Recitation 2:

GPU Programming with CUDA

15-418 Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019
Goals for today

- Learn to use CUDA

1. Walk through example CUDA program
2. Optimize CUDA performance
3. Debugging & profiling tools

- Most of all,

 ANSWER YOUR QUESTIONS!
Matrix multiplication

\[(i, j) \rightarrow \sum_k (i, k) \mapsto (i, j)\]
Matrix multiplication (matmul)

- Simple C++ implementation:

/* Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void multMatrixSimple(int N, float *matA, float *matB, float *matC) {
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++) {
 float sum = 0.0;
 for (int k = 0; k < N; k++)
 sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];
 matC[RM(i,j,N)] = sum;
 }
}
Benchmarking simple C++ matmul

- ./matrix -n 1024 -N 1024 -m simple

- Simple C++: 1950 ms, 1.1 GFlops
Translating matmul to CUDA

▪ SPMD (single program, multiple data) parallelism
 ▪ “Map this function to all of this data”: map($f, data$)
 ▪ Similar to SIMD, but doesn’t require lockstep execution

▪ What this means: You write the “inner loop”, compiler + GPU execute it in parallel
Translating matmul to CUDA

- **Simple CUDA implementation:**

```c
/* Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void multMatrixSimple(int N, float *matA, float *matB, float *matC) {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++) {
            float sum = 0.0;
            for (int k = 0; k < N; k++)
                sum += matA[RM(i, k, N)] * matB[RM(k, j, N)];
            matC[RM(i, j, N)] = sum;
        }
}
```

1. Find the inner loop
Translating matmul to CUDA

- Simple CUDA implementation:

```c
__global__ void cudaSimpleOldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;

    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```

2. Write it as a separate function
Translating matmul to CUDA

Simple CUDA implementation:

```c
__global__ void
cudaSimpleOldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;
    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```

3. Compute loop index + test bound (no outer loop)
Benchmarking simple CUDA matmul

- `./matrix -n 1024 -N 1024 -m cosimple`

- Simple C++: 1950 ms, 1.1 GFlops
- Simple CUDA: 44.5 ms, 48.2 Gflops

...actually, not very good yet! (stay tuned)
CUDA Terminology

CPU
Host

GPU
Device

PCle
CUDA Programming Model

- Programmer writes *kernels* executed by each thread
- Blocks have fast shared memory between threads
- Blocks within a grid may execute in any order
CUDA Programming Model

Host (CPU) | Device (GPU)

PCIe

Not all threads used
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax
- Get results (from GPU to CPU)
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
 - These addresses are only valid on GPU
  ```c
  cudaMalloc((void **) &aDevData, N*N * sizeof(float));
  cudaMalloc((void **) &bDevData, N*N * sizeof(float));
  cudaMalloc((void **) &cDevData, N*N * sizeof(float));
  cudaMemcpy(aDevData, aData, N*N * sizeof(float), cudaMemcpyHostToDevice);
  cudaMemcpy(bDevData, bData, N*N * sizeof(float), cudaMemcpyHostToDevice);
  ```

- Invoke CUDA with special syntax

- Get results (from GPU to CPU)
 Need to move data manually (separate address spaces)
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax

```c
#define N 1024
#define LBLK 32

dim3 threadsPerBlock(LBLK, LBLK);
dim3 blocks(updiv(N, LBLK), updiv(N, LBLK)); // updiv() divides + rounds up
cudaSimpleKernelOld<<<blocks, threadsPerBlock>>>(N, aDevData, bDevData, cDevData);
```

- Get results (from GPU to CPU)

These addresses are only valid on GPU
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax
- Get results (from GPU to CPU)

```c
// Setup memory
float *tHostData = (float *) calloc(N*N, sizeof(float));

// Invoke CUDA
cudaMemcpy(tHostData, tDevData, N*N*sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(aDevData); cudaFree(bDevData); cudaFree(cDevData);
```

Need to move data manually (separate address spaces)
Compiling + running CUDA

- CUDA code is in separate *.cu file (cudaMatrix.cu)
 - Compiled like:
    ```
    nvcc cudaMatrix.cu -O3 -c -o cudaMatrix.o
    ```
 - (See assignment 2 for $PATH, etc)

- Linked with gcc + flags, e.g.:
 - ```
 g++ -O3 -L/path/to/cuda -lcudart -o matrix *.o
    ```

- Run like a normal program, e.g.:
  - ```
    ./matrix
    ```
Profiling performance: How well are we doing?

