Node* n = new Node;
n->value = value;

// assume case of insert into empty list handled No overhead Of taking IOCkS
// here (keep code on slide simple for class discussion)
No per-node storage overhead

Node* prev = list->head;

while (prev->next) {
if (prev == after) {
while (1) {
Node* old_next = prev->next;
n->next = old_next;

if (compare_and_swap(&prev->next, old_next, n) == old_next)
return;
}
}
prev = prev->next;
}
}
* For simplicity, this slide assumes the *only* operation on the list is insert (MU 15-418/618,

Sorina 2020

Lock-free linked list deletion

Supporting lock-free deletion significantly complicates data-structure

Consider case where B is deleted simultaneously with successful insertion of E after B.
B now points to E, but B is not in the list!

For the curious:

- Harris 2001. A Pragmatic Implementation of Non-blocking Linked-Lists
- Fomitchev 2004. Lock-free linked lists and skip lists

/—\f
(a Pee J—— ¢ (e }—®

CAS succeeds
on A->next on B->next [E J

(MU 15-418/618,
Sorina 2020

Normalized Runtime (x)

Normalized Runtime (x)

Lock-free vs. locks

Lock-free algorithm run time norma

P

erformance comparison

ed to run time of using pthread mutex locks

1.0
— Insertions only (If)
- Queue Y
1.6 - = Producer/consumer (If)
Random Operations (If)
1.4
1.2
1.0
0.8
0.6
0.4 . o
0.2
0.07 2 4 8 16 32 64 128
Number of Threads
3o
. . — Insertions only (If)
- I'mked I'ISt - = Random operations (If)
' Insertions only (fg)
Random operations (fg)

2.5
2.0

3
1.5 N

\\
1.0} 5
0.5
0.07 2 4 8 16 32 64 128

Number of Threads

Dequeue
2.0
ES
£ 15
T | N TR L
>
o
©
N
é 1.0 \
s \
= N e e -
0.5 ,
— Insertions only (If)
- = Producer/consumer (If)
Random Operations (If)
0.0 2 4 8 16 32 64 128

Number of Threads

If =“lock free”
fg = “fine grained lock”

Source: Hunt 2011. Characterizing the Performance and Energy

Efficiency of Lock-Free Data Structures

(MU 15-418/618,
Sorina 2020

In practice: why lock free data-structures?

= When optimizing parallel programs in this class you often assume that

only your program is using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, data analytics, etc.
= |n these cases, well written code with locks can be as fast (or faster) than

lock-free code

= But there are situations where code with locks can suffer from tricky

performance problems

- Multi-programmed situations where page faults, pre-emption, etc. can occur while thread
isin a critical section

- Creates problems like priority inversion, convoying, crashing in critical section, etc. that are
often discussed in 0S classes

= Lock free also does well with large data structures with sparse updates
- Chances of two updates at same place are very low

(MU 15-418/618,
Sorina 2020

Summary

= Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

= |ock-free data structures: non-blocking solution to avoid overheads
due to locks

- But can be tricky to implement (ensuring correctness in a lock-free setting has its own
overheads)

- Still requires appropriate memory fences on modern relaxed consistency hardware

= Note: a lock-free design does not eliminate contention

- Compare-and-swap can fail under heavy contention, requiring spins

(MU 15-418/618,
Sorina 2020

More reading

= Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms

- Multiple reader/writer lock-free queue

= Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists
= Many good blog posts and articles on the web:
- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsqgl.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

= (Often students like to implement lock-free data structures for projects

- Linked list, skip-list based maps (Java’s ConcurrentSkipListMap), list-based sets, etc.

- Recommend using CMU Ph.D. student Michael Sullivan’s RMC system to implement
these projects.

(MU 15-418/618,
Sorina 2020

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

