
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 12:

A Basic Snooping-Based

Multi-Processor

Implementation

1

CMU 15-418/618,

Spring 2020

Today: implementing cache coherence

▪ Wait... haven’t we talked about this before?

▪ Earlier, we talked about cache coherence protocols
- But our discussion was very abstract

- We described what messages/transactions needed to be sent

- We assumed messages/transactions were atomic

Today we will talk about efficiently

implementing an invalidation-

based protocol

Today’s point: in a real machine...

efficiently ensuring coherence is

complex

2

CMU 15-418/618,

Spring 2020

The concepts in today’s lecture span

much more than just hardware

implementation

▪ The challenges and techniques we describe

today (trade-offs between simplicity and

performance, challenges of correctness in a

parallel system) apply equally well to writing

parallel programs

3

CMU 15-418/618,

Spring 2020

E

(Exclusive)

M

(Modified)

PrRd / --
PrWr / --

PrWr /

BusUgr

BusRd / flush

I

(Invalid)

PrWr /

BusRdX

PrWr / -

-

PrRd / --
BusRdX /

--

BusRdX /

flush

BusRd / --

S

(Shared)

PrRd / -

-

PrRd / BusRd
(no other cache

asserts shared)

PrRd / BusRd

BusRd / -
-

BusRdX / --

(another cache

asserts shared)

Review: MESI state transition diagram

4

CMU 15-418/618,

Spring 2020

Review: multi-level cache hierarchies

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall Intel Core i7

hierarchy

▪ Challenge: changes made to data

at first level cache may not be

visible to second level cache

controller than snoops the

interconnect.

▪ How might snooping work for a

cache hierarchy?

1. All caches snoop

interconnect independently?

(inefficient)

2. Maintain “inclusion”

5

CMU 15-418/618,

Spring 2020

Inclusion property of caches

▪ All lines in closer [to processor] cache are also in farther

[from processor] cache

- e.g., contents of L1 are a subset of contents of L2

- Thus, all transactions relevant to L1 are also relevant to

L2, so it is sufficient for only the L2 to snoop the

interconnect

▪ If line is in owned state (M in MSI/MESI) in L1, it must also

be in owned state in L2

- Allows L2 to determine if a bus transaction is requesting

a modified cache line in L1 without requiring information

from L1

6

CMU 15-418/618,

Spring 2020

The goals of our coherence

implementation

1. Be correct
- Implements cache coherence

2. Achieve high performance

3. Minimize “cost” (e.g., minimize amount

of extra hardware needed to implement

coherence)

As you will see...

Techniques that pursue high performance tend to make

ensuring correctness tricky.

7

CMU 15-418/618,

Spring 2020

What you should know

▪ Concepts of deadlock, livelock, and starvation

▪ Have a basic understanding of how a bus works

- But keep in mind most modern interconnects are NOT

buses! (Entire lecture on interconnects soon)

- Understand why maintaining coherence is challenging,

even when on simple machine designs

- How do performance optimizations make correctness

challenging?

- (e.g., how can deadlock, livelock, and starvation

occur in coherence implementations, and how are

these problems avoided?)

- Your mental model of hardware should be: there are

many components operating in parallel (even if

abstractions don’t indicate this is the case)

8

CMU 15-418/618,

Spring 2020

Deadlock

Livelock

Starvation

(Deadlock and livelock concern program correctness.

Starvation is really an issue of fairness.)

Terminology

9

CMU 15-418/618,

Spring 2020

Deadlock Deadlock is a state where a

system has outstanding

operations to complete, but

no operation can make

progress.

Can arise when each operation

has acquired a shared

resource that another

operation needs.

In a deadlock situations, there

is no way for any thread (or,

in this illustration, a car) to

make progress unless some

thread relinquishes a resource

(“backs up”)

10

CMU 15-418/618,

Spring 2020

More illustrations of deadlock

Credit: David Maitland, National

Geographic

Why are these examples of deadlock?

12

CMU 15-418/618,

Spring 2020

Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are finite and workers wait if

no output space is available

const int numEl = 1024;
float msgBuf1[numEl];
float msgBuf2[numEl];

int threadId getThreadId();

... do work ...

