Recitation 2:

GPU Programming with
CUDA

15-418 Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2019

Goals for today

" |earn to use CUDA

1. Walk through example CUDA program
2. Optimize CUDA performance
3. Debugging & profiling tools

=" Most of all,

ANSWER YOUR QUESTIONS!

Matrix multiplication

ppe—

CMU 15-418/15-618, Spring 2019

Matrix multiplication (matmul)

= Simple C++ implementation:

/% Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void muTltMatrixSimple(int N, float *matA, float *matB, float *matC) {
for (int i = 0; i < N; i4++)
for (int j = 0; j < N; j++) {
float sum = 0.0;
for (int k = 0; k < N; k++)
sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];
matC[RM(i,j,N)] = sum;

Benchmarking simple C++ matmul

» . /matrix -n 1024 -N 1024 -m simple

= Simple C++: 1950 ms, 1.1 GFlops

Translating matmul to CUDA

= SPMD (single program, multiple data) parallelism
= “Map this function to all of this data”: map(f, data)
= Similar to SIMD, but doesn’t require lockstep execution

" What this means: You write the “inner loop”,
compiler + GPU execute it in parallel

Translating matmul to CUDA

= Simple CUDA implementation:

/% Find element based on row-major ordering */

#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void muTltMatrixSimple(int N, float *matA, float *matB, float *matC) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
float sum = 0.0;
for (int k = 0; k < N; ké+) 1. Find the
sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];
matC[RM(i,j,N)] = sum;

inner loop

Translating matmul to CUDA

= Simple CUDA implementation:

_global__ void
cudaSimpTeOTldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {

int 1 blockIdx.x * blockDim.x + threadIdx.x;

int j blockIdx.y * blockDim.y + threadIdx.y;
if (3 >= N1 §>=N)

return;
float sum = 0.0;

for (int k = 0; k < N; k++) { 2 Wri‘re i‘l‘ as d

sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];

} separate function

dmatC[RM(i,j,N)] = sum;

Translating matmul to CUDA

= Simple CUDA implementation:

_global__ void
cudaSimpTeOTldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;

int j = blockIdx.y * blockDim.y + threadIdx.y; 3. COmpUTe |00p

if (:ez:r:.u i >= N) index + test bound
float sum = 0.0; (nO OUTer IOOp)

for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
}
dmatC[RM(i,j,N)] = sum;

Benchmarking simple CUDA
matmul

" /matrix -n 1024 -N 1024 -m cosimple

= Simple C++: 1950 ms, 1.1 GFlops
= Simple CUDA: 44.5 ms, 48.2 Gflops

= ...actually, not very good yet! (stay tuned)

CUDA Terminology

: GOOD | ol

TR T TR

GPU

Device

CMU 15-418/15-618, Spring 2019

CUDA Programming Model

Thread

" Programmer writes kernels executed by each thread
" Blocks have fast shared memory between threads

= Blocks within a grid may execute in any order

CUDA Programming Model

Devicle (GPU)

Host (CPU)

Not all threads d

I mmmm

Invoking CUDA matmul

= Setup memory (from CPU to GPU)

" Invoke CUDA with special syntax

= Get results (from GPU to CPU)

Invoking CUDA matmul

= Setup memory (from CPU to GPU)

These addresses are

vfcmly valid on GPU

cudaMalloc((void **) &aDevData, N*N * sizeof(float)); Need to move data
cudaMalloc((void **) &bDevData, N*N * sizeof(float)); vKmGInUd”)’ (separate
cudaMalloc((void **) &cDevData, N*N * sjzeof(float)); address spaces)

cudaMemcpy (aDevData, aData, N*N * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy (bDevData, bData, N*N * sizeof(float), cudaMemcpyHostToDevice);

= [Invoke CUDA with special syntax
= Get results (from GPU to CPU)

Invoking CUDA matmul

= Setup memory (from CPU to GPU)
" Invoke CUDA with special syntax

#define N 1024

#define LBLK 32

dim3 threadsPerBlock (LBLK, LBLK);

dim3 blocks(updiv(N, LBLK), updiv(N, LBLK)); // updiv() divides + rounds up

cudaSimpleKernelOld<<<blocks, threadsPerBlock>>>(N, aDevData, bDevData, cDevData);

