
GraphRats3.0

15-418/618, Spring 2020
Assignment 4

GraphRats: MPI Edition

Assigned: Wed., March 4
Due: Sun., Mar. 29, 11:00 pm
Last day to handin: Wed., Apr. 1

1 Overview

Before you begin, please take the time to review the course policy on academic integrity at:

http://www.cs.cmu.edu/˜418/academicintegrity.html

Download the Assignment 4 starter code from the course Github using:

linux> git clone https://github.com/cmu15418/asst4-s20.git

In order to add support for MPI compilation for the GHC machines, do one of the following:

• Add the following line to your file ˜/.cshrc:

setenv PATH $PATH\:/usr/lib64/openmpi/bin

• Add the following line to your file ˜/.bashrc:

export PATH=$PATH:/usr/lib64/openmpi/bin

1

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/academicintegrity.html

Assignment Objectives

In this assignment, you will explore the use of the MPI library to implement a program consisting of a
number of independent processes that communicate and coordinate with one another via message passing.
The application is typical of the bulk synchronous execution model seen in many scientific applications.
Although the application is the same as you had in Assignment 3, you will find that your implementation
is very different. OpenMP provides a data-parallel programming model, where the program consists of
sequence of steps, each of which performs many operations in parallel. By contrast, an MPI program de-
scribes the behavior of an autonomous process that periodically communicates with other processes running
the same code, such that they collectively solve a computational problem.

Mapping a problem across multiple processors often requires partitioning the data into parts that can be
worked on independently. This assignment requires you to write a partitioner. You will find that doing
so requires making trade-offs among competing objectives including: generality, performance of the parti-
tioner, degree of load balance, and the resulting amount of communication required among processors.

Machines

The MPI (for “Message-Passing Interface”) standard provides a way to write parallel programs that can run
on collections of machines that communicate with one another via message passing. This approach has the
advantage that it can scale to very large machines, with 1000 or more processors. For this lab, you will
run on single, multicore processors, but using message passing, rather than any form of shared memory
communication or synchronization.

You can test and evaluate your programs on any multicore processor, including the GHC machines. For
performance evaluation, you will run your programs on the Latedays cluster.

Resources

There is a lot of information online about MPI. Some resources we have found useful include:

• General MPI Tutorial

• Longer MPI Tutorial from Lawrence Livermore National Laboratories

• Official documentation on OpenMPI v1.6, the version that runs on the Latedays machines

2 Application

Dr. Roland Dent, Director of the world-famous GraphRats Project was quite excited to find that million-rat
simulations are possible using a well-optimized simulator running on a multicore processor. But, he dreams
of more. “There are billions of rats in the world. Shouldn’t we be able to simulate billions of rats?” You
have convinced him that such large simulations would require much more computing power, beyond what

2

https://www.open-mpi.org/
http://15418.courses.cs.cmu.edu/spring2016/article/6
http://mpitutorial.com/tutorials/
https://computing.llnl.gov/tutorials/mpi/
https://www.open-mpi.org/doc/v1.6/

Figure 1: 32× 32 Hilbert graph hlbrtZ. Regions are numbered so that consecutive regions in the ordering
are adjacent in the graph.

shared-memory systems can provide. It might be possible on a modern supercomputer, with ten thousand
or more nodes that communicate by message passing.

As a feasibility study, you propose implementing an MPI version of the GraphRats simulator running on
a single, multicore machine, but using only message passing to communicate and coordinate among the
machine’s cores. Your idea is to partition the graph into P zones, mapping each zone onto a separate
process (and relying on the OS to map each process onto a separate core.) Each process will keep track of
the rats within its assigned zone, computing the new states of all of these rats. It will communicate with
processes holding nodes adjacent to ones in its zone, both to share the node states and weights along the
boundaries, and to pass along rats as they move from one zone to another. As before, the graphs consist of
a number of regions, such that the only connections from one region to another are via the grid edges. As
long as each region is fully contained within a single zone, the amount of communication between zones
will be manageable.

