Lecture 24:

Parallel Deep Neural
Networks

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019




Training/evaluating deep neural networks

Technique leading to many high-profile Al advances in recent years

Speech recognition/natural
language processing

Image interpretation
and understanding
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What is a deep neural network?

A basic unit: Basic computational interpretation:
Unit with n inputs described by n+1 parameters It’s just a circuit!
(weights + bias)
Input; Unit (“neuron”) Biological inspiration:
s ' unit output corresponds loosely to activation
L0 of neuron
L1

“r b —— output

w3
/ Machine learning interpretation:

binary classifier: interpret output as the

f E T;w; + b probability of one class
1

Example /': rectified linear unit (ReLU)
fz) = maz(0,z)
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Deep Learning Heros

® 2019 Turing Award Winners
- Yoshua Bengio
- Geoff Hinton
- Yann LeCun
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Two Distinct Issues with Deep Networks

® Evaluation
- often takes milliseconds

® Training
- often takes hours, days, weeks
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What is a deep neural network? topology

This network has: 4 inputs, 1 output, 7 hidden units

“Deep” > one hidden layer

Hidden layer 1: 3 units x (4 weights + 1 bias) = 15 parameters
Hidden layer 2: 4 units x (3 weights + 1 bias) = 16 parameters

Input: Hidden layers: | Output:

Note fully-connected topology in this example
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What is a deep neural network? topology

Output | Outputs

Fully connected layer

Sparsely (locally)
connected
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Recall image convolution (3x3 conv)

int WIDTH = 1024; Inputs Inputs
int HEIGHT = 1024; Conv
Layer
float input[(WIDTH+2) * (HEIGHT+2)]; m)
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.9/9, :
1.0/9, 1.0/9, 1.9/9,
1.0/9, 1.0/9, 1.0/9};

T~
=<
=<
/

for (int j=0; jJF<HEIGHT; j++) {

for (int i=@; i<WIDTH; i++) {

Convolutional layer: locally connected AND all units in layer share
float tmp = O.f;

the same parameters (same weights + same bias):

for (int jj=0; jj<3; jj++) (note: network diagram only shows links due to one iteration of i 1i loop)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[j*WIDTH + i] = tmp;
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Strided 3x3 convolution

int WIDTH = 1024;

int HEIGHT = 1024;

int STRIDE 2;

float input[ (WIDTH+2) * (HEIGHT+2)];

float output[ (WIDTH/STRIDE) * (HEIGHT/STRIDE)];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.0/9, 1.0/9, 1.0/9,
1.0/9, 1.9/9, 1.0/9};

for (int j=0; j<HEIGHT; j+=STRIDE) {
for (int i=0@; i<WIDTH; i+=STRIDE) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)

for (int ii=0; ii<3; ii++) {

Inputs

Inputs

A4

Convolutional layer with stride 2

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[(j/STRIDE)*WIDTH + (i/STRIDE)] = tmp;
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What does convolution using these filter

weights do?

.075

124 .075]

124 204 124

075

124 075

“Gaussian Blur”
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What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 0
-1 0 1 |1 2 1
Extracts horizontal Extracts vertical

gradients gradients



Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filteras a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the inputimage
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Applying many filters to an image at once

Input: image (single channel):
WxH

4

3x3 spatial convolutions on image

=)

Output: filter responses
W x H x num_filters

3x3 x num_filters weights

-

?

Each filter described by Filter responses
unique set of weights
(responds to different

image phenomena)
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Applying many filters to an image at once

96 11x11x3 filters

Input RGB image (Wx Hx 3) (operate on RGB) 96 responses (normalized)
= |- AL ] [

(MU 15-418/618, Spring 2019



Adding additional layers

Input: image
(single channel)
WxH

74

A

Output: filter responses post ReLU post pool
Wx Hx num_filters W x H x num_filters W/2 x H/2 x num_filters

3x3 spatial convolutions
3x3 x num_filters weights /

> | > = [ » = [ »

(max response
A in 2x2 region)

/ Note data reductionasa

u ? result of pooling

Each filter described by Filter responses
unique set of weights
(responds to different

image phenomena)
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Modern object detection networks