These addresses are

= Get results (from GPU to CPU) only valid on GPU

Invoking CUDA matmul

= Setup memory (from CPU to GPU)
" Invoke CUDA with special syntax
= Get results (from GPU to CPU) Need to move data

manually (separate
f address spaces)

cudaMemcpy (tHostData, tDevData, N*N*sizeof(float), cudaMemcpyDeviceToHost);

tHostData = (float *) calloc(N*N, sizeof(float));

cudaFree(aDevData); cudaFree(bDevData); cudaFree(cDevData);

Compiling + running CUDA

" CUDA code is in separate *.cu file (cudaMatrix.cu)

= Compiled like:
nvcc cudaMatrix.cu -03 -c -o cudaMatrix.o

" (See assignment 2 for $PATH, etc)

" Linked with gcc + flags, e.g.:
= g++ -03 -L/path/to/cuda -lcudart -o matrix *.o

® Run like a normal program, e.g.:
= . /matrix

Profiling performance:
How well are we doing?

=" Run “nvprof” to generate analysis data

= nvprof --analysis-metrics -f -o cosimple.nvprof
./matrix -n 1024 -N 1024 -m cosimple

" (nvprof has many other options)

" Visualize profile with nvvp cosimple.nvprof
= You will want to run this locally so X-windows doesn’t lag

nvprof /nvvp Profiling Results

[Analysis 82 [GPU Details 1 CPU Details [El Console [Settings

-Results

Low Kernel Concurrency [0 ns/76.208 ms = 0%]
The percentage of time when two kernels are being executed in parallel is low.

islg, Export PDF Report

Low Compute Utilization [76208 ms/7.705 s = 1% |

The analysis results on the right indicate potential problems in how your application . :
is taking advantage of the GPU's available compute and data movement capabilities. The multlprocessors of one or more GPUs are mostly idle.
You should examine the information provided with each result to determine if you . - .

i Compute Utilization

can make changes to your application to increase GPU utilization.
The device timeline shows an estimate of the amount of the total compute capacity being

Examine Individual Kernels

You can also examine the performance of individual kernels to expose additional optimization
opportunities.

[Analysis 23 [GPU Details i CPU Details & Console [ji Settings

Ele ¢ Ly Export PDF Report Results
i Kernel Performance Is Bound By Memory Bandwidth

For device "GeForce GTX 1080" the kernel's compute utilization is significantly lower than its memory utilization. These utilization levels indicate that the performance of the kernel is most likely being limited by the memory
system. For this kernel the limiting factor in the memory system is the bandwidth of the L2 Cache memory.

The first step in analyzing an individual kernel is to determine if the performance of
the kemel is bounded by computation, memory bandwidth, or instruction/memory
latency The results at right indicate that the performance of kernel
“cudaSimpleKemelOid" is most likely limited by memory bandwidth.

Il Memory operations
Il Contral-flow operations
[l Arithmetic operatians
I Memory (L2 Cache)

| oy, Perform Memory Bandwidth Analysis |

The mast likely bottleneck to performance for this kernel is memory bandwidth so you should
first perform memary bandwidth analysis to determine haw it is limiting performance.

Utilization

sy, Perform Compute Analysis |

[y, Perform Latency Analysis |

Compute and instruction and memary latency are likely not the primary performance EE———

bottienecks for this kernel, but you may still want to perform thase analyses.
— i

Iy, Rerun Analysis |

“V\U 10-410/10-010,0pring <viv

nvprof /nvvp Profiling Results

Utilization

a—

matmul is memory bound!

CMU 15-418/15-618, Spring 2019

GPU microarchitecture

Mem Cirl

Mem Cirl

Mem Cirl

Mem Cirl

Mem Cirl

Mem Cirl

[[[[[NENEEEEE

[[[[[NENEEEEE

[[[[[NENEEEEE
|V RR[E[R[S[S[E S DENEEE N EEEEEN

L2 Cache

“Global” memory, accessible across entire device

[[[[[NENEEEEE

[[[[[NENEEEEE

[[[[[NENEEEEE
S DEDEEE S DENEEE (HNEEEEEN

Mem Cirl

Mem Cirl

CMU 15-418/15-618, Spring 2019

CUDA Programming Model

Streaming multiprocessor (SM)
microarchitecture

‘ F&D F&D
Warp Selector

\

F&D F&D “Cores’’ (execution units)

Warp Selector

LT Cache

< Execution
\ Contexts F&D F&D
Warp Selector

“Shared” memory

I B | | (only shared within SM/thread block]

Warp Selector

LT Cache

Within an SM, thread blocks are broken into warps for execution

Improving matmul memory usage

" Why is matmul accessing memory so much?

