
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020

Lecture 10:

Snooping-Based
Cache Coherence

1

CMU 15-418/618,

Spring 2020

Cache design review

▪ Review:

- What is the difference between a write back and a write-

through cache?

- What about a allocate vs. write-no-allocate cache?

Data (64 bytes on modern Intel

processors)

Tag
Line

state

Dirty

bit

Let’s say your code executes volatile int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory—it’s

not stored in a register)

1 0 0 0

One cache line:

. .

.

Byte 0 of

line
Byte 63 of

line

2

CMU 15-418/618,

Spring 2020

Review: behavior of write-allocate,

write-back cache on a write miss

(uniprocessor case)
Example: processor executes volatile int x = 1;

1. Processor performs write to address that is not resident in cache

2. Cache selects location to place line in cache, if there is a dirty line

currently in this location, the dirty line is written out to memory

3. Cache loads line from memory (“allocates line in cache”)

4. 4 bytes of cache line are updated

5. Cache line is marked as dirty

Data (64 bytes on modern Intel processors)Tag
Line

state

Dirty

bit

3

CMU 15-418/618,

Spring 2020

A shared memory multi-processor

▪ Processors read and write to shared variables

- More precisely: processors issue load and store

instructions

▪ A reasonable expectation of memory is:

- Reading a value at address X should return the last

value written to address X by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

(A simple view of four processors and their shared address space)

4

CMU 15-418/618,

Spring 2020

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes
eviction of X)

10 2

The chart at right shows the value of

variable foo (stored at address X) in

main memory and in each

processor’s cache

Assume the initial value stored at

address X is 0

Assume write-back cache behavior

P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

5

CMU 15-418/618,

Spring 2020

The cache coherence problem

Is this a mutual exclusion

problem?

I.e., can you fix the problem by

adding locks to your program?

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes
eviction of X)

10 2

0P3 load X 1 0 0 miss

P3 store X 01 0 2

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

The chart at right shows the value of

variable foo (stored at address X) in

main memory and in each

processor’s cache

Assume the initial value stored at

address X is 0

Assume write-back cache behavior

NO!
This is a problem created by

replicating the data stored at

address X in local caches (a

hardware implementation detail)

6

CMU 15-418/618,

Spring 2020

The cache coherence problem

▪ Intuitive behavior for memory system: reading value at address

X should return the last value written to address X by any

processor.

▪ Cache coherence problem exists because there is both global

storage (main memory) and per-processor local storage

(processor caches) implementing the abstraction of a single

shared address space.

7

CMU 15-418/618,

Spring 2020

Cache hierarchy of Intel Skylake CPU

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)

32 KB

8-way set associative, write back

64 B / clock loads, 32 B / clock stores4-5

cycle latency

L2: (private per core)

256 KB, non-inclusive

4-way set associative, write back

64B / clock, 12 cycle latency

L3: (shared by all cores)

2 MB per core, inclusive

16-way set associative

32B / clock per bank

minimum 42 cycle latency

(maybe more over interconnect)

64 byte

cache

line size

8

Main Memory
Memory:

2 channels

8 B / channel / memory clock

minimum 42 cycles + 51 ns latency

Regs Regs Regs Regs

Registers:

NOT cache!

~6.6 KB (split integer + vector)

max ~480B / clock (assuming 2R1W x 4

ops / cycle for integer + vector)

CMU 15-418/618,

Spring 2020

Intuitive expectation of shared memory

▪ Intuitive behavior for memory system: reading value at

address X should return the last value written to address X by

any processor.

