
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 16:

Implementing
Synchronization

CMU 15-418/618,

Spring 2020

Review: how threads map to cores… again!
Let’s say I have a processor with 4 cores, with 2 execution contexts per core.

In each clock, each core executes N instructions (from either/both execution contexts)

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory

Bus (to

DRAM)

On-chip

interconnect

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

CMU 15-418/618,

Spring 2020

I can run many programs on this
computer concurrently

For example, let’s take a look at what’s running on a

typical Mac.

Many processes, many of which has spawned many logical threads.

Many more logical threads than cores (and more threads than HW

execution contexts)

Who is responsible for choosing what threads execute on the

processor?

CMU 15-418/618,

Spring 2020

What does running one thread entail?

▪ A processor runs a logical thread by executing its instructions within a

hardware execution context.

▪ If the operating system wants thread T of process P to run, it:

1. Chooses a CPU execution context

2. It sets the register values in that context to the last state of the

thread (e.g., sets PC to point to next instruction the thread must

run, sets stack pointer, VM mappings, etc.)

3. Then the processor starts running… It grabs the next instruction

according to the PC, and executes it:

- If the instruction is: add r0, r1, r2; then the processor adds

the contexts of r1 and r2 and stores the result in r0

- If the instruction is: ld r0 mem[r1]; then the processor takes

contents of r1, translates it to a physical address according to

the page tables referenced by the execution context, and loads

the value at that address into r0

- Etc…

CMU 15-418/618,

Spring 2020

The operating system maps logical
threads to execution contexts

1. Interrupts the processor

2. Copies the register state of threads currently mapped to execution

contexts to OS data structures in memory

3. Copies the register state of other threads it now wants to run onto the

processors execution context registers

4. Tell the processor to continue

- Now these logical threads are running on the processor

Since there are more

threads than

execution contexts,

the operating system

must interleave

execution of threads

on the processor

Periodically… the OS:

CMU 15-418/618,

Spring 2020

How do 2 execution contexts run on a core
that can only run one instruction per clock?
It is the responsibility of the processor (without OS intervention) to choose how to

interleave execution of instructions from multiple execution contexts on the

resources of a single core.

This is the idea of hardware multi-threading from Lecture 2.

Reality: Hardware executes N instructions from M execution contexts (N≈4, M≈2)

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory

Bus (to

DRAM)

On-chip

interconnect

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode

Exec 1

L1 Cache

L2 Cache

CMU 15-418/618,

Spring 2020

Output of ‘less /proc/cpuinfo’ on latedays

- Dual CPU (two socket)

- Six-cores per CPU, two threads per

core

- Linux has 24 execution contexts to fill

…

Linux reports it is running on a machine

with 24 “logical processors”

(corresponding to the 24 execution

contexts available on the machine)

CMU 15-418/618,

Spring 2020

Today’s topic: efficiently implementing

synchronization primitives

▪ Primitives for ensuring mutual exclusion

- Locks

- Atomic primitives (e.g., atomic_add)

- Transactions (later in the course)

▪ Primitives for event signaling

- Barriers

- Flags

CMU 15-418/618,

Spring 2020

Three phases of a synchronization event

1. Acquire method

- How a thread attempts to gain access to

protected resource

2. Waiting algorithm

- How a thread waits for access to be granted to

shared resource

3. Release method

- How thread enables other threads to gain

resource when its work in the synchronized

region is complete

CMU 15-418/618,

Spring 2020

Busy waiting

▪ Busy waiting (a.k.a. “spinning”)

while (condition X not true) {}

logic that assumes X is true

▪ In classes like 15-213 or in operating systems, you have

certainly also talked about synchronization

- You might have been taught busy-waiting is bad: why?

CMU 15-418/618,

Spring 2020

“Blocking” synchronization

▪ Idea: if progress cannot be made because a resource

cannot be acquired, it is desirable to free up execution

resources for another thread (preempt the running

thread)

if (condition X not true)

block until true; // OS scheduler de-schedules thread

// (lets another thread use the processor)

▪ pthreads mutex example
pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

CMU 15-418/618,

Spring 2020

Busy waiting vs. blocking

▪ Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time

- Processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually

don’t oversubscribe a system when running a performance-

critical parallel app (e.g., there aren’t multiple CPU-intensive

programs running at the same time)

- Clarification: be careful to not confuse the above statement with

the value of multi-threading (interleaving execution of multiple

threads/tasks to hide long latency of memory operations) with

other work within the same app.

▪ Example:

pthread_spinlock_t spin;

pthread_spin_lock(&spin);

CMU 15-418/618,

Spring 2020

Implementing Locks

CMU 15-418/618,

Spring 2020

Warm up: a simple, but incorrect, spin lock

lock:

unlock:

ld R0, mem[addr] // load word into R0
cmp R0, #0 // compare R0 to 0
bnz lock // if nonzero jump to top
st mem[addr], #1 // Set lock to 1

st mem[addr], #0 // store 0 to address

Problem: data race because LOAD-TEST-

STORE is not atomic!
Processor 0 loads address X, observes 0

Processor 1 loads address X, observes 0

Processor 0 writes 1 to address X

Processor 1 writes 1 to address X

CMU 15-418/618,

Spring 2020

Implementing synchronization with

loads and stores

▪ It is possible to implement mutex (lock) via only loads

and stores

- At least with Sequential Consistency

▪ However, doing so is quite tricky, even for just 2 threads!