MsgSend(msgBuf1, numEl * sizeof(int), threadId+1, ...
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Every process sends a message (blocking send) to

the processor with the next higher id

Then receives message from processor with next

lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

13

CMU 15-418/618,

Spring 2020

Required conditions for deadlock

1. Mutual exclusion: one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for

other resources needed to complete an operation

3. No preemption: processors don’t give up resources until operation

they wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle

exists in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

14

CMU 15-418/618,

Spring 2020

Livelock

15

CMU 15-418/618,

Spring 2020

Livelock

16

CMU 15-418/618,

Spring 2020

Livelock

17

CMU 15-418/618,

Spring 2020

Livelock

Livelock is a state where a

system is executing many

operations, but no thread is

making meaningful

progress.

Can you think of a good

daily life example of

livelock?

Computer system examples:

Operations continually abort

and retry

18

CMU 15-418/618,

Spring 2020

Starvation

State where a system is

making overall progress, but

some processes make no

progress.
(green cars make progress, but yellow

cars are stopped)

Starvation is usually not a

permanent state
(as soon as green cars pass, yellow

cars can go)

In this example: assume traffic moving left/right

(yellow cars) must yield to traffic moving

up/down (green cars)

19

CMU 15-418/618,

Spring 2020

Part 1:

A basic implementation of snooping

(assuming an atomic bus)

20

CMU 15-418/618,

Spring 2020

Consider a basic system design
- One outstanding memory request per processor

- Single level, write-back cache per processor

- Cache can stall processor as it is carrying out coherence operations

- System interconnect is an atomic shared bus (one cache communicates

at a time)

Cache

Processor

Interconnect (shared bus)

Data

Cache

Processor

Tags Data

Memory

State Tags State

21

CMU 15-418/618,

Spring 2020

Transaction on an atomic bus

1. Client is granted bus access (result of arbitration)

2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus

4. Next client obtains bus access (arbitration)

22

CMU 15-418/618,

Spring 2020

Cache miss logic on a uniprocessor

1. Determine cache set (using appropriate bits of address)

2. Check cache tags (to determine if line is in cache)

3. Assert request for access to bus

4. Wait for bus grant (as determined by bus arbitrator)

5. Send address + command on bus

6. Wait for command to be accepted

7. Receive data on bus

[Assume no matching tags, must read data from memory]

What does atomic bus mean in

a multi-processor scenario?

BusRd, BusRdX: no other bus

transactions allowed between

issuing address and receiving

data

Flush: address and data sent

simultaneously, received by

memory before any other

transaction allowed

Address

Data

23

CMU 15-418/618,

Spring 2020

Multi-processor cache controller behavior

Challenge: both requests from processor and bus require tag

lookup

CacheTags DataState

to processor

to bus

If bus receives priority:

During bus transaction,

processor is locked out from

its own cache.

If processor receives priority:

During processor cache

accesses, cache cannot

respond with its snoop result

(so it delays other processors

even if no sharing of any form

is present)

“Snoop” controller

“processor-side” controller

This is another example of contention!

24

CMU 15-418/618,

Spring 2020

Alleviate contention: allow
simultaneous access by processor-
side and snoop controllers

Cache

Tags

Data

State

to processor

to bus

Option 1: cache duplicate tags

Option 2: multi-ported tag

memory

Note: tags must stay in sync for

correctness, so tag update by

one controller will still need to

block the other controller (but

modifying tags is infrequent

compared to checking them)

Keep in mind: in either case cost

of the additional performance is

additional hardware resources.

“Snoop” controller

“processor-side” controller

Tags State

25

CMU 15-418/618,

Spring 2020

Reporting snoop results protocol in MESI

▪ Assume a cache read miss (BusRd)

▪ Collective response of caches must appear on bus

- Is line dirty? If so, memory should not respond

- Is line shared? If so, cache should load into S state, not E

Memory needs

to know what

to do

Loading cache

needs to know

what to do

How are snoop results communicated?

When are snoop results communicated?

26

CMU 15-418/618,

Spring 2020

Reporting snoop results: how

Address

Data

Shared

Dirty

Snoop-pending

‘OR’ of result from all processors

‘OR’ of result from all processors

Bus

‘OR’ of result from all processors
(0 value indicates all processors have
responded)

These three lines are additional bus

interconnect hardware!

(but 3 ≪ # address + data lines)

27

CMU 15-418/618,

Spring 2020

Reporting snoop results: when

▪ Memory controller could immediately start

accessing DRAM, but not respond (squelch

response) if a snoop result from another cache

indicates it has copy of most recent data

- Cache should provide data, not memory

▪ Memory could assume one of the caches will

service request until snoop results are valid (if

snoop indicates no cache has data, then memory

must respond)

28

CMU 15-418/618,

Spring 2020

Handling write backs

▪ Write backs involve two bus transactions

1. Incoming line (line requested by processor)

2. Outgoing line (evicted dirty line in cache that must be

flushed)

▪ Ideally would like the processor to continue as soon as possible

(it shouldn’t have to wait for the flush to complete)

▪ Solution: write-back buffer

- Stick line to be flushed in a write-back buffer

- Immediately load requested line (allows processor to

continue)

- Flush contents of write-back buffer at a later time

29

CMU 15-418/618,

Spring 2020

Cache with write-back buffer

What if a request for the

address of the data in the

write-back buffer appears

on the bus?

