
Carnegie Mellon

1 15-418/618	Spring	2019	

Assignment	3:	GraphRats	
	

		 Graph	Rats	

Carnegie Mellon

2 15-418/618	Spring	2019	

Topics	
¢  Application	
¢  Implementation	Issues	
¢  Optimizing	for	Parallel	Performance	
¢  Useful	Advice	

Carnegie Mellon

3 15-418/618	Spring	2019	

Basic	Idea	
¢  Transitions	

§  Each	rat	decides	where	to	move	next	
§  Don’t	like	crowds	
§  But	also	don’t	like	to	be	alone	

§  Weighted	random	choice	

¢  Graph	
§  K	X	K	grid	

¢  Initial	State	
§  Start	with	all	R	rats	in	corner	

0	 1	 2	

3	 4	 5	

6	 7	 8	

t	=	0	

0	 1	 2	

3	 4	 5	

6	 7	 8	

t	=	1	

Carnegie Mellon

4 15-418/618	Spring	2019	

Node	Count	Representation	(K	=	12)	

t = 0.
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | |576|
+---+---+---+---+---+---+---+---+---+---+---+---+

t = 1.
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | |165|164|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | |168| 79|
+---+---+---+---+---+---+---+---+---+---+---+---+

Carnegie Mellon

5 15-418/618	Spring	2019	

Simulation	Example	

t = 0.
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | |576|
+---+---+---+---+---+---+---+---+---+---+---+---+

t = 30.
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | 2 | | 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | 3 | 2 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | 1 | 2 | 3 | 2 | 2 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | 1 | | 3 | | 9 | 7 | 11| |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 2 | 2 | 1 | | 5 | 16| 10| 11|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 2 | 1 | | 13| 12| 10| 11| 12| 7 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | 1 | 9 | 6 | 5 | 8 | 14| 13| 11|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | 1 | | 9 | 9 | 11| 7 | 10| 14| 13| 13|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | 1 | 1 | 10| 9 | 6 | 11| 10| 12| 12| 17|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 10| 7 | 12| 11| 14| 12| 11| 10|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 4 | 11| 11| 10| 9 | 10| 12| 12|
+---+---+---+---+---+---+---+---+---+---+---+---+

Carnegie Mellon

6 15-418/618	Spring	2019	

Visualizations	

Text	(“a”	for	ASCII)	 Heat	Map	(“h”)	
t = 30.
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | 2 | | 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | 3 | 2 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | 1 | 2 | 3 | 2 | 2 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | 1 | | 3 | | 9 | 7 | 11| |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 2 | 2 | 1 | | 5 | 16| 10| 11|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 2 | 1 | | 13| 12| 10| 11| 12| 7 |
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | 1 | 9 | 6 | 5 | 8 | 14| 13| 11|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | 1 | | 9 | 9 | 11| 7 | 10| 14| 13| 13|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | 1 | 1 | 10| 9 | 6 | 11| 10| 12| 12| 17|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 10| 7 | 12| 11| 14| 12| 11| 10|
+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | 1 | 4 | 11| 11| 10| 9 | 10| 12| 12|
+---+---+---+---+---+---+---+---+---+---+---+---+

Carnegie Mellon

7 15-418/618	Spring	2019	

Running	it	yourself	

¢  Demos	
§  1:	Text	visualization,	synchronous	updates	
§  2:	Heap-map,	synchronous	updates	

linux> cd some	directory	
linux> git clone https//github.com/cmu15418/asst3-s19.git
linux> cd asst3-s19/code
Linux> make demoX	

 X	from	1	to	10	

Carnegie Mellon

8 15-418/618	Spring	2019	

Determining	Rat	Moves	

¢  Count	number	of	rats	at	current	and	adjacent	locations	
§  Adjacency	structure	represented	as	graph	

¢  Compute	reward	value	for	each	location	
§  Based	on	load	factor	l	=	count/average	count	
§  l * 	Ideal	load	factor	(ILF)	(varying)	
§  𝛂	 	Fitting	parameter	(=	0.4)	

120	

83	

300	

40	8	

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

Carnegie Mellon

9 15-418/618	Spring	2019	

Reward	Function	

§  Maximized	at	ILF	
§  Just	above	average	population	
§  Drops	for	smaller	loads	(too	few)	and	larger	loads	(too	crowded)	

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Load	Factor	

Reward	Function	

ILF	1.25	

ILF	1.75	

ILF	2.25	

Carnegie Mellon

10 15-418/618	Spring	2019	

Reward	Function	(cont.)	