▪ Instead, architecture adds new instructions to support

synchronization more efficiently

CMU 15-418/618,

Spring 2020

Test-and-set based lock

Atomic test-and-set instruction:

ts R0, mem[addr] // load mem[addr] into R0

// if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

CMU 15-418/618,

Spring 2020

Test & Set in x86

▪ Set CF to bit 0 of addressed data

▪ Set bit 0 of addressed data to 1

btsq $0 (%rax)

CMU 15-418/618,

Spring 2020

Test-and-set lock: consider coherence traffic

Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&S
BusRdX

Attempt to update (t&s fails)

Invalidate line

T&S
BusRdX

Attempt to update (t&s fails)

Invalidate line

T&S
BusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&S
BusRdX

Update line in cache (set to 1)

Invalidate line
BusRdX

Update line in cache (set to 0)

Invalidate line

= thread has lock

CMU 15-418/618,

Spring 2020

Check your understanding

▪ On the previous slide, what is the duration of time the

thread running on P1 holds the lock?

▪ At what points in time does P1’s cache contain a valid

copy of the cache line containing the lock variable?

CMU 15-418/618,

Spring 2020

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

T
im

e
 (

u
s)

Number of

processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors

Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of

time to transfer lock (lock holder

must wait to acquire bus to release)

Not shown: bus contention also slows

down execution of critical section

Figure credit: Culler, Singh, and Gupta

CMU 15-418/618,

Spring 2020

Desirable lock performance characteristics

▪ Low latency

- If lock is free and no other processors are trying to acquire it, a

processor should be able to acquire the lock quickly

▪ Low interconnect traffic

- If all processors are trying to acquire lock at once, they should acquire

the lock in succession with as little traffic as possible

▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost

▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request

access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor

scaling, low storage cost (one int), no provisions for fairness

CMU 15-418/618,

Spring 2020

Test-and-test-and-set lock

void Lock(volatile int* lock) {
while (1) {

while (*lock != 0);

if (test_and_set(lock) == 0)
return;

}
}

void Unlock(volatile int* lock) {
*lock = 0;

}

// while another processor has the lock...

// when lock is released, try to acquire it

CMU 15-418/618,

Spring 2020

Test-and-test-and-set lock: coherence traffic

Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

CMU 15-418/618,

Spring 2020

Test-and-test-and-set characteristics

▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic

- Suppose total of P threads want access to their critical sections

- One invalidation, per waiting processor, per lock release (O(P)

invalidations)

- Total of O(P2) interconnect traffic to handle all P threads.

- (Or O(P) with a broadcast network like a bus)

- Recall: test-and-set lock generated one invalidation per waiting

processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

CMU 15-418/618,

Spring 2020

Test-and-set lock with back off

Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* lock) {
int amount = 1;
while (1) {

if (test_and_set(lock) == 0)
return;

delay(amount);
amount *= 2;

}
}

▪ Same uncontended latency as test-and-set, but potentially

higher latency under contention. Why?

▪ Generates less traffic than test-and-set (not continually

attempting to acquire lock)

▪ Improves scalability (due to less traffic)

▪ Storage cost unchanged (still one int for lock)

▪ Exponential back-off can cause severe unfairness

- Newer requesters back off for shorter intervals

CMU 15-418/618,

Spring 2020

Atomic increment vs Lock

▪ Task: Sum elements of array A

▪ Using mutex:

▪ Atomic increment

- Direct hardware support

- Single bus transaction (RdX)

for (int i = 0; i < n/nthread; i++)
atomic_increment(&sum, A[i + myid*nthread]);

volatile int sum;
int A[n];
lock mutex;

for (int i = 0; i < n/nthread; i++) {
lock(&mutex);
sum += A[i + myid*n/nthread];
unlock(&mutex);

}

CMU 15-418/618,

Spring 2020

Atomic Increment in GCC / x86

▪ From: https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-

Builtins.html

▪ type is an integral type

▪ Returns pre- or post-incremented value

▪ Variants:

- Add, Subtract, Bitwise-OR, Bitwise-AND, Bitwise-XOR

type __sync_fetch_and_add (type *ptr, type value)
type __sync_add_and_fetch (type *ptr, type value)

int fadd(int *loc, int val) {
return __sync_fetch_and_add(loc, val);

}

0000000000000000 <fadd>:
0: 89 f0 mov %esi,%eax
2: f0 0f c1 07 lock xadd %eax,(%rdi)
6: c3 retq

https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

CMU 15-418/618,

Spring 2020

Ticket lock

Main problem with test-and-set style

locks: upon release, all waiting processors

attempt to acquire lock using test-and-set

struct lock {
volatile int next_ticket;
volatile int now_serving;

};

void Lock(lock* lock) {
int my_ticket = atomic_increment(&lock->next_ticket); // take a “ticket”
while (my_ticket != lock->now_serving); // wait for number

} // to be called

void unlock(lock* lock) {
lock->now_serving++;

}

Single atomic operation needed to acquire the lock

Single write to release lock

O(P) total interconnect traffic for all P threads

Fairness guaranteed, too!