▪ On a uniprocessor, providing this behavior is fairly simple,

since writes typically come from one client: the processor

- Caveat: Loads must examine all pending stores in store

buffer

- Exception: device I/O via direct memory access (DMA)

9

CMU 15-418/618,

Spring 2020

Coherence is an issue in a single CPU system

▪ Common solutions:

- CPU writes to shared buffers using uncached stores (e.g., driver code)

- OS support:

- Mark virtual memory pages containing shared buffers as not-cacheable

- Explicitly flush pages from cache when I/O completes

▪ In practice, DMA transfers are infrequent compared to CPU loads and stores

(so these heavyweight software solutions are acceptable)

Processor

Network

Card

Interconnect

Memory

Cache

Case 1:

Processor writes to buffer in main memory

Processor tells network card to async send buffer

Problem: network card many transfer stale data if

processor’s writes (reflected in cached copy of

data) are not flushed to memory

Case 2:

Network card receives message

Network card copies message in buffer in main

memory using DMA transfer

Card notifies CPU msg was received, buffer ready

to read

Problem: CPU may read stale data if addresses

updated by network card happen to be in cache

Message

Buffer

Consider I/O device performing DMA data

transfer

10

CMU 15-418/618,

Spring 2020

Problems with the intuition

▪ Intuitive behavior: reading value at address X should return

the last value written to address X by any processor.

▪ What does “last” mean?

- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so

close in time that it is impossible to communicate the

occurrence of the write to P2 in time?

▪ In a sequential program, “last” is determined by program

order (not time)

- Holds true within one thread of a parallel program

- But we need to come up with a meaningful way to

describe order across threads in a parallel program

11

CMU 15-418/618,

Spring 2020

Definition: coherence

A memory system is coherent if:

The results of a parallel program’s execution are such that

for each individual memory location, there is a hypothetical

serial order of all program operations (executed by all

processors) to the location that is consistent with the results

of execution, and:

1. Memory operations issued by any one processor

occur in the order issued by the processor

2. The value returned by a read is the value written by

the last write to the location… as given by the serial

order

Chronology of

operations on

address X

P0 write:

5
P1 read

(5)

P2 read

(5)

P0 read

(5)

P1 write:

25

P0 read

(25)

12

Also known as sequential consistency

CMU 15-418/618,

Spring 2020

Definition: coherence (said differently)

A memory system is coherent if:

1. A read by processor P to address X that follows a write by P to address X,

should return the value of the write by P (assuming no other processor wrote

to X in between)

2. A read by processor P1 to address X that follows a write by processor P2 to X

returns the written value... if the read and write are “sufficiently separated” in

time (assuming no other write to X occurs in between)

3. Writes to the same address are serialized: two writes to address X by any two

processors are observed in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor

observes X having value 2 before value 1)

Condition 1: obeys program order (as expected of a uniprocessor system)

Condition 2: “write propagation”: Notification of a write must eventually get to the

other processors. Note that precisely when information about the write is propagated

is not specified in the definition of coherence.

Condition 3: “write serialization”
13

CMU 15-418/618,

Spring 2020

Write serialization (by counter-example)

Writes to the same location are serialized: two writes to address X by any

two processors are observed in the same order by all processors.

(Example: if a processor observes X having value 1 and then 2, then no

processor observes X having value 2 before it has value 1)

Example: P1 writes value a to X. Then P2 writes value b to X.

Consider situation where processors P3 and P4 observe different order of

writes:

Order observed by P3

ld X →load returns “a”

ld X →load returns “b”

..
.

..
.

Order observed by P4

ld X →load returns “b”

ld X →load returns “a”

In terms of the first coherence definition: there is no global ordering of

loads and stores to X that is in agreement with results of this parallel

program.

(you cannot put the two memory operations involving X on a single timeline

and have both processor’s observations agree with the timeline)
14

CMU 15-418/618,

Spring 2020

Implementing coherence

▪ Software-based solutions

- OS uses page-fault mechanism to propagate writes

- Careful use of special “cache flush” instructions to

writeback dirty data at synchronization boundaries

- Can be used to implement memory coherence without

hardware support (e.g., over clusters of workstations)

- We won’t discuss these solutions

▪ Hardware-based solutions

- “Snooping”-based coherence implementations (today)

- Directory-based coherence implementations (next week)

15

CMU 15-418/618,

Spring 2020

Shared caches: coherence made easy

▪ One single cache shared by all processors

- Eliminates problem of replicating state in multiple caches

▪ Obvious scalability problems (since the point of a cache is to be local and fast)