- Run “nvprof” to generate analysis data
 - `nvprof --analysis-metrics -f -o cosimple.nvprof ./matrix -n 1024 -N 1024 -m cosimple`
 - (nvprof has many other options)

- Visualize profile with `nvvp cosimple.nvprof`
 - You will want to run this locally so X-windows doesn’t lag
nvprof/nvvp Profiling Results

1. CUDA Application Analysis
2. Check Overall GPU Usage

The analysis results on the right indicate potential problems in how your application is taking advantage of the GPU's available compute and data movement capabilities. You should examine the information provided with each result to determine if you can make changes to your application to increase GPU utilization.

Examine Individual Kernels
You can also examine the performance of individual kernels to expose additional optimization opportunities.

Low Kernel Concurrency
The percentage of time when two kernels are being executed in parallel is low.

Low Compute Utilization
The multiprocessors of one or more GPUs are mostly idle.

Compute Utilization
The device timeline shows an estimate of the amount of the total compute capacity being used.
nvprof/nvvp Profiling Results

matmul is memory bound!
GPU microarchitecture

L2 Cache
“Global” memory, accessible across entire device
CUDA Programming Model

Grid

Block

SM
Streaming multiprocessor (SM) microarchitecture

Within an SM, thread blocks are broken into warps for execution.

“Shared” memory (only shared within SM/thread block)

“Cores” (execution units)
Improving matmul memory usage

Why is matmul accessing memory so much?

```c
__global__ void
cudaSimpleOldKernel(int N, float* dmatA,
                     float* dmatB, float* dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;
    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```
Improving matmul memory usage: Peeking under the hood

- Need to think about how threads within a warp access memory...
 - (This is bad – warps aren’t part of programming model)

- CUDA maps threads \rightarrow warps
 - row-major: Same y values, consecutive x values
 - Warp 0:
 $(0,0)$ $(1,0)$ $(2,0)$ … $(31,0)$
Improving matmul memory usage: Warp memory access pattern

- What memory locations does warp 0 access?

```c
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
```

- Access: $dmatA[RM(i,k,N)]$, $dmatB[RM(k,j,N)]$, $dmatC[RM(i,j,N)]$ where $RM(i,j,N) = i*N + j$

- Threads have same y + consecutive x ➔
- Threads accesses the same j + consecutive i ➔
- Threads access memory at stride of N floats ➔
- 1 reads + 1 writes per thread
Improving matmul memory usage:
Better spatial locality

▪ What if we flipped it around?

 int i = blockIdx.y * blockDim.y + threadIdx.y;
 int j = blockIdx.x * blockDim.x + threadIdx.x;

▪ Threads have same y + consecutive x ➔
▪ Threads access the same i + consecutive j ➔
▪ Threads access memory at stride of 1 ➔
▪ GPU coalesces reads + writes to memory block ➔
▪ 1 read + 1 write per warp (if large memory blocks)
Benchmarking improved simple CUDA matmul

- ./matrix -n 1024 -N 1024 -m csimple

- Simple C++: 1950 ms, 1.1 Gflops
- Simple CUDA: 44.5 ms, 48.2 Gflops
- Simple++ CUDA: 4.95 ms, 434 Gflops
Profiling improved simple CUDA matmul

- nvprof --analysis-metrics -f -o csimple.nvprof
 ./matrix -n 1024 -N 1024 -m csimple
- nvvp csimple.nvprof

- Doing better!

- ...Still memory bound, though
CUDA disassembly + its limits

- You can look at PTX assembly:
 cuobjdump --dump-ptx matrix

- ...But you will not see difference in this case
 (Coalescing done by hardware, not compiler)

.visible .entry _Z19cudaSimpleKernelOldiPfS_S_(
...
ld.global.f32 %f6, [%rd9];
ld.global.f32 %f7, [%rd7];
...
st.global.f32 [%rd12], %f9;
...
.visible .entry _Z19cudaSimpleKernelOldiPfS_S_(
...
ld.global.f32 %f6, [%rd9];
ld.global.f32 %f7, [%rd7];
...
st.global.f32 [%rd12], %f9;
...
Blocked matmul: Even better memory usage

- Problem: Entire matrix doesn’t fit in local cache

\[
\sum_k \sum_{b_k} \mathbb{C} \mathbb{A} \mathbb{B} \mathbb{k} = \mathbb{C} \mathbb{A} \mathbb{B} \mathbb{k} \cdot \mathbb{X}
\]

- Classic solution: \textit{Block} into sub-matrices that do fit in cache, and then multiply and sum sub-matrices
 - (This is just a re-association of the original computation)
Blocked matmul: C++ version