§  Falls	off	gradually	
§  Reward(1000) =	0.0132	

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

1	 10	 100	 1000	
Load	Factor	

Reward	Function	

ILF	1.25	

ILF	1.75	

ILF	2.25	

Carnegie Mellon

11 15-418/618	Spring	2019	

Computing	Ideal	Load	Factor	(ILF)	
¢  Suppose	node	has	count	cl	and	neighbor	has	count	cr	
¢  Compute	imbalance	as	

-1	
-0.8	
-0.6	
-0.4	
-0.2	

0	
0.2	
0.4	
0.6	
0.8	
1	

0.01	 0.1	 1	 10	 100	

β(cl, cr) = Clamp [log10
cr

cl
, − 1, + 1]

Carnegie Mellon

12 15-418/618	Spring	2019	

Computing	Ideal	Load	Factor	(cont.)	
¢  For	node	u	with	population	p(u)	

¢  Define	ILF	as	

¢  Minimum	 	1.25	
§  When	adjacent	nodes	much	less	crowded	

¢  Maximum	 	2.25	
§  When	adjacent	nodes	much	more	crowded	

¢  Changes	as	rats	move	around	

̂β(u) = Avg(u,v)∈ E [β(p(u), p(v))]

l*(u) = 1.75 + 0.5 ⋅ ̂β(u)

Carnegie Mellon

13 15-418/618	Spring	2019	

Selecting	Next	Move	

§  Choose	random	number	between	0	and	sum	of	rewards	
§  Move	according	to	interval	hit	

120	

83	

300	

40	8	

Population	 Reward	(avg	load	=	10)	

Weighted	Choices	
(node	followed	by	row-major	ordering	of	neighbors)	

0.153	

0.225	

0.071	

0.538	0.678	

0.00	 0.10	 0.20	 0.30	 0.40	 0.50	 0.60	 0.70	 0.80	 0.90	 1.00	 1.10	 1.20	 1.30	 1.40	 1.50	 1.60	 1.70	
x = 1.24

Carnegie Mellon

14 15-418/618	Spring	2019	

Update	Models	
¢  Synchronous	

§  Demo	2	
§  Compute	next	positions	for	all	rats,	and	then	move	them	
§  Causes	oscillations/instabilities	

¢  Rat-order	
§  Demo	3	
§  For	each	rat,	compute	its	next	position	and	then	move	it	
§  Smooth	transitions,	but	costly	

¢  Batch	
§  Demo	4	
§  For	each	batch	of	B	rats,	compute	next	moves	and	then	move	them	
§  B	=	0.02	*	R	
§  Smooth	enough,	with	better	performance	possibilities	

Carnegie Mellon

15 15-418/618	Spring	2019	

What	We	Provide	
¢  Python	version	of	simulator	

§  Demo	4	
§  Very	slow	

¢  C	version	of	simulator	
§  Fast	sequential	implementation	
§  Demo	5:	36X36	grid,	1,290	rats	
§  Demo	6:	180X180	grid,	1,036,800	rats	

§  That’s	what	we’ll	be	using	for	benchmarks!	