- Interference / contention due to many clients

▪ But shared caches can have benefits:

- Facilitates fine-grained sharing (overlapping working sets)

- Loads/stores by one processor might pre-fetch lines for another processor

Processor Processor Processor Processor

Memory I/O

Cache

Interconnect

16

CMU 15-418/618,

Spring 2020

Snooping cache-coherence schemes

▪ Main idea: all coherence-related activity is broadcast to all processors

in the system (more specifically: to the processor’s cache controllers)

▪ Cache controllers monitor (they "snoop") memory operations, and

react accordingly, to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller

must respond to actions from

“both ends”:

1. LD/ST requests from its local

processor

2. Coherence-related activity

broadcast over the chip’s

interconnect

17

CMU 15-418/618,

Spring 2020

Very simple coherence implementation

Let’s assume:

1. Write-through caches

2. Granularity of coherence is cache

line

Upon write, cache controller

broadcasts invalidation message

As a result, the next read from other

processors will trigger cache miss

(processor retrieves updated value from

memory due to write-through policy)

P0 $ P1 $ mem location XAction

0

P1 load X 0 0 0

P0 load X 0 0

Cache

Processor

P0

Memory

Cache

. . .

Interconnect

Processor

P1

Interconnect activity

cache miss for X

cache miss for X

P0 write 100 to X 100 100invalidation for X

P1 load X 100100 100cache miss for X

18

CMU 15-418/618,

Spring 2020

A clarifying note

▪ The logic we are about to describe is performed by each

processor’s cache controller in response to:

- Loads and stores by the local processor

- Messages it receives from other caches

▪ If all cache controllers operate according to this described

protocol, then coherence will be maintained

- The caches “cooperate” to ensure coherence is maintained

▪ Cache controller tracks the status of each line in its cache

19

CMU 15-418/618,

Spring 2020

Write-through invalidation: state diagram

I

(Invalid)

V

(Valid)

PrRd / --

PrRd / BusRd

PrWr / BusWr **

PrWr / BusWr

BusWr/--

Notation: A / B: if event A is observed by cache

controller, then action B is taken

** Assumes write no-allocate policy (for simplicity)

▪ Two cache line states (same as meaning

of invalid in uniprocessor cache)
- Invalid (I)

- Valid (V)

▪ Two processor operations (triggered by

local processor)
- PrRd (read)

- PrWr (write)

▪ Two bus transactions (from remote

caches)
- BusRd (another processor intends to read line)

- BusWr (another processor intends to write to

line)

Remote processor (coherence) initiated transaction

Local processor initiated transaction

20

CMU 15-418/618,

Spring 2020

Write-through invalidation: state diagram

Requirements of the interconnect:

1. All write transactions visible to all cache controllers

2. All write transactions visible to all cache controllers

in the same order

Simplifying assumptions here:

1. Interconnect and memory transactions are atomic

2. Processor waits until previous memory operations is

complete before issuing next memory operation

3. Invalidation applied immediately as part of receiving

invalidation broadcast

21

Notation: A / B: if event A is observed by cache

controller, then action B is taken

** Assumes write no-allocate policy (for simplicity)

Remote processor (coherence) initiated transaction

Local processor initiated transaction

I

(Invalid)

V

(Valid)

PrRd / --

PrRd / BusRd

PrWr / BusWr **

PrWr / BusWr

BusWr/--

CMU 15-418/618,

Spring 2020

Write-through policy is inefficient

▪ Every write operation goes out to memory

- Very high bandwidth requirements

▪ Write-back caches absorb most write traffic as cache hits

- Significantly reduces bandwidth requirements

- But how do we ensure write propagation/serialization?

