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Today we’ll learn…

• Message Passing Interface (MPI)

– Basics

• Communicators

• Datatypes

– How to build & run MPI programs

– Send / Receive messages

• Blocking

• Non-blocking

– Broadcast / Reduce

– Debug / Profile

2



5

The Message-Passing Model

• A process is (traditionally) a program counter 

and address space.

• Processes may have multiple threads

(program counters and associated stacks), 

which share a single address space.

• MPI is for communication among 

processes

– Synchronization + data movement between 

address spaces
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Flynn Parallelism Taxonomy

• SIMD (data-parallel): Vector

• SPMD (loosely sync’d data-parallel): GPU / MPI?

• MIMD (task-parallel): Pthreads / MPI

• MISD: streaming ???
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MPI is Simple

• Many parallel programs can be written using 

just these six functions:

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

Setup / teardown

Who am I?

Message passing



…But often painful

• In OpenMP, only needed a few #pragmas to

make sequential code parallel

– Easy because hardware takes care of data 

movement implicitly + guarantees coherence

– ➔ Threads get the data they need when they

need it automatically

• MPI requires explicit data movement

• ➔ Programmer (that’s you!) must say exactly

what data goes where and when
9
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Cooperative Operations for 

Communication
• The message-passing approach makes the exchange 

of data cooperative.

• Data is explicitly sent by one process and received by 

another.

• An advantage is that any change in the receiving 

process’s memory is made with the receiver’s explicit 

participation.

• ➔ Communication and synchronization combined!

Process 0 Process 1

Send(data)

Receive(data)
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One-Sided Operations for 

Communication

• One-sided operations between processes include 

remote memory reads and writes

• Only one process needs to explicitly participate.

• An advantage is that communication and 

synchronization are decoupled

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)
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What is MPI?

• A message-passing library specification
– extended message-passing model

– not a language or compiler specification

– not a specific implementation or product

• For parallel computers, clusters, and 
heterogeneous networks

• Designed to provide access to advanced 
parallel hardware for
– end users

– library writers

– tool developers
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Why Use MPI?

• MPI provides a powerful, efficient, and 

portable way to express parallel programs

• MPI was explicitly designed to enable 

libraries… 

• … which may eliminate the need for many 

users to learn (much of) MPI
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A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

MPI_Init( &argc, &argv );

printf( "Hello, world!\n" );

MPI_Finalize();

return 0;

}
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Error Handling

• By default, an error causes all processes to 

abort. 

• The user can cause routines to return (with 

an error code) instead.

– In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error 

handlers.

• Libraries might want to handle errors 

differently from applications. 
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Running MPI Programs

• MPI does not specify how to run an MPI program

– Just as the C/C++ standard does not specify how to run a 

C/C++ program

• mpirun <args> is a recommendation, but not a 

requirement



Building MPI programs

on GHC machines

• Setup your environment:

– export PATH=$PATH:/usr/lib64/openmpi/bin

• Compile with MPIC++ / MPICC:

– $ mpic++ -o hello hello.cpp

• Run via mpirun:

– $ mpirun -c <NPROCS> hello
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Finding Out About the 

Environment
• Two important questions that arise early in a 

parallel program are:

– How many processes are participating in this 

computation?

– Which one am I?

• MPI provides functions to answer these 

questions:

– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process
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Better Hello (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int rank, size;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

printf( “I am %d of %d\n", rank, size );

MPI_Finalize();

return 0;

}



Better Hello

• Note that in MPI each process is identical

• There is no “main thread” where execution 

begins

21



22

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:

– How will “data” be described?

– How will processes be identified?

– How will the receiver recognize/screen 

messages?

– What will it mean for these operations to 

complete?

Process 0 Process 1

Send(data)

Receive(data)
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What is message passing?

• Data transfer plus synchronization

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time
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Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must 

be received in the same context.

• Group + context ➔ communicator.

• There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD.
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MPI Datatypes

• Messages are described by a triple (address, count, 

datatype), where

• An MPI datatype is recursively defined as:

– predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

– a contiguous array of MPI datatypes

– a strided block of datatypes

– an indexed array of blocks of datatypes

– an arbitrary structure of datatypes

• There are MPI functions to construct custom 

datatypes, such an array of (int, float) pairs, or a row 

of a matrix stored columnwise.
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MPI Tags

• Messages are sent with an accompanying 

user-defined integer tag, to assist the 

receiving process in identifying the message.

• Messages can be screened at the receiving 

end by specifying a specific tag, or not 
screened by specifying MPI_ANY_TAG as the 

tag in a receive.