¢  Generate	visualizations	by	piping	C	simulator	output	into	
Python	simulator	
§  Operating	in	visualization	mode	
§  See	Makefile	for	examples	

Carnegie Mellon

16 15-418/618	Spring	2019	

Correctness	
¢  Simulator	is	Deterministic	

§  Global	random	seed	
§  Random	seeds	for	each	rat	
§  Process	rats	in	fixed	order	

¢  You	Must	Preserve	Exact	Same	Behavior	
§  Python	simulator	generates	same	result	as	C	simulator	
§  Use	regress.py to	check	

§  Only	checks	small	cases	
§  Useful	sanity	check	

§  Benchmark	program	compares	your	results	to	reference	solution	
§  Handles	full-sized	graphs	

Carnegie Mellon

17 15-418/618	Spring	2019	

Graphs:	Tiled	(Demos	1–6)	

¢  Base	grid	
§  K	X	K	nodes,	each	with	nearest	neighbor	connectivity	

¢  Hub	(red)	nodes	connect	to	all	other	nodes	in	region	
¢  For	K	=	180	

§  Most	nodes	have	degree	≤	5	
§  Hubs	have	degree	899	

Rats	spread	quickly	within	region	
More	slowly	across	regions	
Hub	nodes	tend	to	have	high	counts	

Carnegie Mellon

18 15-418/618	Spring	2019	

Other	graphs	

¢  Larger	regions	
¢  k	=	180: 	Max	degree	=	2,699	

Horizontal	 Vertical	

Carnegie Mellon

19 15-418/618	Spring	2019	

Other	graphs	

¢  Larger	regions	
¢  k	=	180: 	Max	degree	=	2,699	

Parquet	

Carnegie Mellon

20 15-418/618	Spring	2019	

Initial	States	(Parquet	Graph)	
Right	Corner	(r)	

Demo	8	
Diagonal	(d)	
Demo	9	

Uniform	(u)	
Demo	10	

t	=	0	

t	=	5	

Carnegie Mellon

21 15-418/618	Spring	2019	

Graph	Representation	
0	 1	 2	

3	 4	 5	

6	 7	 8	

neighbor						
Includes	self	edges	
length	=	N+M	

0	 3	 7	 10	 14	 19	 23	 26	 30	 33	

neighbor_start					(length	=	N+1)	

Having	pointer	to	
end	is	useful	(why?)	

0	 2	 4	1	1	 3	0	 1	 5	2	 0	 4	 6	3	

1	 3	 5	 7	4	 8	5	 3	 7	6	2	 4	

6	 8	7	 5	 7	8	4	

N	node,	M	edges	

Carnegie Mellon

22 15-418/618	Spring	2019	

Sample	Code	
¢  From	sim.c	
¢  Compute	reward	value	for	node	

¢  Simulation	state	stored	in	state_t	struct	
¢  Reward	function	computed	by	mweight

/* Compute weight for node nid */
static inline double compute_weight(state_t *s, int nid)
{
 int count = s->rat_count[nid];
 double ilf = neighbor_ilf(s, nid);
 return mweight((double) count/s->load_factor, ilf);
}

Carnegie Mellon

23 15-418/618	Spring	2019	

Sample	Code	
¢  From	sim.c	
¢  Compute	sum	of	reward	values	for	node	
¢  Store	for	later	reuse	
/* Compute sum of weights in region of nid */
static inline double compute_sum_weight(state_t *s, int nid)
{
 graph_t *g = s->g;
 double sum = 0.0;
 int eid;
 int eid_start = g->neighbor_start[nid];
 int eid_end = g->neighbor_start[nid+1];
 for (eid = eid_start; eid < eid_end; eid++) {
 int nbrnid = g->neighbor[eid];
 double w = compute_weight(s, nbrnid);
 s->node_weight[nbrnid] = w;
 sum += w;
 }
 return sum;
}

Carnegie Mellon

24 15-418/618	Spring	2019	

Sample	Code	
¢  Compute	next	move	for	rat	

static inline int next_random_move(state_t *s, int r)
{
 int nid = s->rat_position[r];
 random_t *seedp = &s->rat_seed[r];
 double tsum = compute_sum_weight(s, nid);
 graph_t *g = s->g;
 double val = next_random_float(seedp, tsum);
 double psum = 0.0;
 int eid;
 int eid_start = g->neighbor_start[nid];
 int eid_end = g->neighbor_start[nid+1];
 for (eid = eid_start; eid < eid_end; eid++) {
 psum += s->node_weight[neighbor[eid]];
 if (val < psum) {
 return g->neighbor[eid];
 }
 }
}

Carnegie Mellon

25 15-418/618	Spring	2019	

Sequential	Efficiency	Considerations	
¢  Consider	move	computation	for	rat	at	node	with	degree	D	

§  How	many	(on	average)	iterations	of	loop	in	
next_random_move?	