__global__ void
cudaSimpleOldKernel(int N, float* dmatA,
float* dmatB, float * dmatC) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (1 >= N || J>=N)
return;
float sum = 0.0;
for (int k = 0; k < N; k++) {
sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
}
dmatC[RM(i,]j,N)] = sum;

Improving matmul memory usage:
Peeking under the hood

®" Need to think about how threads within a warp
access memory...

® (This is bad — warps aren’t part of programming model)

* CUDA maps threads =2 warps ‘>
row-major: Same y values,
consecutive x values

= Warp O:
(0,0) (1,0) (2,0) ... (31,0)

€Y

Improving matmul memory usage:
Warp memory daccess pattern

= What memory locations does warp O access?

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int J = blockIdx.y * blockDim.y + threadIdx.y;

" Access: dmatA[RM(i,k,N)], dmatB[RM(k,j,N)],
dmatC[RM(i,j,N)] where RM@Gi,j,N) = i*N + j

* Threads have same y + consecutive x =

" Threads accesses the same j + consecutive i =
" Threads access memory at stride of N floats =
=" |1 reads + 1 writes per thread

Improving matmul memory usage:
Better spatial locality

" What if we flipped it around?

int 1 = blockIdx.y * blockDim.y + threadIdx.y;
int J = blockIdx.x * blockDim.x + threadIdx.x;

" Threads have same y + consecutive x =

" Threads access the same i + consecutive | =

" Threads access memory at stride of 1 =
" GPU coalesces reads + writes to memory block =

"1 read + 1 write per warp (if large memory blocks)

Benchmarking improved simple
CUDA matmul

" /matrix -n 1024 -N 1024 -m csimple

= Simple C++: 1950 ms, 1.1 Gflops
= Simple CUDA: 44.5 ms, 48.2 Gflops
= Simple++ CUDA: 4.95 ms, 434 Gflops

Profiling improved simple CUDA
matmul

» nvprof --analysis-metrics -f -o csimple.nvprof
./matrix -n 1024 -N 1024 -m csimple

= nvwp csimple.nvprof

= Doing better!

Utilization

= _..Still memory bound, though

CMU 15-418/15-618, Spring 2019

CUDA disassembly + its limits

" You can look at PTX assembly:
cuobjdump --dump-ptx matrix

= ...But you will not see difference in this case
(Coalescing done by hardware, not compiler)

.visible .entry _Z19cudaSimpleKernelOldiPfS_S_(

ia:g]oba]_f32 %f6, [%rd9a]; .visible .entry _Z19cudaSimpleKernelOTdiPfS_S_(

1d.global.f32 %f7, [%rd7]; e
1d.global.f32 %f6, [%rd9];

st.global.f32 [%rd12], %f9; 1d.global.f32 %f7, [%rd7];
o st.global.f32 [%rd12], %f9;

Blocked matmul: Even better
memory usage

" Problem: Entire matrix doesn’t fit in local cache

1 1

k Dbk
—
—

&3

= Classic solution: Block into sub-matrices that do fit in
cache, and then multiply and sum sub-matrices
= (This is just a re-association of the original computation)

CMU 15-418/15-618, Spring 2019

CMU 15-418/15-618, Spring 2019

Blocked matmul: C++ version

void multMatrixBlocked(int N, float *matA, float *matB, float *matC) {
/* Zero out C */
memset(matC, 0, N * N * sizeof(float));
int i, j, k;
er LU = 9; L <=_N_SBLK; U= S_BLK) { Outer loops iterate over submatrices in
for (j = 0; j <= N-SBLK; j+= SBLK) { steps of SBLK
for (k = 0; k <= N-SBLK; k+= SBLK) {
for (int bi = 0; bi < SBLK; bi++) {
for (int bj = 0; bj < SBLK; bj++) { Inner bi, bj loops
float sum = 0.0; iterate over sub-
for (int bk =0; bk < SBLK; bk++) matrix and
sum += matA[RM(i+bi,k+bk,N)] accumulate into
* matB[RM(k+bk,j+bj,N)]; output matrix
matC[RM(i+bi,j+bj,N)] += sum;

Note: This code assumes SBLK evenly divides N; need extra loops for “leftovers” in general