Dr. Dent watched an online version of the 15-418 lecture of Feb. 7, 2020 and became fascinated by the
properties of space-filling curves based on the Hilbert curve construction. He devised a method to generate
fractal-graph representations of rat colonies, with the regions numbered in such a way that the consecutive
regions in the numbering are adjacent in the graph. He calls these Hilbert graphs, an example of which is
shown in Figure 1. “Rats are highly intelligent and will appreciate the elegance of this construction!” he
exclaimed.

He devised a new set of benchmark graphs, documented in Appendix A. These have between 61 and 256
regions, with widely varying region sizes. One challenge for you will be to devise a partitioning scheme so
that you can divide up each graph into P zones in a way that achieves a good combination of load balance
and minimizes the required communication between zones.

3

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-032x032-hlbrtZ.svg
http://www.cs.cmu.edu/~418/lectures/09_casestudies.pdf
https://en.wikipedia.org/wiki/Hilbert_curve

Model Parameters

As before, each graph consists of N nodes with a set of directed and symmetric edges indicating which
nodes are adjacent. All of the graphs are based on a grid of of w × h nodes. Some of the nodes are
designated as “hubs,” with edges to all other nodes in their respective regions. The graph file format has
been extended to include the region data. The code for loading the graphs into memory calls a partitioner,
which you must design, to partition the regions (and therefore the graph) into a specified number of zones.

Other aspects of the program (rats, reward functions) are the same as in Assignment 3. The code has
been simplified to support only batch update mode. The starter code can be compiled to generate two
different simulators: crun-seq, suitable for sequential execution, and crun-mpi, providing the starting
framework for an MPI-based parallel simulator. Compiler-directives based on the compile-time constant
MPI designate the differences between the two.

The provided MPI-based simulator does the following, when invoked to run with P processes:

1. The master process (Process 0), reads a copy of the graph file and runs your partitioner to assign each
graph region to one of P zones.

2. It broadcasts the complete graph data structure to the other P − 1 processes.

3. Each process creates a set of data structures to represent its assigned zone.

4. The master process reads a copy of the rat file indicating the starting nodes.

5. The master process runs the entire simulation in sequential mode.

You must modify and extend this code to have the master distribute the rats after step 4 above. You should
then replace step 5 by one that has the processes simulate their respective zones, exchanging rat and node
information with each other. Periodically (only at the end of the simulation for the benchmark runs), the
processes will be directed to provide their node counts to the master process, so that it can supply this
information as the program output.
The simulator has a similar set of options as those in Assignment 3:

linux> ./crun-seq -h
Usage: ./crun-seq -g GFILE -r RFILE [-n STEPS] [-s SEED] [-q] [-i INT] [-I] [-z ZONE]

-h Print this message
-g GFILE Graph file
-r RFILE Initial rat position file
-n STEPS Number of simulation steps
-s SEED Initial RNG seed
-q Operate in quiet mode. Do not generate simulation results
-i INT Display update interval
-I Instrument simulation activities
-z ZONE Test partitioning into ZONE zones without running simulation

The -z option provides a way for you to test and evaluate your partitioner. It provides detailed information
about the structure of the zones and then exits without performing any simulation.

As before, you can use the Python program grun.py to visualize the simulation results.
To run a program under MPI, you use the program mpirun. A typical invocation is:

4

linux> mpirun -np 6 ./crun-mpi -g data/g-160x160-hlbrtA.gph -r data/r-160x160-r40.rats -n 5 -q

This has the simulator run with P = 6.

3 Test Programs and Performance Evaluation

The provided program regress.py has similar options as in Assignment 3, except that you specify a
number of MPI processes rather than OMP threads. Its usage is as follows:

linux> ./regress.py -h
Usage: ./regress.py [-h] [-c] [-p PROCS]

-h Print this message
-c Clear expected result cache
-p P Specify number of MPI processes

If > 1, will run crun-mpi. Else will run crun-seq

By default, it runs crun-mpi with 8 processes.
The provided program benchmark.py has the following options:

linux> ./benchmark.py -h
Usage: ./benchmark.py [-h] [-Q] [-I]