Snoop controller must

check the write-back

buffer addresses in

addition to cache tags.

If there is a write-back

buffer match:

1. Respond with data from

write-back buffer rather

than cache

2. Cancel outstanding bus

access request (for the

write back)
these hardware components

handle processor-related

requests

these hardware

components handle

snooping related tasks
Figure credit: Culler, Singh, and Gupta 30

CMU 15-418/618,

Spring 2020

In practice state transitions are not atomic

▪ Coherence protocol state transition diagrams (like the one below)

assumed that transitions between states were atomic

▪ We’ve assumed the bus transaction itself is atomic, but all the operations

the system performs as a result of a memory operation are not

- e.g., look up tags, arbitrate for bus, wait for actions by other

controllers, …

▪ Implementations must be careful to handle race conditions appropriately

31

CMU 15-418/618,

Spring 2020

An example race condition

Observation: Cache doesn’t need data when transitioning S → M

Common optimization: BusUpg, a new bus transaction that is exactly like

BusRdX, except it doesn’t need to return data.

1. P1 “wins” bus access (as determined by arbiter), P1 sends BusUpg

2. P2 is waiting for bus access (to send its own BusUpg), can’t proceed

because P1 has bus

3. P2 receives BusUpg, must invalidate line A (as per MESI protocol)

4. P2 must also change its pending BusUpg request to a BusRdX!

Cache must be able to handle requests

while waiting to acquire bus AND be able

to modify its own outstanding requests

32

Scenario: P1 and P2 write to valid (and shared) cache line A simultaneously

(both need to issue BusUpg to move line from S state to M state)

CMU 15-418/618,

Spring 2020

Fetch deadlock

P1 has a modified copy of cache line B

P1 is waiting for the bus so it can issue BusRdX on cache line A

BusRd for B appears on bus while P1 is waiting

To avoid deadlock, P1 must be able to service incoming

transactions while waiting to issue requests

33

CMU 15-418/618,

Spring 2020

Livelock

Two processors writing to cache line B

P1 acquires bus, issues BusRdX

P2 invalidates

Before P1 performs cache line update, P2 acquires bus, issues BusRdX

P1 invalidates

and so on...

To avoid livelock, a write that obtains exclusive ownership must be

allowed to complete before exclusive ownership is relinquished.

34

CMU 15-418/618,

Spring 2020

Self check: when does a write “commit?”

▪ A write commits when a read-exclusive

transaction appears on bus and is acknowledged

by all other caches
- At this point, the write is “committed”

- All future reads will reflect the value of this write (even if data

from P has not yet been written to P’s dirty cache line, or to

memory)

- Key idea: order of transactions on the bus defines the global

order of writes in the parallel program (write serialization)

▪ Commit != complete: a write completes when

the updated value is in the cache line

▪ Why does a write-back buffer not affect time of

commit?

35

CMU 15-418/618,

Spring 2020

Starvation

▪ Multiple processors competing for bus access

- Must be careful to avoid (or minimize likelihood of) starvation

- E.g., what if processor with “lowest id” wins.

▪ Example policies that achieve greater fairness:

- FIFO arbitration

- Round-robin arbitration

- Priority-based heuristics (frequent bus users have priority drop)

36

CMU 15-418/618,

Spring 2020

Design issues we have seen

▪ Design of cache controller and tags

(to support access from processor and bus)

▪ How and when to present snoop results on bus

▪ Dealing with write backs

▪ Dealing with non-atomic state transitions

▪ Avoiding deadlock, livelock, starvation

These issues arose even though we only implemented a few

optimizations on a very basic invalidation-based, write-back

system!

