Recitation 1:

ILP, SIMD, and Thread
Parallelism

15-418 Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2019

Goals for today

" Topic is parallelism models: ILP, SIMD, threading

" Solve some exam-style problems

=" Walk through example code

" Most of all,

ANSWER YOUR QUESTIONS!

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, - . .
Float *resulty & How fast is this
for (int i=0; 1i<N; i++) { code?
float value = x[1i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

" Where should we
for (int j=1; j<=terms; j++) { . . .
value += sign * numer / denom; fOCUS OpTImIZCITIOn

numer *= x[1] * x[1];
denom *= (27‘:j+2) % (27‘:j+3); effortsg
sign *= -1;
}
result[i1] = value; - WhCI‘I' is ’rhe

¥ bottleneck?

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, m . .
Float *resulty { How fast is this
for (int i=0; i<N; i++) { code?

float value = x[i];
float numer = x[1]*x[1]*x[1];
int denom = 6; // 3!
int sign = -1; .
" On ghc machines:
for (int j=1; j<=terms; j++) {

value += sign * numer / denom; 7.2 ns / elemen’r ~

numer *= x[1] * x[1];
denom % (2%j+2) * (2%543): 23 cycles / element
sign *= -1;
}
result[i] = value; - NOT very gOOCI @
}

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, m
Float *resulty { Where should we

for (int 1=0; i<N; i++) { focus optimization
float value = x[i];
float numer = x[i1*x[i]*x[i]; effortse
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom; u A: Where most Of

numer *= x[i] * x[i];

denom *= (2%3+2) * (2%j+3): the time is spent
sign *= -1;

}

result[i] = value;

CMU 15-418/15-618, Spring 2019

Recall: Taylor expansion of sin(x)

void sinx(int N, int terms, float * X, m H
float *result) { thf IS The
for (int i=0; i<N; i++) { bottleneck?

float value = x[i];

float numer = x[i]*x[i]*x[i]:
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;

numer *= x[i] * x[i];
denom *= (2*j+2) * (2%j+3);
sign *= -1;

}

result[i] = value;

Dataflow for a single iteration

j value denom sign numer x[i]

j’ value’ denom’ sign’ numer’

OK, but how does this perform on a real machine?

CMU 15-418/15-618, Spring 2019

Superscalar OOQ Processor

®" What in microarchitecture should we worry about?

CPU

Instruction g Buffer

Execute Execute Execute
\

:
\ J J

f | |
In-order Out-of-order In-order

CMU 15-418/15-618, Spring 2019

GHC Machine Microarchitecture

" What in microarchitecture should we worry about?

NO. Any reasonable machine will have
) sufficient frontend throughput to keep
Fetch & Decodes execution busy + all branches in this code

are easy to predict (not always the casel).

" Execution? YES. This is where dataflow + most structural
hazards will limit our performance.

., NO. Again, any reasonable machine will have
= Commit? o i .
sufficient commit throughput to keep execution busy.

Intel Broadwell (GHC machines)
Execution Microarchitecture

Integer Floating Point
Latency Pipelined? Number Latency Pipelined? Number

Add 1 v 4 3 v 1

Multiply 3 v 1 53 v 2

Divide 3-30 x 1 3-15 x 1
Load 1 v 2

CMU 15-418/15-618, Spring 2019

What is our throughput bound?

j value denom sign numer x[i]

‘ # Code | uArch | Thput
bound

qumers Int Add

Int Mul

Int Div

A [|

THPUT BOUND/
FP Div

Load

What is our latency bound?

" Find the critical path in the dataflow graph

j value denom sign

j’ value’ denom’

1 3+(3/15)+3
=9to 21

numer

3+1+3+3=10

numer’

1+3+3=7

Takeaways

» Observe performance of 23 cycles / element

= Latency bound dominates throughput bound
=>» We are latency bound!

= Notes

* This analysis can often be “eyeballed” w/out full
dataflow

» Actual execution is more complicated, but latency /thput
bounds are good approximation

= (Also, avoid divisionlll)

Speeding up sin(x): Attempt #1

" What if we eliminate unnecessary work?

void sinx_better(int N, int terms, float * X,
float *result) {

for (int i=0; 1i<N; i++) { .
float value = x[1]; A: Small
float x2 = x[i]1*x[i];
float numer = x2*x[i];
int denom = 6; // 3!
int sign = -1;

improvement.

for (int j=1; j<=terms; j++) { 6ns / element =

value += sign * numer / denom;

18 cycles / element

numer *= Xx2;
denom *= (2*j+2) * (2*%j+3);
sign = -sign;
} Why not better?

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

value denom sign numer

K 7
lle § o
e

j’ va'I ue’ denom’ sign’ numer’

1 3+(3/15)+3 | | 34143+3=10 1 3

=9to 21

Attempt #1 Takeaways

= First attempt didn’t change latency bound

" To get real speedup, we need to focus on the
performance bottleneck

" Q: Why did we get any speedup at all?