[-b BENCHLIST] [-n NSTEP] [-p P1:P2:..:Pk] [-r RUNS] [-i ID] [-f OUTFILE]
-h Print this message
-Q Quick mode: Don’t compare with reference solution
-I Include instrumentation results from each run
-b BENCHLIST Specify which benchmark(s) to perform as substring of ’ABCDEF’
-n NSTEP Specify number of steps to run simulations
-p P1:P2:..:PK Specify number of MPI processes as a colon-separated list

If > 1, will run crun-mpi. Else will run crun-seq.
-r RUNS Set number of times each benchmark is run
-i ID Specify unique ID for distinguishing check files
-f OUTFILE Create output file recording measurements

If file name contains field of form XX..X, will replace with
ID having that many digits

The intention is that you run this program on either a GHC or a Latedays machine. On these machines,
it will automatically invoke mpirun with a set of arguments that specify the use of processor affinity, a
specific way to map processes onto cores. By default, it will run with 8 processes on a GHC machine and
12 on Latedays. By default, the program will run each simulation three times and take the minimum of their
execution times. This helps make the timings more reliable. You can change this with the command-line
option ’-r.’

The guidelines for using the Latedays machines are the same as for Assignment 3. The provided program
submitjob.py is used to generate and submit the control files to the job queue.

The performance will be evaluated on eight graphs, as is documented in Appendix A. Six of these are
provided to you for testing and evaluation. The additional two, referred to as the mystery graphs will not
be available to you. You must write your program to be sufficiently general to run these correctly and with
good performance. Some general characteristics of these graphs are presented in Appendix A.

5

All benchmarking will be done using a random initial rat placement. Each run can be benchmarked against
the provided program: either crun-soln-ghc (GHC) or crun-soln-latedays (Latedays). The
actual grading will be done on Latedays. Performance points are computed as they were in Assignment 3,
except that each benchmark will count up to 8 points, rounded up to the next 0.5 points, for a maximum
total of 64 points.

4 Partitioning the Graph

You should modify the code in file partition.c to implement a better partitioner than the one provided.
Figure 2 documents the API for the partitioner. The function assign_zones is provided a list of regions,
the number of regions, and the target number of zones. Each region includes information about the number
of nodes and edges1 in the region, which can be used to assign a weight to each region.

There are a number of strategies for partitioning a graph, some of which are illustrated in Figure 3 for the
10-region graph of Figure 1. Let us consider the case where there are M regions, with the weight of each
region i, denoted wi, equal to the number of nodes in the region. In this example, the weights range between
64 and 256. The weight of each zone j, denoted Wj is then the sum of the weights of the regions assigned
to the zone. One useful objective is to try to minimize the standard deviation of the zone weights, so that the
weights of the zones are close to each other. Another is to try to minimize the amount of communication
that will be required between the zones, including both 1) how many zones are adjacent to each zone and 2)
how many edges there are between each pair of zones.

Figure 3 shows the result of applying three different partitioning strategies with P = 3 zones. Below each
image is a list of zone weights of the form W = (W0,W1,W2). Figures 11–13 in Appendix B show the
results of applying these three strategies with P = 12 zones to hlbrtE, one of the 160× 160 graphs in the
grading benchmark set (See Appendix A.)

Round Robin: Assign each region i to zone i mod P . This strategy is implemented in the provided code
and in this case yields a very imbalanced partitioning (Figure3(a)) with between 256 and 448 nodes in
the zones, and with a standard deviation of 79.8. Note also that this strategy does not make any con-
sideration for the amount of communication. For hlbrtE, this strategy yields a standard deviation
of 492.0.

Interval: This strategy is based on a linear partitioning of the region numbers. That is, suppose the regions
are numbered from 0 to M − 1. An interval partitioning is a set of values K0,K1, . . .KP−1 such
that

∑P−1
j=0 Kj = M . An optimal interval partitioning is one with minimum standard deviation.

Given an optimal interval partitioning, zone 0 is then assigned the first K0 regions, zone 1 then
next K1 regions, etc. Because of the region numbering scheme of our Hilbert graphs, each zone
then consists of a contiguous set of nodes and these will tend to be grouped in a way that keeps the
amount of communication required among the zones reasonably low. This strategy yields a slightly
more balanced partitioning (Figure 3(b)) with between 256 and 384 nodes in each zone, and with a
standard deviation of 60.3. For hlbrtE, this strategy yields a standard deviation of 339.9.