(atomic bus, one outstanding memory request per processor,

single-level caches)

37

CMU 15-418/618,

Spring 2020

First-half summary: parallelism and
concurrency in coherence implementation are
sources of complexity
▪ Processor, cache, and bus all are resources operating in parallel

- Often contending for shared resources:

- Processor and bus contend for cache

- Caches contend for bus access

▪ “Memory operations” that are abstracted by the architecture as atomic

(e.g., loads, stores) are implemented via multiple transactions involving

all of these hardware components

▪ Performance optimization often entails splitting operations into several,

smaller transactions

- Splitting work into smaller transactions reveals more parallelism

(recall pipelining)

- Cost: more hardware needed to exploit additional parallelism

- Cost: care needed to ensure abstractions still hold (the machine is

correct)

38

CMU 15-418/618,

Spring 2020

Part 2:

Building the system around

non-atomic bus transactions

39

CMU 15-418/618,

Spring 2020

What you should know

▪ What is the major performance issue with atomic bus

transactions that motivates moving to a more complex

non-atomic system?

▪ You should know the main components of a split-

transaction bus, and how transactions are split into

requests and responses

▪ The role of queues in a parallel system (today is yet

another example)

40

CMU 15-418/618,

Spring 2020

Review: transaction on an atomic bus

1. Client is granted bus access (result of arbitration)

2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus

4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending

(this decreases effective bus bandwidth)

This is bad, because the interconnect is a limited,

shared resource in a multi-processor system.

(So it is important to use it as efficiently as

possible)

41

CMU 15-418/618,

Spring 2020

Split-transaction bus

Bus transactions are split into two

transactions:

1. The request

2. The response

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider this scenario:

Read miss to A by P1

Bus upgrade of B by P2

Possible timeline of events

on a split-transaction bus:

P1 gains access to bus

P1 sends BusRd command

[memory starts fetching data now…]

P2 gains access to bus

P2 sends BusUpg command

Memory gains access to bus

Memory places A on bus

Other transactions can intervene

between a transaction’s request

and response.

42

CMU 15-418/618,

Spring 2020

New issues arise due to split transactions

2. How to handle conflicting requests on bus? Consider:

- P1 has outstanding request for line A

- Before response to P1 occurs, P2 makes request for line A

3. Flow control: how many requests can be outstanding at a

time, and what should be done when buffers fill up?

4. When are snoop results reported? During the request? or

during the response?

1. How to match requests with responses?

43

CMU 15-418/618,

Spring 2020

A basic design

▪ Up to eight outstanding requests at a time (system wide)

▪ Responses need not occur in the same order as requests

- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)

- When a buffer is full, client can NACK a transaction, causing

a retry

44

CMU 15-418/618,

Spring 2020

Initiating a request

Can think of a split-transaction bus as two separate buses:

a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access

Step 2: Bus arbiter grants access, assigns

transaction a tag

Step 3: Requestor places command + address

on the request bus

Requestor Addr

P0 0xbeef

State

Request Table
(assume a copy of this table is
maintained by each bus client:

e.g., cache)

Transaction
tag is just the
index into the
request table

256 bits

3 bits
Response

tag

45

CMU 15-418/618,

Spring 2020

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus

(Addr/cmd)
Addr
req

Grant

Request arbitration: cache controllers present request for address to bus

(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors

Request table entry allocated for request (see previous slide)

Special arbitration lines indicate tag assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.

Memory operation commits here!

(NO BUS TRAFFIC)

Addr
Ack

Caches acknowledge this snoop result is ready

(or signal they could not complete snoop in time here (e.g., raise inhibit wire)

46

CMU 15-418/618,

Spring 2020

ClocksARB RSLV ADDR DCD ACK

Request Bus

(Addr/cmd)
Addr
req

Grant Addr
Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus

(Data Arbitration)

(Data)

Tag
check

Data response arbitration: responder presents intent to respond to

request with tag T

(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response

(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access

Read miss: cycle-by-cycle bus behavior (phase 2)

47

CMU 15-418/618,

Spring 2020

ClocksARB RSLV ADDR DCD ACK

Request Bus

(Addr/cmd)
Addr
req

Grant Addr
Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus

(Data Arbitration)

(Data)

Tag
check

Grant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus

Caches present snoop result for request with the data

Request table entry is freed

Here: assume 128 byte cache lines → 4 cycles on 256 bit bus

48

CMU 15-418/618,

Spring 2020

ClocksARB RSLV ADDR DCD ACK

Request Bus

(Addr/cmd)
Addr
req

Grant Addr
Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus

(Data Arbitration)

(Data)

Tag
check

Grant

Pipelined transactions

Data DataData Data

Addr
req

Grant Addr
Addr
Ack

Data
req

Tag
check

Grant

Data Data ...