= A: Actual dynamic scheduling is complicated; would
need to simulate execution in more detail

Speeding up sin(x): Attempt #2

" Let’s focus on that pesky division...

x, float *result) {

void sinx_predenom(int N, int terms, float *
float rdenom[MAXTERMS];
int denom = 6;
for (int j = 1; j <= terms; j++) {

for

rdenom[j] = 1.0/denom;
denom *= (2*j+2) * (2*j+3);

(int 1=0; i<N; 1++) {

float value = x[1];

float x2 = value * value;
float numer = x2 * value;

int sign = -1;

for (int j=1; j<=terms; j++) {

value += sign * numer * rdenom[]j];

numer *= x2;
sign = -sign;

result[i] = value;

A: Big improvement!

2.4ns / element =
7.7 cycles / element

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] sign numer X2

!

Attempt #2 Takeaways

= Here we gol! Attacking the bottleneck got nearly 3 XI

"= ...But performance is still near the latency bound,
can we do better?

Speeding up sin(x): Attempt #3

®" Don’t need sign in inner-loop either

void sinx_predenoms(int N, int terms, float *

float rdenom[MAXTERMS];
int denom = 6;
float sign = -1.0;

for (int j = 1; j <= terms; Jj++) {

for

rdenom[j] = sign/denom;
denom *= (2*%j+2) * (2*j+3);
sign = -sign;

(int i=0; i<N; i++) {

float value = x[i];

float x2 = value * value;
float numer = x2 * value;

for (int j=1; j<=terms; j++) {

value += numer * rdenom[j];

numer *= x2;

}

result[i] = value;

x, float *result) {

1.1ns / element =
3.5 cycles / element

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] numer X2

!

1 3 (LD will be executed speculatively, 3
only depends on j)

Attempt #3 Takeaways

" We’re down to the latency of a single, fast
operation per iteration

" + Observed performance is very close to this
latency bound, so throughput isn’t limiting

" =» We're done optimizing individual iterations

=" How to optimize multiple iterations?

= Eliminate dependence chains across iterations
= A) Loop unrolling (ILP)

= B) Explicit parallelism (SIMD, threading)

Speeding up sin(x):
Loop unrolling

= Compute multiple elements per iteration

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; i<N; i++) {
float value = x[i];
float x2 = value * value;
Float x4 = x2 * X2 Correct? Not yet...
float numer = x2 * value;
for (int j=1; j<=terms; j+=2) {
value += numer * rdenom[j];
value += numer * x2 * redom[j+1];
numer *= x4;
}

result[i] = value;

Speeding up sin(x):
Loop unrolling

= Compute multiple elements per iteration

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; i<N; i++) {
float value = x[i];
float x2 = value * value;

Float x4 = x2 * x2; 0.99 ns / element =
float numer = x2 * value;
I - 3.2 cycles / element

for (j=1; j<=terms-1; j+=2) {
value += numer * rdenom[j];
value += numer * x2 * redom[j+1];

numer *= x4; Didn’t chdnge @

for (; j<=terms; j++) {
value += numer * rdenom[j];
numer *= Xx2;

}

result[i] = value;

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] rdenom[j+1] x2 numer x4

, value’ ,
humer

6/2=3 (LD will be executed

1/2=0.5 3/2=1.5

speculatively, only depends on j)

Speeding up sin(x):
Loop unrolling #2

" What if floating point associated + distributed?

void sinx_unroll1x2(int N, int terms, float * x, float *result) {
// same predom stuff as before..
for (int i=0; i<N; i++) {
float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j++) {
value += numer * (rdenom[j] + x2 * redom[j+1]);
numer *= x4;
}
for (; j<=terms; j++) {
value += numer * rdenom[j];
numer *= x2; ! 0.69 ns / element =

}
result[i] = value; 2.2 cycles / element

What is our latency bound?

" Find the critical path in the dataflow graph

j value rdenom[j] rdenom[j+1] x2 numer x4

j’ value’ numer’

3/2=1.5 (LD will be executed

1/2=0.5 3/2=1.5

speculatively, only depends on j)

Loop unrolling takeaways

" Need to break dependencies across iterations to get
speedup
= Unrolling by itself doesn’t help

" We are now seeing throughput effects

" Latency bound = 1.5 vs. observed = 2.2

= Can unroll loop 3x, 4x to improve further, but...

" ...Diminishing returns (1.65 cycles / element at 4x)

Speeding up sin(x):
Going parallel (explicitly)

® Use ISPC to vectorize the code

export void sinx_reference(uniform int N, uniform int terms,
uniform float x[],
uniform float result[]) {
foreach (i=0 ... N) {

float value = x[i];

float numer = x[i1]*x[1]*x[1];

uniform int denom = 6; // 3!

uniform int sign = -1;

for (uniform int j=1; j<=terms; j++) {

value += sign * numer / denom;