1 The number of edges in a region is computed the sum of the number of neighbors for each node in the region.

6

https://en.wikipedia.org/wiki/Standard_deviation
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-x12.svg
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-i12.svg

(a) Region data structure

/* Representation of a region. Used by partitioner */
typedef struct {

int id;
int x; // Left X
int y; // Upper Y
int w; // Width
int h; // Height
int node_count; // Number of nodes
int edge_count; // Number of (directed edges)
int zone_id; // Zone assigned by partitioner

} region_t;

(b) Partitioner prototype

void assign_zones(region_t *region_list, int nregion, int nzone);

Figure 2: Partitioner API. When run with parameter nzone equal to P , The function assign zones
assigns a value between 0 and P − 1 to the zone id field in each region.

(a). Round Robin (b). Interval (c). Greedy

W = (320, 448, 256) W = (256, 384, 384) W = (384, 320, 320)
σ = 79.8 σ = 60.3 σ = 30.2

Figure 3: Partitioning of the 32× 32 graph from Figure 1 into three zones according to different strategies.

7

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-032x032-hlbrtZ-x3.svg
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-032x032-hlbrtZ-i3.svg
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-032x032-hlbrtZ-g3.svg

Greedy: There are many strategies that can be classified as greedy. Ours uses the following simple ap-
proach: first, order all regions from highest weight to lowest. Then, at each step, assign the next
region to the zone having the lowest cumulative weight. This strategy yields an optimally balanced
partitioning for this example (Figure 3(c)), with between 320 and 384 nodes per zone and with a stan-
dard deviation of 30.2. However, it makes no consideration for the amount of communication. For
hlbrtE, this strategy yields a standard deviation of 11.8.

You are free to use any of these strategies or to devise your own. You should also consider what value to
use as the weight of a region: it could be based on the number of nodes, the number of edges, or some
combination of the two. Your partitioner may attempt to minimize communication, or it may ignore this.
The only requirements are:

• It should be completely general, running for any size graph, any number of regions, and any number
of zones.

• The time required to run it will be counted as part of the start-up time for the simulator, and so you
should avoid strategies that require a lot of computation.

• You may choose different strategies depending on the general characteristics of the graphs, but you
should not “overfit” your selection to the six graphs provided. (Remember that you want good per-
formance on the two mystery graphs.)

You will find some useful code in the file rutil.c, with API declared in rutil.h. In addition to some
general statistical functions, there is an efficient interval partitioner, provided as the function find_partition.
This function uses dynamic programming to find an optimum interval partitioning in time O(M2 · P) and
space O(M · P). Even for our largest benchmarks (M = 256, P = 12), this function runs in less than one
second.

5 Some Advice

Important Requirements

The following are some aspects of the assignment that you should keep in mind:

• You may only use MPI library routines for communicating and coordinating between the MPI pro-
cesses. You cannot use any form of shared-memory parallelism. The idea is to develop a program
that could ultimately be deployed on a large, message-passing system.

• Although performance will be measured with just 12 processes, your program should be able to run
on P processes for any value of P .

• You are free to add other header and code files and to modify the make file. You can switch over to
C++ (or Fortran) if you like.

8

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-g12.svg
https://en.wikipedia.org/wiki/Dynamic_programming

• You are to restrict your performance improvement techniques to ones that enhance or make better use
of parallelism. Any optimizations that would improve the sequential simulator performance are not
allowed. In particular:

– You may not modify the function neighbor ilf in sim.c. You also cannot use other meth-
ods to compute the ideal load factor (ILF) for a node.

– You may not modify any of the simulation-related functions in rutil.c or use different ver-
sions of these functions. (You may add to or modify the statistics and optimization functions in
this file.)

• You can use any kind of code, including calls to standard libraries, as long as it is platform indepen-
dent. You may not use any constructs that make particular assumptions about the machine instruction
set, such as embedded assembly or calls to an intrinsics library. (The exception to this being the code
in cycletimer.c.)