Sequences of cont + reLU + (optional) pool layers

AlexNet [Krizhevsky12]: 5 convolutional layers + 3 fully connected

VGG-16 [Simonyan15]: 13 convolutional layers

input: 224 x 224 RGB conv/reLU: 3x3x128x256
conv/reLU: 3x3x3x64 conv/reLU: 3x3x256x256
conv/reLU: 3x3x64x64 conv/reLU: 3x3x256x256
maxpool maxpool
conv/reLU: 3x3x64x128 conv/reLU: 3x3x256x512
conv/reLU: 3x3x128x128 conv/reLU: 3x3x512x512
maxpool conv/reLU: 3x3x512x512
maxpool

[VGG illustration credit: Yang et al.]

conv/reLU: 3x3x512x512
conv/reLU: 3x3x512x512
conv/reLU: 3x3x512x512
maxpool
fully-connected 4096
fully-connected 4096
fully-connected 1000
soft-max
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RighF images that generate strongest response for filters at each layer

l_ Left: what pixels trigger the response

Why deep?

[image credit: Zeiler 14] CMU 15-418/618, Spring 2019



Why deep?

[image credit: Zeiler 14] CMU 15-418/618, Spring 2019



Efficiently implementing convolution layers
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Direct implementation of conv layer

float input[INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];
float output[INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];
float layer_weights[LAYER_CONVY, LAYER_CONVX, INPUT_DEPTH];

// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++)
for (int j=0; j<INPUT_HEIGHT; j++)
for (int i=@; i<INPUT_WIDTH; i++)
for (int f=0; f<LAYER_NUM_FILTERS; f++) {
output[j][i][f] = o.f;
for (int kk=0; kk<INPUT_DEPTH; kk++) // sum over filter responses of input channels
for (int jj=0; jj<LAYER_CONVY; jj++) // spatial convolution
for (int ii=@; ii<LAYER_CONVX; ii+) // spatial convolution
output[j][i][f] += layer_weights[f][jj]l[ii][kk] * input[j+jjl[i+ii][kk];
}

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and
reuse of input values (across different filters)

But must roll your own highly optimized implementation of a complicated loop nest.
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Dense matrix multiplication

float A[M][K]; N : K : N

float B[K][N]; Il = T i——

float C[M][N];

// compute C += A * B

#pragma omp parallel for

for (int j=0; j<M; j++)

for (int i=@; i<N; i++)
for (int k=0; k<K; k++)
C[jI[i] += A[j1[k] * B[k][i];

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)
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Blocked dense matrix multiplication
N | K | N
float A[MI[K]; | P “ — il

float B[K][N];
float C[M][N]; M c

I
=
=
>
~
>~

// compute C += A * B

#pragma omp parallel for
for (int jblock=0; jblock<M; jblock+=BLOCKSIZE_J)
for (int iblock=0; iblock<N; iblock+=BLOCKSIZE_TI)
for (int kblock=0; kblock<K; kblock+=BLOCKSIZE_K)
for (int j=0; j<BLOCKSIZE_J; j++)
for (int i=0@; i<BLOCKSIZE_I; i++)
for (int k=0; k<BLOCKSIZE K; k++)
C[jblock+j][iblock+i] += A[jblock+j][kblock+k] * B[kblock+k][iblock+i];

Idea: compute partial result for block of C while required blocks of A and B remain in cache
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why?
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Convolution as matrix-vector product

Construct matrix from elements of input image

Xoo

Xo1

Xo2

Xos

X10

X1

X12

X13

X20

X21

X22

X23

X30

X31

Xs2

X33

Note: 0-pad matrix

O(N) storage overhead for filter with N elements
Must construct input data matrix

WxH

3x3=9

O © ©0 ©0 x00 x01 0 x10 x11

Wo

ws
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3x3 convolution as matrix-vector product

Construct matrix from elements of input image

Xoo
X10
X20

X21

X22

Xos

X3

X23

X30

X31

Xs2

X33

Note: 0-pad matrix

O(N) storage overhead for filter with N elements
Must construct input data matrix

WxH

9

O © ©0 ©0 x00 x01 0 x10 x11

(2] (2] (2] X00 x01 x02 x10 x11 x12

(2] (2] (2] x01 x02 x03 x11 x12 x13

X00 x01 x02 x10 x11 x12 x20 x21 x22

Wo

ws
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Multiple convolutions as matrix-matrix mult