- This requires more sophisticated coherence protocols

22

CMU 15-418/618,

Spring 2020

Recall cache line state bits

Data (64 bytes on modern Intel processors)Tag
Line

state

Dirty

bit

23

CMU 15-418/618,

Spring 2020

Cache coherence with write-back caches

▪ Dirty state of cache line now indicates exclusive ownership

- Exclusive: cache is only cache with a valid copy of line (it can safely be

written to)

- Owner: cache is responsible for supplying the line to other processors

when they attempt to load it from memory (otherwise a load from

another processor will get stale data from memory)

Cache

Processor

P0

Memory

Cache

. . .

Interconnect

Processor

P1

X

Write to X Load X

Chronology of

operations on

address X

P0 write

P1 read

24

CMU 15-418/618,

Spring 2020

Invalidation-based write-back protocol

Key ideas:

▪ A line in the “exclusive” state can be modified without

notifying the other caches

▪ Processor can only write to lines in the exclusive state
- So they need a way to tell other caches that they want exclusive

access to the line

- They will do this by sending messages to all the other caches

▪ When cache controller observes (via snooping) a request

for exclusive access to line it contains
- It must invalidate the line in its own cache

- What if the line is dirty?

25

CMU 15-418/618,

Spring 2020

MSI write-back invalidation protocol

▪ Key tasks of protocol

- Ensuring processor obtains exclusive access for a write

- Locating most recent copy of cache line’s data on cache miss

▪ Three cache line states

- Invalid (I): same as meaning of invalid in uniprocessor cache

- Shared (S): line valid in one or more caches

- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or

“exclusive” state)

▪ Two processor operations (triggered by local CPU)

- PrRd (read)

- PrWr (write)

▪ Three coherence-related bus transactions (from remote caches)

- BusRd: obtain copy of line with no intent to modify

- BusRdX: obtain copy of line with intent to modify

- flush: write dirty line out to memory

26

CMU 15-418/618,

Spring 2020

MSI state transition diagram *

S

(Shared)

M

(Modified)

PrRd / --
PrWr / --

PrRd /

BusRd

BusRd /

flush

I

(Invalid)

PrWr /

BusRdX

PrWr /

BusRdX

PrRd / -- BusRdX /

--

BusRdX /

flush

BusRd / --

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence 27

Notation: A / B: if event A is observed by cache

controller, then action B is taken

Remote processor (coherence) initiated transaction

Local processor initiated transaction

CMU 15-418/618,

Spring 2020

Example Execution

28

X and Y have

value 0 at start

of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X S/0

P1: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3

P1: LD X

P0: LD X

P0: ST X ← 4

P1: LD X

P0: LD Y

P0: ST Y ← 1

P1: ST Y ← 2

CMU 15-418/618,

Spring 2020

Example Execution

29

X and Y have

value 0 at start

of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X S/0

P1: LD X S/0

P0: ST X ← 1 M/1 I

P0: ST X ← 2 M/2

P1: ST X ← 3 I M/3

P1: LD X M/3

P0: LD X S/3 S/3

P0: ST X ← 4 M/4 I

P1: LD X M/4

P0: LD Y S/0

P0: ST Y ← 1 M/1 I

P1: ST Y ← 2 I M/2

CMU 15-418/618,

Spring 2020

Summary: MSI

▪ A line in the M state can be modified without notifying other caches
- No other caches have the line resident, so other processors cannot read these

values (without generating a memory read transaction)

▪ Processor can only write to lines in the M state

- If processor performs a write to a line that is not exclusive in cache, cache

controller must first broadcast a read-exclusive transaction to move the line into

that state

- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I’m going to write”)

- Read-exclusive transaction is required even if line is valid (but not exclusive…

it’s in the S state) in processor’s local cache (why?)

- Dirty state implies exclusive

▪ When cache controller snoops a “read exclusive” for a line it contains

- Must invalidate the line in its cache

- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

- And supply line value to requesting cache controller

30

CMU 15-418/618,

Spring 2020

Does MSI satisfy coherence?