• Some non-MPI message-passing systems 

have called tags “message types”.  MPI calls 

them tags to avoid confusion with datatypes.
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Tags and Contexts

• Separation of messages used to be accomplished by 

use of tags, but

– this requires libraries to be aware of tags used by other 

libraries.

– this can be defeated by use of “wild card” tags.

• Contexts are different from tags

– no wild cards allowed

– allocated dynamically by the system when a library sets up a 

communicator for its own use.

• User-defined tags still provided in MPI for user 

convenience in organizing application

• Use MPI_Comm_split to create new communicators
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MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count, 
datatype).

• The target process is specified by dest, which is the 

rank of the target process in the communicator specified 
by comm.

• When this function returns, the data has been 

delivered to the system and the buffer can be reused.

– Beware: The message may not have been received by the 

target process!
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MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error.



MPI_Status

typedef struct _MPI_Status {

int count;

int cancelled;

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

} MPI_Status, *PMPI_Status;
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Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count( &status, datatype, &recvd_count );



Send & Receive Example

(non-MPI version)
#include "assert.h“

#include <stdio.h>

int main(int argc, char* argv[]) {

int N = 32;

double fibs[N+2];

fibs[0] = 1; fibs[1] = 1;

for (int i = 2; i < N; i++) {

fibs[i] = fibs[i-1] + fibs[i-2];

printf("The %dth Fibonacci number is %g.\n", i, fibs[i]);

}

return 0;

}
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Send & Receive Example

#include "mpi.h“

#include "assert.h“

#include <stdio.h>

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Status status;

double msg[2] = {1,1};

if (rank > 0) {

double fibs[2];

do {

MPI_Recv(fibs, 2, MPI_DOUBLE,

MPI_ANY_SOURCE, /*tag*/ 0,

MPI_COMM_WORLD, &status);

}

while (status.MPI_ERROR);
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double next = fibs[0] + fibs[1];

msg[0] = fibs[1]; msg[1] = next;

printf("The %dth Fibonacci number is 

%g.\n",

rank+2, next);

}

if (rank+1 < size) {

int ret;

ret = MPI_Send(msg, 2, MPI_DOUBLE,

/*dest*/ rank + 1,

/*tag*/ 0, MPI_COMM_WORLD);

assert(ret == MPI_SUCCESS);

}

MPI_Finalize();

return 0;

}
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• Send a large message from process 0 to process 1

– If there is insufficient storage at the destination, the send 

must wait for the user to provide the memory space (through 

a receive)

• What happens with

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the 

availability of system buffers



Deadlock example

#include "mpi.h"

#include "assert.h"

#include <stdio.h>

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Status status;

int msg = 1;

MPI_Recv(&msg, 1, MPI_INTEGER, (rank-1) % size, 0, MPI_COMM_WORLD, NULL);

MPI_Send(&msg, 1, MPI_INTEGER, (rank+1) % size, 0, MPI_COMM_WORLD);

printf("Process %d done.\n", rank);

MPI_Finalize();

return 0;

}
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Some Solutions to the “unsafe” 

Problem

• Order the operations more carefully:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

• Use non-blocking operations:

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall



(Fixed?) Deadlock example

#include "mpi.h"

#include "assert.h"

#include <stdio.h>

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Status status;

int msg = 1;

MPI_Send(&msg, 1, MPI_INTEGER, (rank+1) % size, 0, MPI_COMM_WORLD);

MPI_Recv(&msg, 1, MPI_INTEGER, (rank-1) % size, 0, MPI_COMM_WORLD, NULL);

printf("Process %d done.\n", rank);

MPI_Finalize();

return 0;

}
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Will (probably) work 
in this case only 

because message is 
small – not reliable!!!



Non-Blocking Receive and Send
• int MPI_Isend( const void *buf, 

int count, 

MPI_Datatype datatype, 

int dest, int tag, 

MPI_Comm comm, 

MPI_Request *request)

• int MPI_Irecv( void *buf, 

int count, 

MPI_Datatype datatype, 

int source, 

int tag, 

MPI_Comm comm, 

MPI_Request *request)
38



Waiting for a Non-Blocking Send 

and Receive to Complete

• Isend/Irecv return a MPI_Request* handle

• int MPI_Wait( MPI_Request *request, 

MPI_Status *status)

– Blocks for a previously non-blocking receive

• int MPI_Test( MPI_Request *request,

int *flag, 

MPI_Status *status)

– Test determines if done 

• C/C++ Convention: True/0, False/Non-Zero otherwise
39



Fixed deadlock example #1

…

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

int sendmsg = 1, recvmsg;

