15-418 Spring’19
Recitation: Introduction to MPI

Lecturer: Nathan Beckmann

Based on slides by Greg Kesden

Based on eatrlier slides by William Gropp,
Ewing Lusk of Argonne National Laboratory



Today we’ll learn...

 Message Passing Interface (MPI)

— Basics
« Communicators
* Datatypes

— How to build & run MPI programs
— Send / Receive messages

 Blocking
* Non-blocking

— Broadcast / Reduce
— Debug / Profile



The Message-Passing Model

« A process is (traditionally) a program counter
and address space.

* Processes may have multiple threads
(program counters and associated stacks),
which share a single address space.

« MPIis for communication among
processes

— Synchronization + data movement between
address spaces



Flynn Parallelism Taxonomy

SIMD (data-parallel): Vector
SPMD (loosely sync’d data-parallel): GPU / MPI?
MIMD (task-parallel): Pthreads / MPI

MISD: streaming ???



MPI 1s Simple

« Many parallel programs can be written using
just these six functions:

—- MPI_INIT
~ MPI_FINALIZE
- MPI_COMM SIZE
- MPI_COMM RANK
- MPI_SEND

- MPI_RECV

e

=
e

\

I

— Setup / teardown

— Who am |?

— Message passing




...But often painful

* In OpenMP, only needed a few #pragmas to
make sequential code parallel

— Easy because hardware takes care of data
movement implicitly + guarantees coherence

— =» Threads get the data they need when they
need it automatically

* MPI requires explicit data movement

= Programmer (that's you!) must say exactly
what data goes where and when

9



Cooperative Operations for
Communication

The message-passing approach makes the exchange
of data cooperative.

Data is explicitly sent by one process and received by
another.

An advantage Is that any change in the receiving
process’s memory is made with the receiver’s explicit
participation.

= Communication and synchronization combined!

Process 0 Process 1

Send (data) —_

\

Receive (data) 0



One-Sided Operations for
Communication

One-sided operations between processes include
remote memory reads and writes

Only one process needs to explicitly participate.

An advantage Is that communication and
synchronization are decoupled

Process 0 Process 1

Put (data) —_|

(memory)

(memory) —_|

\
\

Get (data) 1



What i1s MPI?

« A message-passing library specification
— extended message-passing model
— not a language or compiler specification
— not a specific implementation or product

* For parallel computers, clusters, and
neterogeneous networks

« Designed to provide access to advanced
parallel hardware for

— end users

— library writers

— tool developers

12



Why Use MPI?

* MPI provides a powerful, efficient, and
portable way to express parallel programs

« MPI was explicitly designed to enable
libraries...

* ... which may eliminate the need for many
users to learn (much of) MPI

13



A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{
MPI Init( &argc, &argv );
printf( "Hello, world!\n" );
MPI Finalize();

return 0O;

14



Error Handling

By default, an error causes all processes to
abort.

The user can cause routines to return (with
an error code) instead.

— In C++, exceptions are thrown (MPI-2)

A user can also write and install custom error
handlers.

Libraries might want to handle errors
differently from applications.

16



Running MPI Programs

* MPI does not specify how to run an MPI program

— Just as the C/C++ standard does not specify how to run a
C/C++ program

« mpirun <args> IS arecommendation, but not a
requirement

17



Building MPI programs
on GHC machines

e Setup your environment:
— export PATH=3$PATH:/usr/lib64/openmpi/bin

« Compile with MPIC++ / MPICC:
— $ mpic++ -0 hello hello.cpp

* Run via mpirun:
— $ mpirun -c <NPROCS> hello

18



Finding Out About the
Environment

« Two Important guestions that arise early in a
parallel program are:

— How many processes are participating in this
computation?

— Which one am 1?

« MPI provides functions to answer these
guestions:
— MPI_Comm_size reports the number of processes.

— MPI_Comm_rank reports the rank, a number

between O and size-1, identifying the calling process
19



Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI Init( &argc, &argv );
MPI Comm rank( MPI COMM WORLD, &rank )
MPI Comm size( MPI COMM WORLD, &size );
printf( “I am %d of %d\n", rank, size );
MPI Finalize();
return 0O;

20



Better Hello

* Note that in MPI each process is identical

« There is no “main thread” where execution
begins

21



MPI Basic Send/Recelve

« We need to fill In the detalls In

Process 0 Process 1

Send (data) —|

\

Receive (data)

* Things that need specifying:
— How will “data” be described?
— How will processes be identified?