▪ Write propagation

- Achieved via combination of invalidation on BusRdX, and flush from

M-state on subsequent BusRd/BusRdX from another processors

▪ Write serialization

- Writes that appear on interconnect are ordered by the interconnect

(BusRdX)

- Reads that appear on interconnect are ordered by the interconnect

(BusRd)

- Writes that don’t appear on the interconnect (PrWr to line already in

M):

- Sequence of writes to line comes between two interconnect transactions

for the line

- All writes in sequence performed by same processor, P (that processor

certainly observes them in correct sequential order)

- All other processors observe notification of these writes only after a

interconnect transaction for the line. So all the writes come before the

transaction.

- So all processors see writes in the same order.

31

CMU 15-418/618,

Spring 2020

MESI invalidation protocol

▪ This inefficiency exists even if application has no sharing at all

▪ Solution: add additional state E (“exclusive clean”)

- Line has not been modified, but only this cache has a copy of the

line

- Decouples exclusivity from line ownership (line not dirty, so copy in

memory is valid copy of data)

- Upgrade from E to M does not require an interconnect transaction

▪ MSI requires two interconnect transactions for the

common case of reading an address, then writing to it

(why is this common?)

- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

32

CMU 15-418/618,

Spring 2020

MESI state transition diagram

E

(Exclusive)

M

(Modified)

PrRd / --
PrWr / --

PrWr /

BusRdX

BusRd / flush

I

(Invalid)

PrWr /

BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX /

flush

BusRd / --

S

(Shared)

PrRd / --

PrRd / BusRd
(no other cache

asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --

(another cache

asserts shared)

33

CMU 15-418/618,

Spring 2020

Example Execution

34

X and Y have

value 0 at start

of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X E/0

P1: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3

P0: LD Y

P0: LD X

P0: ST Y ← 4

P1: LD Y

CMU 15-418/618,

Spring 2020

Example Execution

35

X and Y have

value 0 at start

of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X E/0

P1: LD X S/0 S/0

P0: ST X ← 1 M/1 I

P0: ST X ← 2 M/2

P1: ST X ← 3 I M/3

P0: LD Y E/0

P0: LD X S/3 S/3

P0: ST Y ← 4 M/4 I

P1: LD Y S/4 S/4

CMU 15-418/618,

Spring 2020

Lower-level choices

▪ Who should supply data on a cache miss when line is in the E or

S state of another cache?

- Can get cache line data from memory or can get data from

another cache

- If source is another cache, which one should provide it?

▪ Cache-to-cache transfers add complexity, but commonly used

to reduce both latency of data access and reduce memory

bandwidth required by application

- Recall that caches are much faster + higher bandwidth than

memory

36

CMU 15-418/618,

Spring 2020

Increasing efficiency (and complexity)

▪ MESIF (5-state invalidation-based protocol)

- Like MESI, but one cache holds shared line in F state rather than S

(F=”forward”)

- Cache with line in F state services miss

- Simplifies decision of which cache should provide block on miss (basic

MESI: all caches respond)

- Used by Intel processors

▪ MOESI (5-state invalidation-based protocol)

- In MESI protocol, transition from M to S requires flush to memory

- Instead transition from M to O (O=”owned, but not exclusive”) and do

not flush to memory

- Other processors maintain shared line in S state, one processor

maintains line in O state

- Data in memory is stale, so cache with line in O state must service

cache misses

- Used in AMD Opteron

37

CMU 15-418/618,

Spring 2020

Invalidation-based vs. Update-based

Protocols

▪ Invalidation-based protocol
- To write to a line, cache must obtain exclusive access to it

- All other caches must invalidate their copies

- (All of the examples we have considered so far)

▪ Update-based protocol
- Can write to shared copy by broadcasting update to all

other copies

▪ Why is this a useful idea?

38

CMU 15-418/618,

Spring 2020

Reality: multi-level cache hierarchies

▪ Challenge: changes made to data

at first level cache may not be

visible to second level cache

controller than snoops the

interconnect.

▪ How might snooping work for a

cache hierarchy?

1. All caches snoop

interconnect independently?