```cpp
void multMatrixBlocked(int N, float *matA, float *matB, float *matC) {
    /* Zero out C */
    memset(matC, 0, N * N * sizeof(float));
    int i, j, k;
    for (i = 0; i <= N-SBLK; i+= SBLK) {
        for (j = 0; j <= N-SBLK; j+= SBLK) {
            for (k = 0; k <= N-SBLK; k+= SBLK) {
                for (int bi = 0; bi < SBLK; bi++)  {
                    for (int bj = 0; bj < SBLK; bj++) {
                        float sum = 0.0;
                        for (int bk =0; bk < SBLK; bk++)
                            sum += matA[RM(i+bi,k+bk,N)] * matB[RM(k+bk,j+bj,N)];
                        matC[RM(i+bi,j+bj,N)] += sum;
                    }   }
                }
            }
        }
    }
}
```

Note: This code assumes SBLK evenly divides N; need extra loops for “leftovers” in general
Benchmarking blocked matmul in C++

- ./matrix -n 1024 -N 1024 -m block

- Simple C++: 1950 ms, 1.1 Gflops
- Simple CUDA: 44.5 ms, 48.2 Gflops
- Simple++ CUDA: 4.95 ms, 434 Gflops

- Block C++: 612 ms, 3.5 Gflops
Blocked matmul: CUDA version

1. Find the inner loop

2. Write it as a separate function

3. Compute indices from block/thread id
Blocked matmul: Attempt #1

```c
__global__ void cudaBlockKernelCoarse(int N, float *dmatA, float *dmatB, float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y; i *= LBLK;
    int j = blockIdx.x * blockDim.x + threadIdx.x; j *= LBLK;

    for (int bi = 0; bi < LBLK; bi++)
        for (int bj = 0; bj < LBLK; bj++)
            dmatC[RM(i+bi,j+bi,N)] = 0;

    for (int k = 0; k <= N-LBLK; k+=LBLK) {
        for (int bi = 0; bi < LBLK; bi++)
            for (int bj = 0; bj < LBLK; bj++) {
                float sum = 0.0;
                for (int bk = 0; bk < LBLK; bk++) {
                    sum += dmatA[RM(i+bi,k+bk,N)] * dmatB[RM(k+bk,j+bj,N)];
                }
                dmatC[RM(i+bi,j+bj,N)] += sum;
            }
    }
}
```

Map threads across submatrices

Compute submatrix product
Blocked matmul: Attempt #1 + Local memory

```c
__global__ void cudaBlockKernelCoarse(int N, float *dmatA, float *dmatB, float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y; i *= LBLK;
    int j = blockIdx.x * blockDim.x + threadIdx.x; j *= LBLK;
    float subA[LBLK * LBLK];
    float subB[LBLK * LBLK];
    float subC[LBLK * LBLK];

    for (int bi = 0; bi < LBLK; bi++) /* Zero out C */
        for (int bj = 0; bj < LBLK; bj++)
            subC[RM(bi, bj, LBLK)] = 0;

    for (int k = 0; k <= N - LBLK; k += LBLK) {
        for (int bi = 0; bi < LBLK; bi++) {
            for (int bj = 0; bj < LBLK; bj++) {
                subA[RM(bi, bj, LBLK)] = dmatA[RM(i + bi, k + bj, N)];
                subB[RM(bi, bj, LBLK)] = dmatB[RM(k + bi, j + bj, N)];
            }
        }