CMU 15-418/15-618, Spring 2019

Benchmarking blocked matmul in
C++

" /matrix -n 1024 -N 1024 -m block

= Simple C++: 1950 ms, 1.1 Gflops

= Simple CUDA: 44.5 ms, 48.2 Gflops

= Simple++ CUDA: 4.95 ms, 434 Gflops

" Block C++: 612 ms, 3.5 Gflops

Blocked matmul: CUDA version

1. Find the inner loop
2. Write it as a separate function

3. Compute indices from block /thread id

Blocked matmul: Attempt #1

__global__ void
cudaB1ockKerne1Coarse(1nt N, float *dmatA, float *dmatB, float *dmatC) {

int 1 = blockIdx.y b1ockD1m y + threadIdx y; 1 *= LBLK;
int j = blockIdx.x * blockDim.x + threadIdx.x; j *= LBLK;AAprhr?GdSCKTOSS
submatrices
for (int bi = 0; bi < LBLK; bi++)
for (int bj = 0; bj < LBLK; bj++)
dmatC[RM(i+bi,j+b1,N)] = 0;

for (int k = 0; k <= N-LBLK; k+=LBLK) {
for (int bi = 0; bi < LBLK; bi++) {)
for (int bj = 0; bj < LBLK; bj++) { Compute submatrix product

float sum = 0.0;

for (int bk = 0; bk < LBLK; bk++) {

sum += dmatA[RM(i+bi,k+bk,N)]
* dmatB[RM(k+bk,j+bj,N)];
}

dmatC[RM(i+bi,j+bj,N)] += sum;
P}

CMU 15-418/15-618, Spring 2019

Blocked matmul: Attempt #1 +
Local memory

g1oba1 void cudaBlockKernelCoarse(int N, float *dmatA, float *dmatB,
float dmatC) {
int 1 blockIdx.y * blockDim.y + threadIdx.y; i1 *= LBLK;
}qt j BA?EEEEX XLELE}ockD1m X + threadIdx.x; j *= LBLK;
oat su & :
float subB[LBLK * LBLK]: Keep a local copy
float subC[LBLK * LBLK]; of submatrix

for (int bi = 0; b1 < LBLK; bi++) /* Zero out C */
for (int bg i < LBLK; bj++)
subC[RM(b1i bJ LBLK)] - 0;

for (int k = 0; k <= N-LBLK; k+=LBLK) {
fo; (i?t b1b— 0; b1b§ LBtELKb1B+) § ‘
or 1nt J < J++ . .
SUBA[RM(Bi,bi.LBLK)] = dmatA(RM(i+bi,kebi,Ny]; - <Plicifly read from
subB[RM(bi,bJ,LBLK)] = dmatB[RM(k+bi,j+b3,N)]1; global to local memory

o}
for (int bi 0; bi < LBLK; bi++) {
for (int b] = 0; bj < LBLK; bj++) {
float sum = 0.0;
for (int bk = 0; bk < LBLK; bk++) { Only reference
sum += SubA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];

¥
subC[RM(bi,bj,LBLK)] += sum;

local copy in loop

}
for (int bi = 0; bi < LBLK; bi++) [;
for (int bj = 05 bj < LBLK bj++) Explicitly write from
dmatC[RM(i+bi,j+bj,N)] = subC[RM(bi,bj,LBLK)]; local to global memory

Benchmarking blocked matmul

" /matrix -n 1024 -N 1024 -m block

= Simple C++: 1950 ms, 1.1 Gflops
= Simple CUDA: 44.5 ms, 48.2 Gflops
= Simple++ CUDA: 4.95 ms, 434 Gflops

" Block C++: 612 ms, 3.5 Gflops
= Block CUDA: 111 ms, 19.4 Gflops &

Profiling blocked matmul

» nvprof --analysis-metrics -f -o ccblock.nvprof
./matrix -n 1024 -N 1024 -m ccblock

= nvvp ccblock.nvprof

= W

CMU 15-418/15-618, Spring 2019

= Hyh...

Utilization

Blocked matmul:
What went wrong?

®* How much parallelism is there in our first attempt?

=" Each thread generates 32 X 32 output elements

= Each thread block is 32 X 32 threads
" There are 1024 X 1024 output elements

" =» We only spawn one thread block!