— How will the receiver recognize/screen
messages?

— What will it mean for these operations to
complete?

22



What Is message passing?

« Data transfer plus synchronization

Process 0 - May | Send? /

Process 1 Yes

Y

Time

* Requires cooperation of sender and receiver
« Cooperation not always apparent in code



Some Basic Concepts

Processes can be collected into groups.

Each message is sent in a context, and must
be received in the same context.

Group + context =» communicator.

There Is a default communicator whose group
contains all initial processes, called
MPI COMM WORLD.

24



MPI Datatypes

Messages are described by a triple (address, count,
datatype), where

« An MPI datatype is recursively defined as:

— predefined, corresponding to a data type from the language
(e.g., MPL_INT, MPI_DOUBLE_PRECISION)

— a contiguous array of MPI datatypes

— a strided block of datatypes

— an indexed array of blocks of datatypes
— an arbitrary structure of datatypes

There are MPI functions to construct custom
datatypes, such an array of (int, float) pairs, or a row
of a matrix stored columnwise.

25



MPI Tags

 Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message.

 Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY TAG as the
tag in a receive.

« Some non-MPI message-passing systems
have called tags “message types”. MPI calls
them tags to avoid confusion with datatypes.

26



Tags and Contexts

Separation of messages used to be accomplished by
use of tags, but

— this requires libraries to be aware of tags used by other
libraries.

— this can be defeated by use of “wild card” tags.

Contexts are different from tags
— no wild cards allowed

— allocated dynamically by the system when a library sets up a
communicator for its own use.

User-defined tags still provided in MPI for user
convenience in organizing application

Use MPI_Comm_split to create new communicators ,_



MPI Basic (Blocking) Senad

MPI|_SEND (start, count, datatype, dest, tag, comm)

 The message buffer is described by (start, count,
datatype).

« The target process is specified by dest, which is the

rank of the target process in the communicator specified
by comm.

* When this function returns, the data has been
delivered to the system and the buffer can be reused.

— Beware: The message may not have been received by the
target process!

28



MPI Basic (Blocking) Recelve

MPI_RECV(start, count, datatype, source, tag, comm, status)

« Waits until a matching (on source and tag) message is
received from the system, and the buffer can be used.

« source IS rank in communicator specified by comm, or
MPI ANY SOURCE.

« status contains further information

* Recelving fewer than count occurrences of datatype Is
OK, but receiving more is an error.

29



MPI_Status

typedef struct _MPI_Status {
INnt count;
Int cancelled:;

Int M
Int M
Int M

D

D

D

_SOURCE;
_TAG;
_ERROR,;

} MPI_Status, *PMPI_Status;

30



Retrieving Further Information

« Status is a data structure allocated in the user’s program.
e InC:

int recvd tag, recvd from, recvd count;

MPI Status status;

MPI Recv(..., MPI_ANY SOURCE, MPI_ANY TAG, ..., &status )
recvd tag = status.MPI TAG;

recvd from = status.MPI SOURCE;

MPI Get count( &status, datatype, &recvd count );

31



Send & Recelve Example

(non-MPI version)

#include "assert.h"
#include <stdio.h>

int main(int argc, char* argvl[]) {
int N = 32;
double fibs[N+2];
fibs[0] = 1; fibs[1l] = 1;
for (int i = 2; 1 < N; 1i++) {
fibs[i1i] = fibs[1-1] + fibs[i-2];

printf ("The %dth Fibonacci number is %g.\n",
}

return 0O;

i,

fibs[1]);

32



Send & Recelve Example

#include "mpi.h"

#include "assert.h" double next = fibs[0] + fibs[1];

#include <stdio.h> msg[0] = fibs[1l]; msg[l] = next;

int main (int argc, char* argvl[]) { printf ("The %dth Fibonacci number is
MPI Init (&argc, &argv); %g.\n",

rank+2, next);

int rank, size; }
MPI Comm size (MPI COMM WORLD, é&size);

MPI Comm rank (MPI COMM WORLD, &rank); i1f (rank+1l < size) {
int ret;
MPI Status status; ret = MPI Send(msg, 2, MPI DOUBLE,
double msg[2] = {1,1}; /*dest*/ rank + 1,
/*tag*/ 0, MPI COMM WORLD) ;
if (rank > 0) { assert (ret == MPI SUCCESS);
double fibs[2]; }
do { MPI Finalize();
MPI Recv (fibs, 2, MPI DOUBLE, return 0;