Xoo Xo3
X10 X13
X20 | X21 [ X22 | Xz3

Xz0 | X31 | X32 | Xs3

9 num filters
@ © © © x00x01 0 x10 xi1 _wOO wp1 Wo2 v Wo N-
@ 0 0 x00 x01 x02 x10 x11 x12 w1 W11 W12 - WoN

(2] (2] (2] x01 x02 x03 x11 x12 x13

WxH
wgp W81 Wg2 -+ W8N

X00 x01 x02 x10 x11 x12 x20 x21 x22
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Multiple convolutions on multiple input channels

channel 2 .
B For each filter, sum responses over input channels
Xoo Xos [channel 0

Equivalent to (3 x 3 x num_channels) convolution
X iz | o | on(WxHxnum_channels) input data

X0 | Xa1 | X22 | X3 | ...
Xao | Xa1| Xa2| Xa3| ..

9 X num input channels num filters
T channel 0 values L channel 1 values | channel 2 values Cwoon Woo1  Wos -+ Won -
Wp10 Wo11 Woi2 -  WoIN

© 0 ©0 0 x00 x01 0 x10 xl11 0 © © 0 x00 x0l1 0 x10 x11 © ©0 © ©0 x00 x01 0 x10 xl11

0 © © x00 x01 x02 x10 x11 x12 © © 0 x00 x01 x02 x10 x11 x12 0 © © x00 x01 x02 x10 x11 x12 Wosgy Wpesl Wos2 - WESN

Wip0 Wi01 Wi02 - WiON

WXH © © ©0 x01 x02 x03 x11 x12 x13 0 0 0 xel1 x02 x03 x11 x12 x13 ® © ©0 x01 x02 x03 x11 x12 x13 w110 Wi111 Wi12 -+ W11N
wigp wWig1 Wig2 ' WISN

e e oo W200 W201 W202 ' W2N

w210 W211 W212 ' W2N

X00 x01 x02 x10 x11 x12 x20 x21 x22 X00 x01 x02 x10 x11 x12 x20 x21 x22 X00 x01 x02 x10 x11 x12 x20 x21 x22

- [ W280 W281 Wa282 - W28N
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inputs/outputs get multiply by next layer’s

VGG memory footprint i oo

batch size input matrix to next conv
Calculations assume 32-bit values (image batch size = 1) layer!!! (for VGG, this is a 9x

outp.ut size data amplification)

weights mem: (perimage) (mem)
input: 224 x 224 RGB image — 224x224x3 150K
conv: (3x3x3) x 64 6.5 KB 224x224x64 12.3 MB
conv: (3x3x64) x 64 144 KB 224x224x64 12.3 MB
maxpool — 112x112x64 3.1MB
conv: (3x3x64) x 128 228 KB 112x112x128 6.2 MB
conv: (3x3x128) x 128 576 KB 112x112x128 6.2 MB
maxpool — 56x56x128 1.5MB
conv: (3x3x128) x 256 1.1 MB 56x56x256 3.1MB
conv: (3x3x256) x 256 2.3MB 56x56x256 3.1MB
conv: (3x3x256) x 256 2.3MB 56x56x256 3.1MB
maxpool — 28x28x256 766 KB
conv: (3x3x256) x 512 4.5MB 28x28x512 1.5MB
conv: (3x3x512) x 512 9MB 28x28x512 1.5MB
conv: (3x3x512) x 512 9MB 28x28x512 1.5MB
maxpool — 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
maxpool — 7x7x512 98 KB
fully-connected 4096 392 MB 4096 16 KB
fully-connected 4096 64 MB 4096 16 KB
fully-connected 1000 15.6 MB 1000 4 KB
soft-max 1000 4 KB
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Reducing network footprint

m Large storage cost for model parameters

- AlexNet model: ~200 MB
- VGG-16 model: ~500 MB
- This doesn’t even account for intermediates during evaluation

m Footprint: cumbersome to store, download, etc.
- 500 MB app downloads make users unhappy!

m  (onsider energy cost of 1B parameter network
= Running on input stream at 20 Hz

- 640 pJ per 32-bit DRAM access
- (20x 1B x 640pJ) = 12.8W for DRAM access

(more than power budget of any modern smartphone)
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[Han ICLR16]

Compressing a network

Step 1: prune low-weight links (iteratively retrain network, then prune)
- Over 90% of weights can be removed without significant loss of accuracy
- Store weight matrices in compressed sparse row (CSR) format