= Need to split loops across more threads

Blocked matmul: Attempt #2

= Original matmul had one thread for each output
element: 1024 X 1024 threads

"] thread for each i, loop iteration in C++ code

" |dea: Unroll the inner bi & bj loops in Attempt #1
across a threads in a block

* =» Thread block shares a single copy of submatrix

Blocked matmul: Attempt #2

_global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int 1 = blockIdx.y * blockDim.y + threadIdx.y; ;

int J = blockTdx.x * blockDim.x 1+ threadTdx.x; -c¢h fhread responsible for one oufpuf
L element (like original CUDA code)

int bi = threadIdx.y; Buf now mapped within

int bj = threadIdx.x; & [BIK x LBLK block

__shared__ float subA[LBLK * LBLK]; Keep a block-shared
ﬁggirgﬂm_=fg)c.>at subB[LBLK * LBLK]; copy of submatrix
for (int k = 0; k < N;
subA[RM(bi,bj,LBLK)]
subB[RM(bi,bj,LBLK)]

+= LBLK) { o
dmatA[RM(i , k+bj,N)1; Explicitly read from

dmatB[RM(k+bi,],N)1; global to shared memory

nmn =

for (int bk = 0; bk < LBLK; bk++) {
sum += SubA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)]; .
} copy in loop

Only reference shared

}

dmatC[RM(i,j,N)] = sum;
} local to global memory

Explicitly write from

Is this code correct?

CMU 15-418/15-618, Spring 2019

Blocked matmul: Attempt #2

_global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int 1 = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;
int bi threadIdx.y;

int bj - threadIdx. x;

__shared__ float subA[LBLK * LBLK];
__shared__ float subB[LBLK * LBLK];
float sum = 0;

for (int k = 0; k < N; k += LBLK) {
subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)]; _
subB[RM(bi,b3j,LBLK)] = dmatB[RM(k+bi,j,N)]; Need barriers across thread

block to ensure subA /subB are
ready to be read /updated

__syncthreads();

for (int bk = 0; bk < LBLK; bk++) {
sum += SubA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];

} (A block is executed as
, __syncthreads(); multiple warps, which can
proceed at different rates
} dmatC[RM(i,3,N)] = sum; through the kernel)

CMU 15-418/15-618, Spring 2019

Benchmarking improved blocked
matmul

" /matrix -n 1024 -N 1024 -m block

= Simple C++: 1950 ms, 1.1 Gflops
= Simple CUDA: 44.5 ms, 48.2 Gflops
= Simple++ CUDA: 4.95 ms, 434 Gflops

" Block C++: 612 ms, 3.5 Gflops
" Block CUDA: 111 ms, 19.4 Gflops
= Block++ CUDA: 2.05ms, 1050 Gflops

Benchmarking at 2048 X 2048
(8 X more work)

" /matrix -n 1024 -N 1024 -m block

= Simple C++: 16000 ms, 1.1 Gflops

= Simple CUDA: 301 ms, 57.0 Gflops

= Simple++ CUDA: 38.4 ms, 443 Gflops

" Block C++: 4940 ms, 3.5 Gflops only significant change
" Block CUDA: 303 ms, 56.7 Gflops
= Block++ CUDA: 15.7ms, 1100 Gflops

(due to increased parallelism)

Debugging tips and pitfalls

= printf() is available, but will reorder or lose output
" So be cautious using printf() for debugging!

" Check your error codes

#define CHK(ans) gpuAssert((ans), __FILE__,
__LINE_);

void_gpuAssert(CUDAError_t code, const char *file,
int 1ine){

if (code != CUDASuccess)
fprintf(stderr, "GPUassert: %s %s %s\n",
) CUDAGetErrorString(code), file, Tine);

#define POSTKERNEL CHK(CUDAPeekAtLastError())

Debugging tips and pitfalls

" Write reference version on host in C++

®" Watch out for out-of-bounds memory errors (all
kinds of crazy stuff will happen)

" Don’t assume stuff about N (e.g., that it’s a multiple
of LBLK)

= cuda-gdb lets you step through + inspect code

Debugging tips and pitfalls

" What will happen here?

for (int k = 0; k < N; k+= LBLK) {
if (1 >= N || J >= N) continue;
// Some computation
__syncthreads();
// Some more computation
__syncthreads();

CMU 15-418/15-618, Spring 2019

Optimization advice

= Get the high-level abstraction + implementation first
= Don’t start with low-level optimizations

= Use nvprof to figure out where your bottleneck is
* Low utilization of compute + memory = no parallelism
" Low utilization of compute = memory bound
" Low utilization of memory = compute bound

=" Memory is often key
" E.g., when to use local/shared/global memory