• You may not include code generated by other parallel-programming frameworks, such as ISPC,
OpenMP, PThreads, etc..

• Although your simulator will only be tested on graphs of at most 40,000 nodes and 300,000 edges
(see Appendix A), you should write your code to scale up to graphs of arbitrary size, arbitrary rat
counts, and an arbitrary number of processes.

Useful Parts of MPI

The MPI standard is large and complex. You only need to use a core subset of its features. Ideas that are
especially useful for this assignment include:

• Using synchronous and asynchronous send and receive constructs for point-to-point communica-
tions. Asynchronous communication is preferred, because it allows the processes to operate in a
more loosely coupled manner. When exchanging data with adjacent zones, it works well to have a
process first initiate all of its send operations, then perform the receives, and then wait for the sends
to complete.

• Using the probe operation to determine the size of an incoming message. This is useful when sending
variable length buffers of rats between processes.

• Using broadcast to send copies of the initial rat positions from Process 0 (the master) to the others at
the beginning of the simulation.

What is Provided

• You will find that the modifications you made to the starter code for Assignment 3 are not very useful
here. You’d do better to work from the new starter code.

9

• The provided code stores a complete representation of the graph for each process. This uses more
space than is necessary, but it allows you to have a universal numbering scheme for nodes, edges, and
rats. It also will not harm the performance of your program—cache behavior depends on how much
memory actually gets used rather than on how much has been allocated.

• The provided code has each process construct data structures representing its assigned zone, stored as
fields in the graph_t structure (declared in file crun.h). All lists of nodes are in sorted order.

– Array local_node_list is a list of the nodes in the zone. Its length is given by the field
local_node_count.

– Array export_node_list is an array of P lists, where list j consists of the nodes in this
zone that have edges to nodes in zone j. Its length is given by the field export_node_count[j].

– Array import_node_list is an array of P lists, where list j consists of the nodes in zone j
that have edges to nodes in this zone. Its length is given by the field import_node_count[j].
Given the symmetry of the graph, you can assume that the contents of export_node_list[j]
for process i is identical to those of import_node_list[i] for process j.

What You Need to Do

• You will find comments in some of the .h and .c files with the header “TODO.” These indicate some
of the key places you will need to add or modify the existing code.

• You will need to modify the partitioning code in the file partition.c to improve on the provided
partitioner. This is discussed more fully in Section 4.

• You will need to allocate space to store information about the rats in each zone, as well as the buffers
you use for communication via MPI. Generally, it is best to allocate these at the beginning of the
program. Some you can allocate according to the maximum required size. Others you may want to
allocate smaller amounts and then grow dynamically (via realloc) as needed.

• You will need to understand the processing steps in the function do_batch (file sim.c) and adapt
them for use on a single zone. This will require several rounds of exchanging data with adjacent
zones: rats, node counts, and node weights.

• When sending a rat to a new zone, you must also send along its associated seed for random number
generation.

• You will need to implement the capability to have every process send its copy of the node counts
to Process 0, and for Process 0 to collect these counts from other processes. These should be imple-
mented as functions send_node_state and gather_node_state, respectively (file simutil.c.)

• In order to use the instrumentation features, you will need to include the START ACTIVITY and
FINISH ACTIVITY in your code with the appropriate designation of the activity. Use ACTIVITY COMM
for communication between processes to pass zone data and ACTIVITY GLOBAL COMM for special
communication with process 0.

10

How to Optimize the Program

You will find that you need to represent different forms of sets for this assignment, e.g., the set of all rats
within a particular zone. There are several common ways to do this:

• As a bit vector, where bit position i is set to 1 if i is in the set and to 0 if it is not. Although it is possible
to pack multiple bits into a word, a simple approach is to allocate an array of type unsigned char
and just use one bit per byte as the flag.

• As a list, consisting of all of the members of the set.

• As a combination of the two: use a bit vector to quickly determine membership and use a list to be
able to enumerate all elements in the set.

Other Tips

• The data files include several small graphs: two of size 4 × 4, and the other of size 12 × 12, along
with associated rat position files. These can be useful when doing detailed debugging.