Indicies

1 4 9
Value 1.8 0.5 © |1.8/ 0 | @ |6.5| 6 | 0@ | @ | © |[1.2]---

2.1

Step 2: weight sharing: make surviving connects share a small set of weights
- Cluster weights via k-means clustering (irreqular (“learned”) quantization)
- Compress weights by only storing cluster index (Ig(k) bits)
- Retrain network to improve quality of cluster centroids

weights cluster index
(32 bit float) (2 bit uint) centroids
-0.98| 1.48 | 0. 3 0 2 1 31.

cluster | 1 1 0 3 2:| 1.50
Step 3: Huffman encode quantized weights =TT T | e
and (SR indices s | [ 2] 2| ofne0
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VGG-16 compression

Substantial savings due to combination of pruning, quantization, Huffman encoding

[Han ICLR16]

. Weigh  Weight Index Index Compress Compress

Layer #Weights gslghts% bits bits bits bits rate rate
P+Q) (P+Q+H) *P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl_1 | 2K 58% 8 6.8 5 1.7 40.0% 29.97%
convl 2 | 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2_1 | 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2_2 | 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3_1 | 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3_2 | 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3_3 | 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4_1 | IM 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 | 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4_3 | 2M 34% 8 4.4 5 2.5 14.0% 7.47%
convS_1 | 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5_2 | 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5_3 | 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 34 7.1% 5.24%
Total 138M 7.5%(13x) 6.4 4.1 5 3.1 32% (31x) 2.05% (49x)

P = connection pruning (prune low weight connections)
Q = quantize surviving weights (using shared weights)
H = Huffman encode

ImageNet Image Classification Performance

Top-1Error  Top-5Error  Model size
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49 x
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Deep neural networks on GPUs

m Today, best performing DNN implementations target GPUs

High arithmetic intensity computations (computational characteristics similar
to dense matrix-matrix multiplication)

Benefit from flop-rich architectures
Highly-optimized library of kernels exist for GPUs (cuDNN)

- Most CPU-based implementations use basic matrix-multiplication-based
formulation (good implementations could run faster!)

Facebook’s Big Sur
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Emerging architectures for deep learning?

m NVIDIA Pascal (most recent GPU)

— Adds double-throughput 16-bit floating point ops
— Feature that is already common on mobile GPUs

m Google TensorFlow Processing Unit

— Hardware accelerator for array computations

— Used in Google data centers

m Apple Neural Engine
— On A11 & A12 processor chips in iPhones & iPads

m XNOR Networks
— Reduce weights & data to single bits

m FPGAs, ASICs?

(MU 15-418/618, Spring 2019



Programming frameworks for deep learning

m Heavyweight processing (low-level kernels) carried out by
target-optimized libraries (NVIDIA cuDNN, Intel MKL)

m Popular frameworks use these kernel libraries

- (affe, Torch, Theano, TensorFlow, MxNet

m DNN application development = constructing novel network
topologies
- Programming by constructing networks

- Significant interest in new ways to express network construction
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Summary: efficiently evaluating convnets

m  Computational structure

- Convlayers: high arithmetic intensity, significant portion of cost of evaluating a network
- Similar data access patterns to dense-matrix multiplication (exploiting temporal reuse is key)
- But straight reduction to matrix-matrix multiplication is often sub-optimal

- Work-efficient techniques for convolutional layers (FFT-based, Wingrad convolutions)

B large numbers of parameters: significant interest in reducing size of networks for
both training and evaluation

= Pruning: remove least important network links

- Quantization: low-precision parameter representations often suffice

B Many ongoing studies of specialized hardware architectures for efficient evaluation
= Future CPUs/GPUs, ASICs, FPGS, ...

- Specialization will be important to achieving “always on” applications
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Two Distinct Issues with Deep Networks

® Evaluation
- often takes milliseconds

® Training
- often takes hours, days, weeks
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“Training a network”

® Training a network is the process of learning the value of

network parameters so that output of the network provides
the desired result for a task

- [Krizhevsky12] task = object classification
- input 224 x224 x 3 RGB image

- output probability of 1000 ImageNet object classes: “dog”, “cat”, etc...
-~ 60Mweights
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Professor classification network

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Input: Output:
image of a professor probability of label
convlayer convlayer
convlayer convlayer  convlayer
v

x

Easy: 72

Mean: 2?7

Recall from last time: Boring: - 72
’ Nerdy: ?2?