MPI ANY SOURCE, /*tag*/ O,
MPI COMM WORLD, &status);

}
while (status.MPI ERROR);

33



Sources of Deadlocks

« Send a large message from process O to process 1

— If there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through

a receive)
« What happens with
Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

* This is called “unsafe” because it depends on the

availability of system buffers N



Deadlock example

#include "mpi.h"
#include "assert.h"
#include <stdio.h>

int main (int argc, char* argvl[]) {

MPI Init (&argc, &argv);

int rank, size;

MPI Comm size (MPI COMM WORLD, é&size);
MPI Comm rank (MPI COMM WORLD, &rank);
MPI Status status;

int msg = 1;

MPI Recv (&msg, 1, MPI INTEGER, (rank-1)
MPI Send(&msg, 1, MPI INTEGER, (rank+l)

printf ("Process %d done.\n", rank);

MPI Finalize();

return O;

o)

o

o

o)

o

o

size,

size,

0, MPI COMM WORLD, NULL);
0, MPI_COMM WORLD) ;

35



Some Solutions to the “unsafe”

Problem
* Order the operations more carefully:
Process O Process 1
Send (1) Recv (0)
Recv (1) Send (0)

« Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
Irecv(l) Irecv (0)

Waitall Waitall



(Fixed?) Deadlock example

#include "mpi.h"

#include "assert.h"

#include <stdio.h> Wl” (pr'ObabIY) WOI"k

int main (int argc, char* argv(]) { in this case Only
MPL_Init (sarge, &argy); because message is
int rank, size; small - not reliablelll

MPI Comm size (MPI COMM WORLD, é&size);
MPI Comm rank (MPI COMM WORLD, &rank);

MPI Status status;
int msg = 1;

MPI Send(&msg, 1, MPI INTEGER, (rank+l) % size, 0, MPI COMM WORLD) ;
MPI Recv (&msg, 1, MPI INTEGER, (rank-1) % size, 0, MPI COMM WORLD, NULL);

printf ("Process %d done.\n", rank);

MPI Finalize(); 37

return O;



Non-Blocking Receilve and Send

Int MP1_Isend(

iInt MPI1_Irecv(

const void *buf,
Int count,

MPI_Datatype datatype,

Int dest, int tag,
MPl_Comm comm,
MPI_Request *request)

void *buf,
Int count,

MPI_Datatype datatype,

Int source,

Int tag,

MPl_Comm comm,
MPI_Request *request)

38



Waiting for a Non-Blocking Send
and Recelve to Complete

* Isend/lrecv return a MPIl_Request* handle

* Int MPIl_Wait( MPI|_Request *request,

MPI|_Status *status)
— Blocks for a previously non-blocking receive

* Int MPI_Test( MPI|_Request *request,
int *flag,
MPI_Status *status)

— Test determines if done

e« C/C++ Convention: True/0, False/Non-Zero otherwise
39



Fixed deadlock example #1

int main (int argc, char* argvl[]) {

MPI Init (&argc, &argv);

int rank, size;
MPI Comm size (MPI COMM WORLD, é&size);
MPI Comm rank (MPI COMM WORLD, &rank);

int sendmsg = 1, recvmsg;

MPI Request request;

MPI Irecv(&recvmsg, 1, MPI INTEGER, (rank-1)%size, 0, MPI COMM WORLD, &request);
MPI Send(&sendmsg, 1, MPI INTEGER, (rank+l)%size, 0, MPI COMM WORLD) ;
MPI Wait (&request, MPI_STATUS_ IGNORE) ;

printf ("Process %d done.\n", rank, recvmsg, 0);

assert (recvmsg == 1);

MPI Finalize();

return O;



MPI1 Probe

 Int MPI_Probe(int source,
Int tag,

MPI_Comm comm,
MP|_Status *status)

* Like a MPIl _Recy, but just gets status

41



Probe example

(rank == 0) {
int msglen = rand() % 1024; /* send a message of dynamic size */

int *msg = new int[msglen];
for (int 1 = 0; i < msglen; i++) {
msg[i] = rand();

}
MPI Send(msg, msglen, MPI INTEGER, 1, 0, MPI COMM WORLD) ;

delete [] msg;

else if (rank == 1) {
MPI Status status; /* figure out how big the message is before recving */
MPI_Probe (MPI_ANY SOURCE, 0, MPI_COMM WORLD, &status);
int msglen;
MPI Get count(&status, MPI_INTEGER, &msglen);
int* msg = new int[msglen];
MPI Recv(msg, msglen, MPI INTEGER, MPI ANY SOURCE, 0, MPI COMM WORLD,
MPI STATUS IGNORE) ;
delete [] msg;

42



Introduction to Collective
Operations in MPI

* Collective operations are called by all
processes in a communicator.