• You can do direct comparisons of two versions of your code by renaming one of the executables to
be either crun-soln-ghc or crun-soln-latedays (depending on which class of machine
you’re using). Be sure to keep the original copy of this program, of course. You will find that doing
side-by-side comparisons within a single run is the best way to compensate for the high run-to-run
variability on the Latedays machines.

Using Instrumentation to Optimize Performance

When you run the simulations with the -I option, the program will report how much time is required
for each part of the computation for each process. You will find this useful for identifying the critical
performance points in your program, as well as any variations among the processes.

As examples, Figure 4 shows the instrumentation results for two simulations of the graph hlbrtF using
the interval (a) and greedy (b) partitioning schemes. Looking at them individually and comparing them to
each other is very instructive. In both cases, times are reported in milliseconds.

With interval partitioning, the compute weights portion dominates the overall time and also has a high
standard deviation. Indeed, we see a high standard deviation in both the number of nodes and the number of
edges, as well. In combination, these indicate and explain a high degree of imbalance among the processes.
The local comm (communication between processes) also has a high standard deviation. One might
think it was caused by actual transmission delays, but note how it tends to vary in the opposite direction as
compute weights. That indicates that much of this time is the result of lightly loaded processes waiting
for heavily loaded ones to complete. Again, the core problem is a load imbalance. The total elapsed time
for process 0 is around 2.66 seconds, and this determines the overall execution time for the benchmark.

With greedy partitioning, we see that all of the standard deviations are much lower—the load is well bal-
anced. The total time is around 2.20 seconds, significantly less than with interval partitioning.

11

These measurements show that having an even load balance is more important than minimizing communi-
cation for this benchmark, but that may not be the case across all benchmarks.

12

(a) Interval partitioning

Zone 0 1 2 3 4 5 6 7 8 9 10 11 Max Mean StdDev
Nodes 1600 3200 3200 1600 1600 2400 2400 1600 2200 1800 2000 2000 3200 2133.3 555.8
Edges 14264 22340 22300 17448 15842 19924 19914 15664 17572 16400 19406 16896 22340 18164.2 2494.7

106 9 3 3 9 4 3 3 4 4 4 3 106 12.9 28.1 unknown
249 266 260 260 293 261 261 261 261 261 261 260 293 262.8 9.8 startup
867 1486 1475 983 1052 1233 1232 911 1103 981 1136 1034 1486 1124.4 192.2 compute_weights
54 88 90 62 86 74 75 56 71 62 75 63 90 71.3 11.7 compute_sums
340 568 580 352 424 470 476 354 473 409 459 407 580 442.7 74.7 find_moves
1040 195 202 952 748 569 562 1025 699 893 676 843 1040 700.3 271.5 local_comm

0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 global_comm
Elapsed 2660 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2660 2616.9 13.0

(b) Greedy partitioning

Zone 0 1 2 3 4 5 6 7 8 9 10 11 Max Mean StdDev
Nodes 2200 2400 2400 2400 2400 2000 1900 1900 2000 2000 2000 2000 2400 2133.3 201.4
Edges 17672 17464 17454 17454 17454 18622 18716 18706 18612 18612 18602 18602 18716 18164.2 565.5

142 5 5 5 5 6 5 6 6 5 5 5 142 16.7 37.8 unknown
251 262 262 262 262 263 263 263 262 262 262 262 263 261.3 3.1 startup
1124 1138 1137 1136 1139 1113 1092 1098 1116 1109 1108 1111 1139 1118.4 15.5 compute_weights

73 73 75 76 76 75 73 76 79 75 78 80 80 75.8 2.2 compute_sums
471 485 480 485 486 461 438 449 474 470 470 475 486 470.3 14.1 find_moves
134 187 192 187 182 233 279 259 213 228 227 217 279 211.5 36.8 local_comm

0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 global_comm
Elapsed 2199 2153 2153 2153 2153 2153 2153 2153 2153 2153 2153 2153 2199 2156.8 12.7

Figure 4: Instrumentation Examples. Both are for simulations of graph hlbrtF but with different partitioning schemes

13

6 Your Report (32 points)

Your report should provide a concise, but complete description of the thought process that went into design-
ing your program and how it evolved over time based on your experiments. You should document both the
design and performance of your partitioning code, as well as the design and performance of the simulator.

