
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2020

Lecture 1:

Why Parallelism?
Why Efficiency?

CMU 15-418/618, Spring 2020

Hi!

Randy Bryant

Plus . . .

An evolving collection of teaching assistants

Nathan Beckmann

CMU 15-418/618, Spring 2020

Getting into the Class
▪ Status (Mon Jan. 13, 09:30)

- 157 students enrolled
- 103 on wait list
- 175 max. enrollment

- ~20 slots
▪ If you are registered
- Do Assignment 1

- Due Jan. 29
- If find too challenging,

then please drop by Jan. 27

▪ Clearing Wait List

- Complete Assignment 1 by
Jan. 22, 23:00

- No Autolab account
required

- We will enroll top-
performing students

- It’s that simple!
- You will know by Jan. 27

CMU 15-418/618, Spring 2020

What will you be doing in this course?

CMU 15-418/618, Spring 2020

Assignments
▪ Four programming assignments

- First assignment is done individually, the rest will be done in pairs
- Each uses a different parallel programming environment
- Each also involves measurement, analysis, and tuning

Assignment 1: SIMD and multi-core
parallelism

Assignment 2: CUDA
programming on NVIDIA GPUs

Assignment 3: Parallel Programming
via a Shared-Address Space Model

Assignment 4: Parallel Programming
via a Message Passing Model

CMU 15-418/618, Spring 2020

Final project
▪ 6-week self-selected final project
▪ Performed in groups (by default, 2 people per group)
▪ Keep thinking about your project ideas starting TODAY!
▪ Poster session at end of term

▪ Check out previous projects:

http://15418.courses.cs.cmu.edu/spring2016/competition

http://15418.courses.cs.cmu.edu/fall2017/article/10

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s18/www/15418-s18-projects.pdf

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s19/www/15418-s19-projects.pdf

http://15418.courses.cs.cmu.edu/spring2016/competition

CMU 15-418/618, Spring 2020

Exercises
▪ Five homework exercises
- Scheduled throughout term
- Designed to prepare you for the exams
- We will grade your work only in terms of participation
- Did you make a serious attempt?
- Only a participation grade will go into the gradebook

CMU 15-418/618, Spring 2020

Grades

40% Programming assignments (4)
30% Exams (2)
25% Final project
5% Exercises

Each student gets up to five late days on programming
assignments (see syllabus for details)

CMU 15-418/618, Spring 2020

Getting started
▪ Visit course home page
- http://www.cs.cmu.edu/~418/

▪ Sign up for the course on Piazza
- http://piazza.com/cmu/spring2020/1541815618

▪ Textbook

- There is no course textbook, but please see web site for
suggested references

▪ Find a Partner
- Assignments 2–4, final project

CMU 15-418/618, Spring 2020

Regarding the class meeting times
▪ Class MWF 3:00–4:20
- Lectures (mostly)
- Some designated “Recitations”
- Targeted toward things you need to know for an

upcoming assignment
▪ No classes last part of the term
- Let you focus on projects

CMU 15-418/618, Spring 2020

Collaboration (Acceptable & Unacceptable)
▪ Do
- Become familiar with course policy

- Talk with instructors, TAs, partner
- Brainstorm with others
- Use general information on WWW

▪ Don’t
- Copy or provide code to anyone
- Use information specific to 15-418/618 on WWW
- Leave your code in accessible place
- Now or in the future

http://www.cs.cmu.edu/~418/academicintegrity.html

http://www.cs.cmu.edu/~418/academicintegrity.html

CMU 15-418/618, Spring 2020

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing

C.mmp at CMU (1971)
16 PDP-11 processors

Cray XMP (circa 1984)
4 vector processors

Thinking Machines CM-2 (circa 1987)
65,536 1-bit processors +

2048 floating-point co-processors

800+ compute nodes
Heterogenous Structure

Bridges at the Pittsburgh
Supercomputer Center

CMU 15-418/618, Spring 2020

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing
▪ Another Driving Application (starting in early ‘90s): Databases

▪ Especially, handling millions of transactions per second for web services

Sun Enterprise 10000 (circa 1997)
16 UltraSPARC-II processors

Oracle Supercluster M7 (today)
4 X 32-core SPARC M2 processors

▪ RIP 2019. Killed by cloud computing

CMU 15-418/618, Spring 2020

A Brief History of Parallel Computing
▪ Cloud computing (2000–present)
▪ Build out massive centers with many, simple processors

▪ Connected via LAN technology
▪ Program using distributed-system models

▪ Not really the subject of this course (take 15-440)

CMU 15-418/618, Spring 2020

Setting Some Context
▪ Before we continue our multiprocessor story, let’s pause to consider:
- Q: what had been happening with single-processor performance?

▪ A: since forever, they had been getting exponentially faster
- Why?

Image credit: Olukutun and Hammond, ACM Queue 2005

CMU 15-418/618, Spring 2020

A Brief History of Processor Performance
▪ Wider data paths
- 4 bit → 8 bit → 16 bit → 32 bit → 64 bit

▪ More efficient pipelining
- e.g., 3.5 Cycles Per Instruction (CPI) → 1.1 CPI

▪ Exploiting instruction-level parallelism (ILP)
- “Superscalar” processing: e.g., issue up to 4 instructions/cycle
- “Out-of-order” processing: extract parallelism from instruction

stream
▪ Faster clock rates
- e.g., 10 MHz → 200 MHz → 3 GHz

▪ During the 80s and 90s: large exponential performance gains
- and then…

CMU 15-418/618, Spring 2020

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing
▪ Another Driving Application (starting in early ‘90s): Databases

▪ Inflection point in 2004: Intel hits the Power Density Wall

Pat Gelsinger, ISSCC 2001

CMU 15-418/618, Spring 2020

From the New York Times

John Markoff, New York Times, May 17, 2004

CMU 15-418/618, Spring 2020

ILP tapped out + end of frequency scaling

No further benefit from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

CMU 15-418/618, Spring 2020

Programmer’s Perspective on Performance
Question: How do you make your program run faster?