(inefficient)

2. Maintain “inclusion”

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall Intel Core i7

hierarchy

44

CMU 15-418/618,

Spring 2020

Inclusion property of caches

▪ All lines in closer [to processor] cache are also in farther

[from processor] cache

- e.g., contents of L1 are a subset of contents of L2

- Thus, all transactions relevant to L1 are also relevant to

L2, so it is sufficient for only the L2 to snoop the

interconnect

▪ If line is in owned state (M in MSI/MESI) in L1, it must also

be in M state in L2

- Allows L2 to determine if a bus transaction is requesting

a modified cache line in L1 without requiring information

from L1

45

CMU 15-418/618,

Spring 2020

Is inclusion maintained automatically

if L2 is larger than L1?
▪ Consider this example:

- Let L2 cache be twice as large as L1 cache

- Let L1 and L2 have the same line size, are 2-way set associative, and use LRU

replacement policy

- Let A, B, C map to the same set of the L1 cache

A

B

A

B
L2

Cache

L1
Cache

Processor accesses A (L1+L2 miss)

✘

✘

No!

Set 0 Set 1

Set 0 Set 1

Set 2 Set 3

Processor accesses B (L1+L2 miss).

Processor accesses A many times

(all L1 hits).

Processor now accesses C, triggering

an L1 and L2 miss. L1 and L2 might

choose to evict different lines,

because the access histories differ.

As a result, inclusion no longer

holds!

46

✘Next victim

CMU 15-418/618,

Spring 2020

Maintaining inclusion: handling

invalidations

L1
Cache

L2
Cache

Processor

Interconnect

BusRdX / --

When line X is invalidated in L2

cache due to BusRdX from

another cache.

Must also invalidate line X in L1

Invalidate

X

X

✘

✘

“in L1”
bit

One solution: each L2 line contains

an additional state bit indicating if

line also exists in L1

This bit tells the L2 invalidations of

the cache line due to coherence

traffic need to be propagated to L1.

47

CMU 15-418/618,

Spring 2020

Maintaining inclusion: L1 write hit

L1
Cache

L2
Cache

Processor

Interconnect

Assume L1 is a write-back cache.

Processor writes to line X. (L1 write

hit)

Line X in L2 cache is in modified

state in the coherence protocol, but

it has stale data!

When coherence protocol requires X

to be flushed from L2 (e.g., another

processor loads X), L2 cache must

request the data from L1.

Add another bit for “modified-but-

stale”

(flushing a “modified-but-stale” L2

line requires getting the real data

from L1 first.)

Flush X

X

X

“in L1”
bit

“modified-
but-stale”

bit

BusRd / Flush X

48

CMU 15-418/618,

Spring 2020

HW implications of implementing coherence

▪ Each cache must listen for and react to all coherence traffic

broadcast on interconnect

▪ Additional traffic on interconnect

- Can be significant when scaling to higher core counts

▪ Most modern multi-core CPUs implement cache coherence

▪ To date, discrete GPUs do not implement cache coherence

- Thus far, overhead of coherence deemed not worth it for

graphics and scientific computing applications (NVIDIA

GPUs provide single shared L2 + atomic memory

operations)

- CUDA is free to optimize all non-”volatile” loads to

registers

- But the latest Intel Integrated GPUs do implement cache

coherence

49

CMU 15-418/618,

Spring 2020

NVIDIA GPUs do not implement cache coherence

▪ Incoherent L1 caches (L1 per SMM)

▪ Single, unified L2 cache

Memory (DDR5 DRAM)

Shared L2 Cache

L1 Cache

SMM

Core

L1 Cache

SMM

Core

L1 Cache

SMM

Core

L1 Cache

SMM

Core. . .