Your report should include a detailed discussion of the design and rationale behind your approach to paral-
lelizing the algorithm. Specifically, try to address the following questions:

1. What sequence of computations and communications is performed for each batch?

2. How did you maximize the decoupling of processes to avoid waiting for messages from each other.

3. How successful were you in getting speedup in your program? (This should be backed by experimen-
tal measurements.)

4. How does the performance scale as you went from 1 to 12 processes?

5. How important is having an even load balance vs. minimizing communication for the different bench-
marks?

6. Were there any techniques that you tried but found ineffective?

7 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For the code, you will be submitting
your entire directory tree.

1. Your code

(a) If you are working with a partner, form a group on Autolab. Do this before submitting your
assignment. One submission per group is sufficient.

(b) Make sure all of your code is compilable and runnable.
i. We should be able to simply run make in the code subdirectory and have everything

compile.
ii. We should be able to replace your versions of all of the Python code with the original

versions and then perform regression testing and benchmarking.
(c) Remove all nonessential files, especially output images from your directory.
(d) Run the command “make handin.tar.” This will run “make clean” and then create an

archive of your entire directory tree.
(e) Submit the file handin.tar to Autolab.

2. Your report

(a) Please upload your report in PDF format to Gradescope, with one submission per team. After
submitting, you will be able to add your teammate using the add group members button on the
top right of your submission.

14

A Benchmark Graphs

The following table provides the statistics for graphs that will be used in benchmarking your simulator.
Graphs hlbrtA–hlbrtF, for which you are provided copies, all have widthw = 160 and height h = 160,
for a total of 25,600 nodes. Graphs hlbrtG and hlbrtH are the mystery graphs that will be used as
benchmarks but for which you do not have access. Here we show upper limits on their size parameters. The
columns labeled “Min. Region” and “Max. Region” indicate the smallest and largest number of nodes in a
region, respectively.

Graph Nodes Edges Regions Hubs Min. Region Max. Region
hlbrtA 25,600 150,400 256 256 100 100
hlbrtB 25,600 193,834 100 202 100 800
hlbrtC 25,600 203,606 150 308 25 800
hlbrtD 25,600 193,572 80 156 50 1,600
hlbrtE 25,600 199,188 74 138 25 1,600
hlbrtF 25,600 192,370 61 121 100 1,600
hlbrtG ≤ 40,000 ≤ 300,000 ≤ 250 ≤ 400 ≥ 100 ≤ 2,000
hlbrtH ≤ 40,000 ≤ 300,000 ≤ 250 ≤ 400 ≥ 25 ≤ 2,000

The following figures show the structure of the first six graphs.

15

Figure 5: Graph hlbrtA

16

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtA.svg

Figure 6: Graph hlbrtB

17

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtB.svg

Figure 7: Graph hlbrtC

18

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtC.svg

Figure 8: Graph hlbrtD

19

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtD.svg

Figure 9: Graph hlbrtE

20

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtE.svg

Figure 10: Graph hlbrtF

21

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtF.svg

B Graph Partitioning

The following figures illustrate three different partitionings of graph hlbrtE into 12 zones, with the cost
function based on the number of nodes in each zone.

Method Min. Mean Max. Std. Dev
Round Robin 1375 2133.3 3200 492.0
Interval 1600 2133.3 2400 339.9
Greedy 2125 2133.3 2150 11.8

Figure 11: Partitioning of graph hlbrtE into 12 zones using the round-robin strategy.

22

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/g-160x160-hlbrtE.svg
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-x12.svg

Figure 12: Partitioning of graph hlbrtE into 12 zones using the interval strategy.

23

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-i12.svg

Figure 13: Partitioning of graph hlbrtE into 12 zones using a greedy strategy.

24

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s20/www/assignment_writeups/asst4/graphs/p-160x160-hlbrtE-g12.svg

	Overview
	Application
	Test Programs and Performance Evaluation
	Partitioning the Graph
	Some Advice
	Your Report (32 points)
	Hand-in Instructions
	Benchmark Graphs
	Graph Partitioning