CMU 15-418/618,

Spring 2020

Array-based lock

Each processor spins on a different memory address

Utilizes atomic operation to assign address on attempt to acquire

struct lock {
volatile int status[PMAX][W]; // padded to keep off same cache line
volatile int head;

};

int my_element;

void Lock(lock* lock) {
my_element = atomic_increment(&lock->head);
while (lock->status[my_element % PMAX][0] == 1);

}

void unlock(lock* lock) {
lock->status[my_element % PMAX][0] = 1;
lock->status[(my_element+1) % PMAX][0] = 0;

}

O(1) interconnect traffic per release, but lock requires space linear in P

Also, must know upper limit on number of threads PMAX

CMU 15-418/618,

Spring 2020

Implementing Barriers

CMU 15-418/618,

Spring 2020

Barrier Attempt #1

(Based on shared counter)

Does it work?

Consider:
do stuff ...
Barrier(b, P);
do more stuff ...
Barrier(b, P);

struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag; // the flag field should probably be padded to

// sit on its own cache line. Why?
};

// barrier for P threads
void Barrier(Barrier_t* b, int P) {
lock(b->lock);
if (b->counter == 0) {
b->flag = 0; // first thread arriving at barrier clears flag

}
int num_arrived = ++(b->counter);
unlock(b->lock);

if (num_arrived == P) { // last arriver sets flag
b->counter = 0;
b->flag = 1;

}
else {
while (b->flag == 0); // wait for flag

}
}

CMU 15-418/618,

Spring 2020

Barrier #2: Correct
struct Barrier_t {

LOCK lock;
int arrive_counter; // initialize to 0 (number of threads that have arrived)
int leave_counter; // initialize to P (number of threads that have left barrier)
int flag;

};

// barrier for P threads
void Barrier(Barrier_t* b, int P) {

lock(b->lock);
if (b->arrive_counter == 0) { // if first to arrive...

if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
b->flag = 0; // first arriving thread clears flag

} else {
unlock(lock);
while (b->leave_counter != P); // wait for all threads to leave before clearing
lock(lock);
b->flag = 0; // first arriving thread clears flag (How many can do this?)

}
}
int num_arrived = ++(b->arrive_counter);
unlock(b->lock);

if (num_arrived == P) { // last arriver sets flag
b->arrive_counter = 0;
b->leave_counter = 1;
b->flag = 1;

}
else {

while (b->flag == 0); // wait for flag
lock(b->lock);
b->leave_counter++;
unlock(b->lock);

}
}

Main idea: wait for all

processes to leave first

barrier, before clearing

flag for entry into the

second

CMU 15-418/618,

Spring 2020

#3: Centralized barrier with sense reversal

struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag; // initialize to 0

};

int local_sense = 0; // private per processor. Main idea: processors wait for flag
// to be equal to local sense

// barrier for P threads
void Barrier(Barrier_t* b, int P) {
local_sense = (local_sense == 0) ? 1 : 0;
lock(b->lock);
int num_arrived = ++(b->counter);
if (b->counter == P) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = local_sense;

}
else {
unlock(b->lock);
while (b->flag != local_sense); // wait for flag

}

Sense reversal optimization results in one spin instead of two

CMU 15-418/618,

Spring 2020

Centralized barrier: traffic

▪ O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and

update counter

- O(P) traffic assuming lock acquisition is implemented in

O(1) manner

- Last thread: 2 write transactions to write to the flag and reset

the counter

- O(P) traffic since there are many sharers of the flag

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock

- So span (latency) of entire operation is O(P)

- Can we do better?

CMU 15-418/618,

Spring 2020

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in interconnect topologies

- lg(P) span (latency)

- Strategy makes less sense on a bus (all traffic still serialized on single

shared bus)

▪ Barrier acquire: when processor arrives at barrier, performs increment of

parent counter

- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized

Barrier

Combining Tree

Barrier

High contention!

(e.g., single barrier

lock and counter)

CMU 15-418/618,

Spring 2020

Coming up…

▪ Imagine you have a shared variable for which

contention is low. So it is unlikely that two

processors will enter the critical section at the

same time?

▪ You could hope for the best, and avoid the

overhead of taking the lock since it is likely that

mechanisms for ensuring mutual exclusion are

not needed for correctness

- Take a “optimize-for-the-common-case”

attitude

▪ What happens if you take this approach and

you’re wrong: in the middle of the critical

region, another process enters the same region?

CMU 15-418/618,

Spring 2020

Preview: transactional memory

atomic

{ // begin transaction

perform atomic computation here ...

} // end transaction

Instead of ensuring mutual exclusion via locks, system will

proceed as if no synchronization was necessary. (it

speculates!)

System provides hardware/software support for “rolling

back” all loads and stores in the critical region if it detects

(at run-time) that another thread has entered same region

at the same time.