Answer before 2004:
- Just wait 6 months, and buy a new machine!
- (Or if you’re really obsessed, you can learn about parallelism.)

Answer after 2004:
- You need to write parallel software.

CMU 15-418/618, Spring 2020

Parallel Machines Today
Examples from Apple’s product line:

Mac Pro
28 Intel Xeon W cores

iMac Pro
18 Intel Xeon W cores

(images from apple.com)

MacBook Pro Retina 15”
8 Intel Core i9 cores

iPhone XS
6 CPU cores

(2 fast +
4 low power)
6 GPU cores

http://apple.com

CMU 15-418/618, Spring 2020

Intel Coffee Lake Core i9 (2019)
6-core CPU + multi-core GPU integrated on one chip

CMU 15-418/618, Spring 2020

NVIDIA GeForce GTX 1660 Ti GPU (2019)
24 major processing blocks
(but much, much more parallelism available... details coming soon)

CMU 15-418/618, Spring 2020

Mobile parallel processing
Power constraints heavily influence design of mobile systems

NVIDIA Tegra K1:
Quad-core ARM A57 CPU + 4 ARM A53 CPUs +

NVIDIA GPU + image processor...

Apple A12: (in iPhone XR)
4 CPU cores
4 GPU cores

Neural net engine
+ much more

CMU 15-418/618, Spring 2020

Supercomputing
▪ Today: clusters of multi-core CPUs + GPUs
▪ Oak Ridge National Laboratory: Summit (#1 supercomputer in world)
- 4,608 nodes
- Each with two 22-core CPUs + 6 GPUs

CMU 15-418/618, Spring 2020

Supercomputers vs. Cloud Systems
Supercomputers

- Few, big tasks

- Customized

- Optimized for reliability

- Low latency interconnect

- Minimal

- Static scheduling

- Low-level, processor-centric model

- Programmer manages resources

Data Center Clusters

- Many small tasks

- Consumer grade

- Optimized for low cost

- Throughput-optimized interconnect

- Provides reliability

- Dynamic allocation

- High level, data-centric model

- Let run-time system manage
resources

Hardware

Run-Time System

Application Programming

Target Applications

CMU 15-418/618, Spring 2020

Supercomputer / Data Center Overlap
▪ Supercomputer features in data centers
- Data center computers sometimes used to solve problem
- E.g., learn neural network for language translation

- Data center computers sometimes equipped with GPUs
▪ Data center features in supercomputers
- Also used to process many small–medium jobs

CMU 15-418/618, Spring 2020

What is a parallel computer?

CMU 15-418/618, Spring 2020

One common definition
A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We’re going to use multiple
processors to get it

We care about performance *
We care about efficiency

* Note: different motivation from “concurrent programming” using pthreads in 15-213

CMU 15-418/618, Spring 2020

DEMO 1
(This semester’s first parallel program)

CMU 15-418/618, Spring 2020

Speedup
One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

CMU 15-418/618, Spring 2020

Class observations from demo 1

▪ Communication limited the maximum speedup achieved
- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improves speedup
- Moving students (“processors”) closer together (or let them shout)

CMU 15-418/618, Spring 2020

DEMO 2
(scaling up to four “processors”)

CMU 15-418/618, Spring 2020

Class observations from demo 2

▪ Imbalance in work assignment limited speedup
- Some students (“processors”) ran out work to do (went idle),

while others were still working on their assigned task

▪ Improving the distribution of work improved speedup

CMU 15-418/618, Spring 2020

DEMO 3
(massively parallel execution)

CMU 15-418/618, Spring 2020

Class observations from demo 3

▪ The problem I just gave you has a significant amount of
communication compared to computation

▪ Communication costs can dominate a parallel
computation, severely limiting speedup

CMU 15-418/618, Spring 2020

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so

that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

CMU 15-418/618, Spring 2020

Course theme 2:
Parallel computer hardware implementation: how parallel
computers work

▪ Mechanisms used to implement abstractions efficiently
- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)
- Because you care about efficiency and performance

(you are writing parallel programs after all!)

CMU 15-418/618, Spring 2020

Course theme 3:
Thinking about efficiency

▪ FAST != EFFICIENT
▪ Just because your program runs faster on a parallel computer, it does

not mean it is using the hardware efficiently

- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities
▪ HW designer’s perspective: choosing the right capabilities to put in

system (performance/cost, cost = silicon area?, power?, etc.)

CMU 15-418/618, Spring 2020

Fundamental Shift in CPU Design Philosophy
Before 2004:
- within the chip area budget, maximize performance
- increasingly aggressive speculative execution for ILP

After 2004:
- area within the chip matters (limits # of cores/chip):
- maximize performance per area

- power consumption is critical (battery life, data centers)
- maximize performance per Watt

- upshot: major focus on efficiency of cores

CMU 15-418/618, Spring 2020

Summary
▪ Today, single-thread performance is improving very slowly

- To run programs significantly faster, programs must utilize multiple
processing elements

- Which means you need to know how to write parallel code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization

- Knowledge of machine characteristics is important

▪ I suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

▪ Welcome to 15-418!