10’s-100’s of millions of parameters
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Professor classification network

convlayer

convlayer

convlayer

convlayer

convlayer

Easy:
Mean:
Boring:
Nerdy:

0.04
0.18
0.27
0.51
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Where did the parameters come from?
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Training data (ground truth answers)

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted]
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Professor classification network

New image of Bryant
(not in training set)

convlayer

convlayer

convlayer convlayer

Easy: 0.0
Mean: 0.0
Boring: 0.0
Nerdy: 1.0

Ground truth
(what the answer should be)

convlayer

Easy:
Mean:
Boring:
Nerdy:

0.26
0.08
0.14
0.52

Network output
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Error (loss)

Ground truth:
(what the answer should be) Network output: *
Easy: 0.0 Easy: 0.26
Mean: 0.0 Mean: 0.08
Boring: 0.0 Boring: 0.14
Nerdy: 1.0 Nerdy:  0.52
Output of network
for correct category
Common example: softmax loss: efe
L = —log .
Zj el

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (f),

but I'm showing a probability distribution above for clarity

\_ Output of network

for all categories
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Training

Goal of training: learning good values of network parameters so that network outputs
the correct classification result for any input image

Idea: minimize loss for all the training examples (for which the correct answer is known)

L = E L; (totalloss for entire training set is sum of losses L; for each training example x)
)

Intuition: if the network gets the answer correct for a wide range of training examples,
then hopefully it has learned parameter values that yield the correct answer for future
images as well.
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Intuition: gradient descent

Say you had a function f that contained a hidden parameters p; and p;: f (:EZ)
And for some input x;, your training data says the function should output 0.

But for the current values of p; and p,, it currently outputs 10. red = high values of f
f(mia p17p2) — 10 blue = low values

And say | also gave you expressions for the derivative of fwith
respect to p;and p; so you could compute their value at x;.

p:
ﬂ:Q ﬂ:_&; vf:[27_5]

dp1 dpg \

p1

How might you adjust the values p; and p; to reduce the error for this training example?
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Basic gradient descent

while (loss too high):

for each item x_i in training set:
grad += evaluate_loss _gradient(f, loss_func, params, x i)

params += -grad * step_size;

Mini-batch stochastic gradient descent (mini-batch SGD): choose a random (small)
subset of the training examples to compute gradient in each iteration of the while loop

How to compute df/dp for a complex neural network with millions of parameters?
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Derivatives using the chain rule

fley)=(ety)z=az  Weea=z+y
df da da

—_— = Z el — = ]_

da dx dy

S0, by the derivative chain rule:
df df da

dr  dadr X \3\
s N
: 5
Y 1™ (afray) (df/da) [ 5 |32

5

7
z (df/dz)

Red = output of node
Blue = df/dnode
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Backpropagation

Red = output of node

Blue = df/dnode

10

\/

MllET
y 10
X 15\A
10
y 102/vmax1—o>
X 15
ml\. % |—
12/' 10

Y 10*15

Recall;

a _ df dg
dr  dgdz
g(x,y) =z +y

g9(z,y) = max(z,y)

9(z,y) = zy

d

dg _y 49 _
dx dy

dg 1,ifx>y
dxr 0, otherwise
dg _ 49 _
de 7 dy —
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Backpropagating through single unit

Recall: behavior of unit:

f(xo,x1, T2, T3) = max ( Zaz wz—l—b>

1
N/

y 10, if upper input to maxis > 0
lety =

+ 0, otherwise
X2 —
T * \

+\
/'

\7

maX——

10 7loss
dunit

Observe: output of prior layer (x;'s) and output of
this unit must be retained in order to compute
weight gradients for this unit during backprop.
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Backpropagation: matrix form

X \ y — XW ‘~~~
Wl— dL .....- - (WxH)-element vector

dL — «
— ¥, dy
dw .
9-element vector
de _X.. 9
T J? L - -
dwi 0 o]0 o x00x010 x10 x11 Wo
dL dyj g @ o |o |[xee xe1 xe2 x1e x11 x12 | | W1
—y (2] (2] (2] X01 x02 x03 x11 x12 x13 .
dwz Z dyj dw; dws \‘\ |
ws
dL ST
— dy ) X]Z wa x00 x01 x02[x10 x11 x12 x20 x21 x22 W
j J
Therefore
dL  _dL X
T
dw dy
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Backpropagation through the entire professor
classification network