MPI_Request request;

MPI_Irecv(&recvmsg, 1, MPI_INTEGER, (rank-1)%size, 0, MPI_COMM_WORLD, &request);

MPI_Send(&sendmsg, 1, MPI_INTEGER, (rank+1)%size, 0, MPI_COMM_WORLD);

MPI_Wait(&request, MPI_STATUS_IGNORE);

printf("Process %d done.\n", rank, recvmsg, 0);

assert(recvmsg == 1);

MPI_Finalize();

return 0;

} 40



MPI_Probe

• int MPI_Probe(int source,

int tag, 

MPI_Comm comm, 

MPI_Status *status)

• Like a MPI_Recv, but just gets status
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Probe example

… if (rank == 0) {

int msglen = rand() % 1024; /* send a message of dynamic size */

int *msg = new int[msglen];

for (int i = 0; i < msglen; i++) {

msg[i] = rand();

}

MPI_Send(msg, msglen, MPI_INTEGER, 1, 0, MPI_COMM_WORLD);

delete [] msg;

} else if (rank == 1) {

MPI_Status status; /* figure out how big the message is before recving */

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

int msglen;

MPI_Get_count(&status, MPI_INTEGER, &msglen);

int* msg = new int[msglen];

MPI_Recv(msg, msglen, MPI_INTEGER, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

delete [] msg;

}

…

42
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Introduction to Collective 

Operations in MPI

• Collective operations are called by all 
processes in a communicator.

• MPI_BCAST distributes data from one 
process (the root) to all others in a 
communicator.

• MPI_REDUCE combines data from all 
processes in communicator and returns it to 
one process.

• In many numerical algorithms, 
SEND/RECEIVE can be replaced by 
BCAST/REDUCE, improving both simplicity 
and efficiency.



Bcast/reduce example:

int main(int argc, char *argv[])

{

int done = 0, n;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

while (!done)  {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

if (n == 0) break;

h = 1.0 / (double) n;

sum = 0.0;

for (int i = 1; i <= n; i++) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

return 0;

}
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Bcast/reduce example 

(OpenMP):
int main(int argc, char *argv[])

{

int done = 0, n;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

while (!done)  {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

if (n == 0) break;

h = 1.0 / (double) n;

sum = 0.0;

# pragma omp parallel for schedule(static)

for (int i = 1; i <= n; i++) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

return 0;

}
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Bcast/reduce example (MPI):

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;
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Example:  PI in C - 2

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}
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Some Simple Exercises

• Compile and run the hello and pi 

programs.

• Modify the pi program to use send/receive 

instead of bcast/reduce.

• Write a program that sends a message 

around a ring.  That is, process 0 reads a line 

from the terminal and sends it to process 1, 

who sends it to process 2, etc.  The last 

process sends it back to process 0, who 

prints it. 

• Time programs with MPI_WTIME.  (Find it.)



Debugging MPI programs

• Don’t neglect your old friend printf
– #define checkpoint() do { fprintf(stderr, 

“%s:%d\n”, __FILE__, __LINE__) } while(0)

• Attaching gdb to MPI processes
– https://www.open-mpi.org/faq/?category=debugging

– #define wait_for_gdb() do { int __wait_for_gdb = 

0; while(__wait_for_gdb == 0) { sleep(1); }; } 

while(0)

– Run gdb and attach at runtime, then manually set 

__wait_for_gdb

• There are more powerful tools…

– https://portal.tacc.utexas.edu/software/ddt
55

https://www.open-mpi.org/faq/?category=debugging
https://portal.tacc.utexas.edu/software/ddt
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MPI Sources

• The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

• Books:

– Using MPI:  Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

– MPI:  The Complete Reference, by Snir, Otto, Huss-Lederman, 
Walker, and Dongarra, MIT Press, 1996.

– Designing and Building Parallel Programs, by Ian Foster, Addison-
Wesley, 1995.

– Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

– MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

• Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of stuff, including other talks and tutorials, a FAQ, 
other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
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Companion Material

• Online examples available at

http://www.mcs.anl.gov/mpi/tutorials/perf

• ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz

contains source code and run scripts that 

allows you to evaluate your own MPI 

implementation

http://www.mcs.anl.gov/mpi/tutorials/perf
ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz
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Summary

• The parallel computing community has 

cooperated on the development of a standard 

for message-passing libraries.

• There are many implementations, on nearly 

all platforms.

• MPI subsets are easy to learn and use.

• Lots of MPI material is available.