CUDA global memory atomic operations

“bypass” L1 cache, so an atomic operation

will always observe up-to-date data

// this is a read-modify-write performed

atomically on the

// contents of a line in the L2 cache
atomicAdd(&x, 1);

L1 caches are write-through to L2 by default

CUDA volatile qualifier will cause compiler

to generate a LD instruction that will bypass

the L1 cache. (see ld.cg instruction)

NVIDIA graphics driver will clear L1 caches

between any two kernel launches (ensures

stores from previous kernel are visible to

next kernel. Imagine a case where driver did

not clear the L1 between kernel launches…

Kernel launch 1:

SMM core 0 reads x (so it resides in L1)

SMM core 1 writes x (updated data available

in L2)

Kernel launch 2:

SMM core 0 reads x (cache hit! processor

observes stale data)

If interested in more details, see “Cache Operators” section

of NVIDIA PTX Manual (Section 8.7.6.1 of Parallel Thread

Execution ISA Version 4.1)

50

CMU 15-418/618,

Spring 2020

Implications of cache coherence to

the programmer

51

CMU 15-418/618,

Spring 2020

Artifactual communication via false sharing

What is the potential performance problem with this code?

// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why is this better?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

52

CMU 15-418/618,

Spring 2020

Demo: false sharing

void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with

num_threads=12 on 12 core

system: 5.1 sec

Execution time with

num_threads=12 on 12 core

system: 2.1 sec

threads update a per-thread

counter many times

53

CMU 15-418/618,

Spring 2020

False sharing

▪ Condition where two processors write to different

addresses, but addresses map to the same cache

line

▪ Cache line “ping-pongs” between caches of writing

processors, generating significant amounts of

communication due to the coherence protocol

▪ No inherent communication, this is entirely

artifactual communication

▪ False sharing can be a factor in when programming

for cache-coherent architectures

P1 P2

Cache

line

54

CMU 15-418/618,

Spring 2020

Impact of cache line size on miss rate
M

is
s

R
a
te

 %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade

False sharing

True sharing

Capacity/Conflict

Cold

8 16 32 64 128 256 8 16 32 64 128 256

Barnes-Hut Radiosity

Cache Line Size

M
is

s
R

a
te

 %

12

10

8

6

4

2

0

Upgrade

False sharing

True sharing

Capacity/Conflict

Cold

8 16 32 64 128 256 8 16 32 64 128 256

Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales

Figure credit: Culler, Singh, and Gupta 55

CMU 15-418/618,

Spring 2020

Parallel radix sort of b-bit numbers

Input:

P0 P1 P2 P3

Output:

Sort array of N, b-bit numbers

Here: radix = 24 = 16

b bits

r bits

(sort key in iter 0)

r bitsr bitsr bits

(sort key in iter [b/r]-1)

For each group of r bits: (serial loop)

In parallel, on each processor:

Sort elements by r-bit value

Compute number of elements in each bin (2r

bins)

Aggregate per-processor counts to compute

compute bin starts

Write elements to appropriate position

LSB

Potential for lots of false sharing

False sharing decreases with increasing array size
56

CMU 15-418/618,

Spring 2020

Impact on applications

▪ Read-only data can be handled efficiently

- E.g., build up big table of computed values

- All caches get read-only copies

▪ Writing data can be costly

- Random, overlapping patterns especially problematic

- Potential for false sharing

- Even when no synchronization required by application

▪ Helps to operate program in phases

- Phase 1: All processors generate local copies of data

- Phase 2: Merge copies together (carefully!)

- Phase 3: Lots of read-only access

57

CMU 15-418/618,

Spring 2020

Summary: snooping-based coherence

▪ The cache coherence problem exists because the abstraction of a single

shared address space is not implemented by a single storage unit

- Storage is distributed among main memory and local processor caches

- Data is replicated in local caches for performance

▪ Main idea of snooping-based cache coherence: whenever a cache

operation occurs that could affect coherence, the cache controller

broadcasts a notification to all other cache controllers

- Challenge for HW architects: minimizing overhead of coherence implementation

- Challenge for SW developers: be wary of artifactual communication due to

coherence protocol (e.g., false sharing)

▪ Scalability of snooping implementations is limited by ability to broadcast

coherence messages to all caches!

- Next time: scaling cache coherence via directory-based approaches

58