A-H—r loss

4

For each training example x; in mini-batch:
Perform forward evaluation to compute loss for x;
Note: must retain all layer outputs + output gradients (needed to compute weight gradients
during backpropagation)
Compute gradient of loss w.r.t. final layer’s outputs
Backpropagate gradient to compute gradient of loss w.r.t. all network parameters
Accumulate gradients (over all images in batch)
Update all parameter values: w;_new = w;_old - step_size * gradi

(MU 15-418/618, Spring 2019



inputs/outputs get

VGG memory footprint -~ puebmn (i,

batch size .
Calculations assume 32-bit values (image batch size =1) output size / ). ?arzf',ft",tnf;,?:,:f:,sy free
weights mem: (per image) (mem) outputsonce consumed
input: 224 x 224 RGB image — X 24x224x3 150k Y nextlevel of network
conv: (3x3x3) x 64 6.5 KB Must also store per- 224x224x64 12.3 MB
conv: (3x3x64) x 64 144 KB weight gradients 224x224x64 12.3 MB
maxpool — 112x112x64 3.1MB
conv: (3x3x64) x 128 228 KB Many implementations  112x112x128 6.2 MB
conv: (3x3x128) x 128 576 KB alsostore gradient — 912y4112x128  6.2MB
maxpool — (::::“"::r; l:;; swell 56x56x128 1.5MB
conv: (3x3x128) x 256 1.1 MB 56x56x256 3.1MB
conv: (3x3x256) x 256 2.3 MB 56x56x256 3.1MB
conv: (3x3x256) x 256 2.3 MB 56x56x256 3.1MB
maxpool — 28x28x256 766 KB
conv: (3x3x256) x 512 4.5MB 28x28x512 1.5MB
conv: (3x3x512) x 512 9MB 28x28x512 1.5MB
conv: (3x3x512) x 512 9MB 28x28x512 1.5MB
maxpool — 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
conv: (3x3x512) x 512 9MB 14x14x512 383 KB
maxpool — 7x7x512 98 KB
fully-connected 4096 392 MB 4096 16 KB
fully-connected 4096 64 MB 4096 16 KB
fully-connected 1000 15.6 MB 1000 4 KB
soft-max 1000 4 KB
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SGD workload

At first glance, this loop is sequential (each step of

while (loss too high):
( gh) “walking downhill” depends on previous)

for each item x_i in mini-batch: <«———— Parallelacrossimages
grad += evaluate_loss_gradient(f, loss_func, params, x_i)

T . \ large computation with its own parallelism
sum reduction (but working set may not fit on single machine)

params += -grad * step_size;

\ trivial data-parallel over parameters
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Deep network training workload

Huge computational expense

Must evaluate the network (forward and backward) for millions of training images
Must iterate for many iterations of gradient descent (100’s of thousands)
Training modern networks takes days

Large memory footprint

Must maintain network layer outputs from forward pass
Additional memory to store gradients for each parameter

Recall parameters for popular VYGG-16 network require ~500 MB of memory (training
requires GBs of memory for academic networks)

Scaling to larger networks requires partitioning network across nodes to keep network
+ intermediates in memory

Dependencies /synchronization (not embarrassingly parallel)

Each parameter update step depends on previous
Many units contribute to same parameter gradients (fine-scale reduction)

Different images in mini batch contribute to same parameter gradients
(MU 15-418/618, Spring 2019



Data-parallel training (across images)

for each item x_i in mini-batch:
grad += evaluate_loss_gradient(f, loss_func, params, x_i)

params += -grad * step_size;

Consider parallelization of the outer for loop across machines in a cluster

partition mini-batch across nodes

image Xo
parameter copy of
gradients parameter
due to xo values
Node 0

image X,
parameter copy of
gradients parameter

due to x; values
Node 1

for each item x_i in mini-batch assigned to local node:

// just like single node training

grad += evaluate_loss_gradient(f, loss_func, params, x_1i)

barrier();

sum reduce gradients, communicate results to all nodes

barrier();

update copy of parameter values
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Challenges of computing at cluster scale