- MPI_BCAST distributes data from one
process (the root) to all others in a
communicator.

- MPI_REDUCE combines data from all
processes in communicator and returns it to
one Process.

* In many numerical algorithms,
SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity
and efficiency.

45



Bcast/reduce example:

int main (int argc, char *argvl[])

{

int done =

0, n;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

while (!done) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;

if (n ==
h=1.0/

) break;
(double) n;

sum = 0.0;

for (int i = 1; i <= n; i++) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
if (myid == 0)

o)

printf ("pi is approximately %$.16f, Error is %.16f\n",

return 0O;

pi, fabs(pi - PI25DT));

46



Bcast/reduce example
(OpenMP):

int main (int argc, char *argvl[])

{

int done = 0, n;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
while (!done) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;
if (n == 0) break;
h =1.0 / (double) n;
sum = 0.0;
# pragma omp parallel for schedule(static)
for (int 1 = 1; i <= n; 1i++) {
X = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}
mypli = h * sum;
if (myid == 0)
printf ("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

return 0O;

47



Bcast/reduce example (MPI):

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv|[])

{
int done = 0, n, myid, numprocs, 1, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_COMM WORLD, &myid) ;

while (!done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits)

scanf ("%d", &n) ;

}
MPI Bcast(&n, 1, MPI_INT, 0, MPI_ COMM WORLD) ;

if (n == 0) break;

").
14

48



Example: Pl InC -2

h =1.0/ (double) n;

sum = 0.0;

for (1 = myid + 1; 1 <= n; 1 += numprocs) {
X = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce (émypi, &pi, 1, MPI_DOUBLE, MPI SUM, O,
MPI_COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately $.16f, Error is %$.16f\n",
pi, fabs(pi - PIZ25DT));
}
MPI Finalize();

return 0;

49



Some Simple Exercises

Compile and run the hello and pi
programs.

Modify the pi program to use send/receive
Instead of bcast/reduce.

Write a program that sends a message
around a ring. That is, process O reads a line
from the terminal and sends it to process 1,
who sends it to process 2, etc. The last
process sends it back to process 0, who
prints it.

Time programs with MPI_WTIME. (Find it.)

53



Debugging MPI programs

* Don't neglect your old friend printf

— #define checkpoint () do { fprintf (stderr,
“$s:%d\n”, FILE , LINE ) } while(O)

 Attaching gdb to MPI processes

— https://www.open-mpi.org/faq/?cateqgory=debugqging
- #define wait for gdb() do { int wait for gdb =

0; while( wait for gdb == 0) { sleep(l); }; }
while (0)

— Run gdb and attach at runtime, then manually set
__wait_for_gdb

* There are more powerful tools...
— https://portal.tacc.utexas.edu/software/ddt

95


https://www.open-mpi.org/faq/?category=debugging
https://portal.tacc.utexas.edu/software/ddt

MPI1 Sources

The Standard itself;

at http://www.mpi-forum.org
All MPI official releases, in both postscript and HTML

Books:

Using MPI. Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,
Walker, and Dongarra, MIT Press, 1996.

Designing and Building Parallel Programs, by lan Foster, Addison-
Wesley, 1995.

Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

Other information on Web:

at http://www.mcs.anl.gov/mpi

pointers to lots of stuff, including other talks and tutorials, a FAQ, 56
other MPI pages



http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi

Companion Material

* Online examples available at
http://www.mcs.anl.gov/mpi/tutorials/perf

o ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz
contains source code and run scripts that
allows you to evaluate your own MPI
Implementation

S7


http://www.mcs.anl.gov/mpi/tutorials/perf
ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz

Summary

The parallel computing community has
cooperated on the development of a standard
for message-passing libraries.

There are many implementations, on nearly
all platforms.

MPI| subsets are easy to learn and use.
Lots of MPI material is available.

58