Note: Writebacks and BusUpg transactions do not have a response component

Writebacks acquire access to both request address bus and data bus as part of “request” phase

BusUpg does not need any acknowledgement or data

= memory transaction 1

= memory transaction 2

49

CMU 15-418/618,

Spring 2020

Request Bus

(Addr/cmd)

Response Bus

(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4 (No response required)

Note out-of-order completion.

50

CMU 15-418/618,

Spring 2020

Key issues to resolve

▪ Conflicting requests

- Avoid conflicting requests by disallowing them

- Each cache has a copy of the request table

- Simple policy: caches do not make requests that conflict

with requests in the request table

▪ Flow control:

- Caches/memory have buffers for receiving data off the

bus

- If the buffer fills, client NACKs relevant requests or

responses

(NACK = negative acknowledgement)

- Triggers a later retry

51

CMU 15-418/618,

Spring 2020

Situation 1: P1 read miss to X, read

transaction involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRd

If outstanding request is a read: there is no conflict. No need to

make a new bus request, just listen for the response to the

outstanding one.

, share

52

CMU 15-418/618,

Spring 2020

Situation 2: P1 read miss to X, write

transaction involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRdX

If there is a conflicting outstanding request (as determined by

checking the request table), cache must hold request until

conflict clears

53

CMU 15-418/618,

Spring 2020

Why do we have queues in a parallel system?

A B

Answer: to accommodate variable (unpredictable) rates of

production and consumption.

As long as A and B, on average, produce and consume at the same

rate, both workers can run at full rate.

With queue

of size 2: A

and B never

stall

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue: notice A stalls waiting for B to accept new input (and B sometimes stalls waiting for A to

produce new input).

time

54

CMU 15-418/618,

Spring 2020

Multi-level cache hierarchies

Figure credit: Culler, Singh, and Gupta

Numbers indicate steps in a cache miss from processor on left.

Serviced by cache on right.

55

CMU 15-418/618,

Spring 2020

Recall the fetch-deadlock problem

Assume one outstanding memory request per processor.

Consider fetch-deadlock problem: cache must be able to service

requests while waiting on response to its own request (hierarchies

increase response delay)
Figure credit: Culler, Singh, and Gupta 56

CMU 15-418/618,

Spring 2020

Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to
another cache) **

Outgoing read request (initiated by
processor)

Both requests generate responses
that require space in the other
queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that the
maximum queue size is one message.
(buffer size = 1)

57

CMU 15-418/618,

Spring 2020

Multi-level cache hierarchies

Assume one outstanding memory request per processor.

Consider fetch deadlock problem: cache must be able to service requests while

waiting on response to its own request (hierarchies increase response delay)

Sizing all buffers to accommodate the maximum number of outstanding requests on

bus is one solution to avoiding deadlock. But a costly one!

Figure credit: Culler, Singh, and Gupta 58

CMU 15-418/618,

Spring 2020

Avoiding buffer deadlock with
separate request/response queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request
queue

L2→L1
request
queue

System classifies all transactions as
requests or responses

Key insight: responses can be
completed without generating further
transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a
request, cache must be able to service
responses.

Responses will make progress (they
generate no new work so there’s no
circular dependence), eventually
freeing up resources for requests

L1→L2
response
queue

L2→L1
response
queue

59

CMU 15-418/618,

Spring 2020

volatile int x = 10; // write to memory

Putting it all together
Class exercise: describe everything that might

occur during the execution of this statement

60

CMU 15-418/618,

Spring 2020

volatile int x = 10;

1. Virtual address to physical address conversion (TLB lookup)

2. TLB miss

3. TLB update (might involve OS)

4. OS may need to swap in page to get the appropriate page table (load from disk to physical

address)

5. Cache lookup (tag check)

6. Determine line not in cache (need to generate BusRdX)

7. Arbitrate for bus

8. Win bus, place address, command on bus

9. All caches perform snoop (e.g., invalidate their local copies of the relevant line)

10. Another cache or memory decides it must respond (let’s assume it’s memory)

11. Memory request sent to memory controller

12. Memory controller is itself a scheduler

13. Memory controller checks active row in DRAM row buffer. (May need to activate new DRAM

row. Let’s assume it does.)

14. DRAM reads values into row buffer

15. Memory arbitrates for data bus

16. Memory wins bus

17. Memory puts data on bus

18. Requesting cache grabs data, updates cache line and tags, moves line into exclusive state

19. Processor is notified data exists

20. Instruction proceeds

Class exercise: describe everything that might
occur during the execution of this statement *

* This list is certainly not complete, it’s just what I

came up with off the top of my head. (This would

be a great job interview question!)

61