B Slow communication between nodes

- (lusters do not feature high-performance interconnects typical of
supercomputers

® Nodes with different performance (even if machines are the same)
- Workload imbalance at barriers (sync points between nodes)

Modern solution: exploit characteristics of SGD using
asynchronous execution!
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Exploiting SGD Characteristics

m Convergent computation
- Update ordering does not matter
- 0K to have small errors in weight updates
® How used
- Within machine: Don't synchronize weight updates across threads
- Between machines:
- 0K to do some computations using stale data
- Ordering of updates not critical

= Incomplete or redundant coverage of data set acceptable
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Parallelizing mini-batch on one machine

for each item x_i in mini-batch:
grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;

Consider parallelization of the outer for loop across cores

image Xo image xi
parameter parameter
gradients gradients
due to xo due to x

Core 0 Core 1

final
parameter parameter
gradients allies

Good: completely independent computations (until gradient reduction)
Bad: complete duplication of parameter gradient state (100’s MB per core)
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Asynchronous update on one node

for each item x_i in mini-batch:
grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;

Cores update shared set of gradients.
Skip taking locks / synchronizing across cores: perform “approximate reduction”

image Xo image x;
& Core 0 Core 1
parameter parameter
gradients values

Project Adam [Chilimbi 0SDI14] CMU 15-418/618, Spring 2019



Parameter server design

Pool of worker nodes

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v1)

local
subgradients

Worker
Node 0

Worker
Node 1

training data

local copy of
parameters (v0)

local
subgradients

training data

local copy of
parameters (v2)

local
subgradients

Worker
Node 2

Worker
Node 3

Parameter Server [Li 0SDI14]
Google’s DistBelief [Dean NIPS12]
Microsoft’s Project Adam [Chilimbi 0SDI14]

parameter
values

Parameter
Server

B Separate set of machines to
maintain DNN parameters

m Highly fault tolerant (so that worker
nodes need not reliable)

m Accept updates from workers

asynchronously
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Model parallelism

Partition network parameters across nodes
(spatial partitioning to reduce communication)

Reduce internode communication through network design:

— Use small spatial convolutions (1x1 convolutions)
— Reduce/shrink fully-connected layers

Worker
Node 0
N \NX N\ ..
Z Zan /< 7
4
Worker
Fully-connected layers: ~ Node
Convolutional layers: only all data owned by a node
need to community outputs must by communicated to
near spatial partition other nodes
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Training data-parallel and model-parallel execution

Working on subgradient computation
for a single copy of the model

training data

local copy of
parameters (v1):
chunk 0

local
subgradients
chunk 0

Worker
Node 0

training data

local copy of
parameters (v0):
chunk 0

local
subgradients
chunk 0

Worker
Node 2

Find-grained
communication of
layer outputs,
subgradients, etc.

C—)

Find-grained
communication of
layer outputs,
subgradients, etc.

C—)

training data

local copy of

parameters (v1):

chunk 1

local
subgradients
chunk 1

parameter
values
(chunk 0)

Worker
Node 1

Parameter
Server 0

training data

local copy of

parameters (v0):

chunk 1

local
subgradients
chunk 1

parameter
values
(chunk 1)

Worker
Node 3

Working on subgradient computation

for a single copy of the model

Parameter
Server 1
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Using supercomputers for training?

m  Fast interconnects critical for model-parallel training
- Fine-grained communication of outputs and gradients

m  Fastinterconnect diminishes need for async training algorithms

- Avoid randomness in training due to computation schedule (there remains
randomness due to SGD algorithm)

OakRidge Titan Supercomputer NVIDIA DGX-1: 8 Pascal GPUs connected
via high speed NV-Link interconnect
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Summary: training large networks in parallel

m Most systems rely on asynchronous update to efficiently used

clusters of commodity machines

- Maodification of SGD algorithm to meet constraints of modern parallel systems

- Open question: effects on convergence are problem dependent and not
particularly well understood

- Tighter integration / faster interconnects may provide alternative to these
methods (facilitate tightly orchestrated solutions much like supercomputing
applications)

m Open question: how big of networks are needed?

- >90% of connections could be removed without significant impact on quality of
network

- High-performance training of deep networks is an interesting example of
constant iteration of algorithm design and parallelization strategy
(a key theme of this course! recall the original grid solver example!)
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