        for (int bi = 0; bi < LBLK; bi++) {
            for (int bj = 0; bj < LBLK; bj++) {
                float sum = 0.0;
                for (int bk = 0; bk < LBLK; bk++)
                    sum += subA[RM(bi, bk, LBLK)] * subB[RM(bk, bj, LBLK)];
                subC[RM(bi, bj, LBLK)] += sum;
            }
        }
    }
    for (int bi = 0; bi < LBLK; bi++)
        for (int bj = 0; bj < LBLK; bj++)
            dmatC[RM(i + bi, j + bj, N)] = subC[RM(bi, bj, LBLK)];
}
```
Benchmarking blocked matmul

- ./matrix -n 1024 -N 1024 -m block

- Simple C++: 1950 ms, 1.1 Gflops
- Simple CUDA: 44.5 ms, 48.2 Gflops
- Simple++ CUDA: 4.95 ms, 434 Gflops

- Block C++: 612 ms, 3.5 Gflops
- Block CUDA: 111 ms, 19.4 Gflops 😞
Profiling blocked matmul

- `nvprof --analysis-metrics -f -o ccblock.nvprof ./matrix -n 1024 -N 1024 -m ccblock`
- `nvvp ccblock.nvprof`

- Huh...
Blocked matmul: What went wrong?

- How much parallelism is there in our first attempt?

- Each thread generates 32×32 output elements
- Each thread block is 32×32 threads
- There are 1024×1024 output elements

- ➔ We only spawn one thread block!
- Need to split loops across more threads
Blocked matmul: Attempt #2

- Original matmul had one thread for each output element: 1024×1024 threads
 - 1 thread for each i, j loop iteration in C++ code

- Idea: Unroll the inner b_i & b_j loops in Attempt #1 across a threads in a block
 - Thread block shares a single copy of submatrix
__global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {
 int i = blockIdx.y * blockDim.y + threadIdx.y;
 int j = blockIdx.x * blockDim.x + threadIdx.x;

 int bi = threadIdx.y;
 int bj = threadIdx.x;

 __shared__ float subA[LBLK * LBLK]; // Keep a block-shared copy of submatrix
 __shared__ float subB[LBLK * LBLK];
 float sum = 0;

 for (int k = 0; k < N; k += LBLK) {
 subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bi,N)];
 subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];

 for (int bk = 0; bk < LBLK; bk++) {
 sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];
 }
 }

 dmatC[RM(i,j,N)] = sum;
}

Each thread responsible for one output element (like original CUDA code)

But now mapped within a LBLK × LBLK block

Explicitly read from global to shared memory

Only reference shared copy in loop

Explicitly write from local to global memory

Is this code correct?
Blocked matmul: Attempt #2

```c
__global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y;
    int j = blockIdx.x * blockDim.x + threadIdx.x;

    int bi = threadIdx.y;
    int bj = threadIdx.x;

    __shared__ float subA[LBLK * LBLK];
    __shared__ float subB[LBLK * LBLK];
    float sum = 0;

    for (int k = 0; k < N; k += LBLK) {
        subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)];
        subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];

        __syncthreads();

        for (int bk = 0; bk < LBLK; bk++) {
            sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];
        }

        __syncthreads();
    }

    dmatC[RM(i,j,N)] = sum;
}
```

Need barriers across thread block to ensure subA/subB are ready to be read/updated

(A block is executed as multiple warps, which can proceed at different rates through the kernel)
Benchmarking improved blocked matmul

- ./matrix -n 1024 -N 1024 -m block

- Simple C++: 1950 ms, 1.1 Gflops
- Simple CUDA: 44.5 ms, 48.2 Gflops
- Simple++ CUDA: 4.95 ms, 434 Gflops

- Block C++: 612 ms, 3.5 Gflops
- Block CUDA: 111 ms, 19.4 Gflops
- Block++ CUDA: 2.05 ms, 1050 Gflops
Benchmarking at 2048×2048 (8 × more work)

- `./matrix -n 1024 -N 1024 -m block`

- Simple C++: 16000 ms, 1.1 Gflops
- Simple CUDA: 301 ms, 57.0 Gflops
- Simple++ CUDA: 38.4 ms, 443 Gflops

- Block C++: 4940 ms, 3.5 Gflops
- Block CUDA: 303 ms, 56.7 Gflops
- Block++ CUDA: 15.7 ms, 1100 Gflops

Only significant change (due to increased parallelism)
Debugging tips and pitfalls

- `printf()` is available, but will reorder or lose output
 - So be cautious using `printf()` for debugging!

- Check your error codes

```c
#define CHK(ans) gpuAssert((ans), __FILE__, __LINE__);

void gpuAssert(CUDAError_t code, const char *file, int line){
    if (code != CUDASuccess)
        fprintf(stderr, "GPUassert: %s %s %s\n",
                    CUDAGetErrorString(code), file, line);
}

#define POSTKERNEL CHK(CUDAPeekAtLastError())
```
Debugging tips and pitfalls

- Write reference version on host in C++

- Watch out for out-of-bounds memory errors (all kinds of crazy stuff will happen)

- Don’t assume stuff about N (e.g., that it’s a multiple of LBLK)

- cuda-gdb lets you step through + inspect code
Debugging tips and pitfalls

▪ What will happen here?

```c
for (int k = 0; k < N; k+= LBLK) {
    if (i >= N || j >= N) continue;
    // Some computation
    __syncthreads();
    // Some more computation
    __syncthreads();
}
```
Optimization advice

▪ Get the high-level abstraction + implementation first
 ▪ Don’t start with low-level optimizations

▪ Use nvprof to figure out where your bottleneck is
 ▪ Low utilization of compute + memory ➔ no parallelism
 ▪ Low utilization of compute ➔ memory bound
 ▪ Low utilization of memory ➔ compute bound

▪ Memory is often key
 ▪ E.g., when to use local/shared/global memory