§  Is	there	a	better	way?	
¢  Provided	code	uses	many	optimizations	

§  Precompute	weights	at	start	of	batch	
§  Fast	search	

Carnegie Mellon

26 15-418/618	Spring	2019	

Finding	Parallelism	
¢  Sequential	constraints	

§  Must	complete	time	steps	sequentially	
§  Must	complete	each	batch	before	starting	next	

§  ILF	values	and	weights	then	need	to	be	recomputed	

¢  Sources	of	parallelism	
§  Over	nodes	

§  Computing	ILFs	and	reward	functions	
§  Over	rats	(within	a	batch)	

§  Computing	next	moves	
§  Updating	node	counts	

Carnegie Mellon

27 15-418/618	Spring	2019	

Performance	Measurements	
¢  Nanoseconds	per	move	(NPM)	

§  R	rats	running	for	S	steps	
§  Requires	time	T	
§  NPM	=	109	*	T	/	(R	*	S)		
§  Reference	solution:	

§  665	NPM	for	1	thread		
§  84	NPM	for	12	threads	
§  7.9	X	speedup	

Carnegie Mellon

28 15-418/618	Spring	2019	

Performance	Targets	
¢  Benchmarks	

§  6	combinations	of	graph/initial	state	
§  Each	counts	15	points	

¢  Target	performance	
§  T	=	measured	time	
§  Tr	=	time	for	reference	solution	
§  Tr	/	T	=	How	well	you	reach	reference	solution	performance	

§  Full	credit	when	≥	0.9	
§  Partial	when	≥	0.5	

Carnegie Mellon

29 15-418/618	Spring	2019	

Machines	
¢  Latedays	cluster	

§  16	worker	nodes	+	1	head	node	
§  Each	is	12-core	Xeon	processor	(dual	socket	with	6	cores	each)	
§  You	submit	jobs	to	batch	queue	
§  Assigned	single	processor	for	entire	run	
§  Python	script	provided	

¢  Code	Development	
§  OK	to	do	code	development	and	testing	on	other	machines	
§  But,	they	have	different	performance	characteristics	
§  Make	sure	to	use	6	or	12	threads	to	ensure	correct	partitioning	of	

nodes	across	processors	

Carnegie Mellon

30 15-418/618	Spring	2019	

Instrumenting	Your	Code	
¢  How	do	you	know	how	much	time	each	activity	takes?	

§  Create	simple	library	using	cycletimer	code	
§  Bracket	steps	in	your	code	with	library	calls	
§  Use	macros	so	that	you	can	disable	code	for	maximum	

performance	

 START_ACTIVITY(ACTIVITY_NEXT);
 #pragma omp parallel for schedule(static)
 for (ri = 0; ri < local_count; ri++) {
 int rid = ri + local_start;
 s->rat_position[rid] = fast_next_random_move(s, rid);
 }
 FINISH_ACTIVITY(ACTIVITY_NEXT);

Carnegie Mellon

31 15-418/618	Spring	2019	

Evaluating	Your	Instrumented	Code	

¢  Can	see	which	activities	account	for	most	time	
¢  Can	see	which	activities	limit	parallel	speedup	

 194 ms 1.0 % startup
 2077 ms 11.1 % compute_weights
 4029 ms 21.6 % compute_sums
 11733 ms 62.8 % find_moves
 651 ms 3.5 % set_ops
 3 ms 0.0 % unknown

 192 ms 3.2 % startup
 426 ms 7.0 % compute_weights
 940 ms 15.5 % compute_sums
 3168 ms 52.3 % find_moves
 1325 ms 21.9 % set_ops
 2 ms 0.0 % unknown

1	thread	

12	threads	

Carnegie Mellon

32 15-418/618	Spring	2019	

Some	Logos	