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*3+3);
sign *= -1;
} 1.0 ns / element =

result[i] = value: 3.2 cycles / element

Speeding up sin(x):
Going parallel (explicitly) + optimize

export void sinx_unrollx2a(uniform int N, uniform int terms,
uniform float x[],
uniform float result[]) {
uniform float rdenom[MAXTERMS];
uniform int denom = 6;
uniform float sign = -1;
for (uniform int j = 1; j <= terms; j++) {
rdenom[j] = sign/denom;
denom *= (2*j+2) * (2*%j+3);

sign = -sign;

}

foreach (i=0 ... N) { ~
e e 0.14 ns / element =
float x2 = value * value;
Float xd = x2 * x2; 0.45 cycles / element

float numer = x2 * value;

uniform int j;

for (j=1; j<=terms-1; j+=2) {
value +=

numer * (rdenom[j] +
x2 * rdenom[j+1]);

numer *= x4;

}

for (; j <= terms; j++) {
value += numer * rdenom[j];
numer *= x2;

}

result[i] = value;

SIMD takeaways

= Well, that was easy! (Thanks ISPC)

euar | Vedor

Unoptimized 23 3.2

. []
Cycles per element: 9.9 0.45

= Speedu
P P Original : Vector
o P; bduun\inq Vector +
|
(V\ax‘r hanar \\&\‘Sm Sl e Unrolled
r@q xphcrb P
4+ €

CMU 15-418/15-618, Spring 2019

What ife #1

Impact of structural hazards

" Q: What would happen to sin(x) if we only had a
single, unpipelined floating-point multiplier?

= Al: Performance will be much worse
= A2: We will hit throughput bound much earlier
= A3: Loop unrolling will help by reducing multiplies

What ife #2

Impact of structural hazards
* Q: What would happen to sin(x) if LDs (cache hits)

took 2 cycles instead of 1 cycle?

= A: Nothing. This program is latency bound, and LDs
are not on the critical path.

Loads do not limit sin(x)

= Consider just the slice of the program that generates the
subexpression: (rdenom[j] + x2 X rednom[j + 1])

' rdenom[J] rdenom[j+1] x2
" What is this program’s ° °
latency + throughput
bound?
subexp

" Latency bound: 1 cycle / iteration!
= Through j' computation, not the subexpression computation — there is
no cross-iteration dependence in the subexpression!)
* Throughput bound: also 1 cycle / iteration
" 1 add / 4 adders; 2 LDs / 2 LD units; 1 FP FMA / 1 FP unit
= (This will change to 2 cycles if we add the value FMA)

Loads do not limit sin(x):
Visualization

= Consider just the
slice of the program
that generates the

subexpression:
(rdenom[j] + x2 X
rednom|[j + 1])

subexp

subexp’

= Subexpressions are
off the critical path

2
I
2
throughput to 0
produce next _
2 LI

+ we have enough - subexp’’
subexpression each subexp” "’
cycle (excluding
value FMA) _

¥y Subexp!!!!

CMU 15-418/15-618, Spring 2019

Loads do not limit sin(x):
Example execution

Note: Throughput limit is 2 cycles / iteration
once we add value FMA, but this is dominated
by the latency bound of 3 cycles / iteration
(also from value FMA). Regardless, 2-cycle LDs

j=0 = j=2 j=4 —>j=6 j=8

rdencm[0] rdenpm[4] rdenom[8]

rdenbn[2] rden>i[6]
are not the bottleneck.
rdenon [1] rdenom|[5] rdenoi[9]

rden 3] rdencm[7]

subexp’

numer’=xA4 numer’’=xA8 numer’’ ’=xA12 —p numer’’’’=xA1l6 numer

CMU 15-418/15-618, Spring 2019

What ife #3

Vector vs. multicore

= Q: What would happen to sin(x) if the vector width was
doubled?

= Al: If we'’re using ISPC, we would expect roughly 2X
performance (slightly less would be realized in practice).

" Q: Can we do this forever & expect same results?
= A: No. Computing rdenom will limit gains (Amdahl’s Law).

" Q: For this sin(x) program, would you prefer larger vector
or more cores?

= A: Either should give speedup, but this program maps easily
to SIMD, and adding vector lanes is much cheaper (area +
energy) than adding cores. (Remember GPU vs CPU pictures.)

What if?¢ #4
Benefits(2) of SMT

" Q: How should we schedule threads on a dual-core
processor with SMT, running these two apps, each of
which have 2 threads?

" The sin(x) function

= A program that is copying large amounts of data with very
little computation

" (Note: There are four “cores” and four threads)

= A: We want to schedule one sin(x) thread and one
memcpy() thread on each core, since SMT is most
beneficial when threads use different execution units

What if2 #5
Limits of speculation

= Q: What will limit the “performance” of this (silly)
program on a superscalar OOO processor?

int foo() {
int 1 = 0;
while (1 < 100000) {
// assume s1ng1e cycle rand instruction

if (rand() % 2 == 0) {
T4++;

} else {
1--3

}

}
}

= A: Unpredictable branch in if-else will cause frequent
pipeline flushes

What if?¢ #6
Benefits(2) of SMT

" Q: Would the previous program benefit from
running on multiple SMT threads on a single core?

= A: Yes! Its performance is limited by the CPU
frontend, which is replicated in SMT

