
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019

Performance Monitoring Tools
Lecture 17:

 CMU 15-418/618,
Spring 2019

Scenario
▪  Student walks into office hours and says, “My code is slow /

uses lots of memory / is SIGKILLED. I implemented X, Y, and Z.
Are those good? What should I do next?”

▪  It depends.

 CMU 15-418/618,
Spring 2019

What is my program doing?
▪  Measurements are more valuable than insights

-  Insights are best formed from measurements!

▪  We’re Computer Scientists
-  We can write programs to analyze programs

 CMU 15-418/618,
Spring 2019

Note about Examples
▪  The example programs in today’s lecture are from Spring

2016 Assignment 3
-  OpenMP-based graph processing workload (paraGraph)
-  Millions to tens of millions of nodes
-  Code written for the GHC machines and Xeon Phi

 CMU 15-418/618,
Spring 2019

My program is slow today.
▪  What else is running?

-  Try “top”

top - 14:43:26 up 25 days, 3:46, 50 users, load average: 0.04, 0.05, 0.01
Tasks: 1326 total, 1 running, 1319 sleeping, 2 stopped, 4 zombie
Cpu(s): 0.0%us, 0.1%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16220076k total, 7646188k used, 8573888k free, 246280k buffers
Swap: 4194296k total, 3560k used, 4190736k free, 5219176k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2801 nobody 20 0 481m 3860 1192 S 1.0 0.0 63:45.33 gmetad
 3306 root 20 0 258m 11m 2128 S 0.7 0.1 161:54.86 lsi_mrdsnmpagen
 4920 nobody 20 0 297m 18m 3380 S 0.7 0.1 181:11.80 gmond
 49781 -------- 20 0 106m 2144 1456 S 0.3 0.0 0:00.10 bash
 58119 bpr 20 0 15976 2220 936 R 0.3 0.0 0:00.30 top
106182 -------- 20 0 24584 2184 1136 S 0.3 0.0 2:27.99 tmux
134225 -------- 20 0 143m 1732 608 S 0.3 0.0 0:02.92 intelremotemond
...

 CMU 15-418/618,
Spring 2019

What else can top tell us?
▪  CPU / Memory usage of our program
-  ./paraGraph kbfs com-orkut_117m.graph -t 8 -r

top - 15:54:27 up 3 days, 23:58, 6 users, load average: 3.43, 1.15, 0.43
Tasks: 286 total, 2 running, 284 sleeping, 0 stopped, 0 zombie
%Cpu(s): 99.8 us, 0.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 32844548 total, 31305468 used, 1539080 free, 435012 buffers
KiB Swap: 7999484 total, 13176 used, 7986308 free. 27364456 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
23457 bpr 20 0 1559584 979704 3420 R 796.4 3.0 0:27.91 paraGraph
 1071 root 20 0 75892 6560 5564 S 2.0 0.0 19:58.05 cups-brows+
21506 root 20 0 87680 17300 5460 S 0.7 0.1 1:08.43 cupsd
23408 bpr 20 0 24956 3196 2588 R 0.3 0.0 0:00.18 top
 1 root 20 0 36100 4204 2632 S 0.0 0.0 0:01.02 init

 CMU 15-418/618,
Spring 2019

Do I have to use top?
▪  No. Time was part of the assignment 3 qsub jobs.

$ tail -n 1 bpr_grade_performance.job

time ./grade_performance.py ./$exe

▪  time is often a shell command, there is also the time binary

▪  /usr/bin/time ./paraGraph kbfs com-orkut_117m.graph -t 8 –r
...
33.16user 0.10system 0:05.54elapsed 600%CPU (0avgtext+0avgdata
979708maxresident)k 0inputs+0outputs
(0major+5624minor)pagefaults 0swaps

 CMU 15-418/618,
Spring 2019

But why is it slow?
▪  Where is the time spent?

-  Put timing statements around probable issues
-  Print results

▪  OR
-  Use a tool to insert timing statements

 CMU 15-418/618,
Spring 2019

Program Instrumentation
▪  When to inject the instrumentation?

-  When the program is compiled.
-  When the program is run.

 CMU 15-418/618,
Spring 2019

Instrumentation Tool Families
▪  Program Optimization

-  Gprof
-  Perf
-  VTune

▪  Program Debugging
-  Valgrind
-  Sanitizers

▪  Advanced Analysis
-  Pin
-  Contech

 CMU 15-418/618,
Spring 2019

Amdahl’s Law Revisited
▪  1- s – a component of the program
▪  p – speedup of that component

▪  The more time something takes

-  The more speedup small improvements make

▪  Concentrate program optimization on:
-  Hot code
-  Common cases

 CMU 15-418/618,
Spring 2019

GProf
▪  Enabled with “-pg” compiler flag
▪  Places a call into every function

-  Calls record the call graph
-  Calls record time elapsed

▪  Run the program.
▪  Run gprof <prog name>

 CMU 15-418/618,
Spring 2019

GProf cont
▪  Output shows both the total time in each function

-  And cumulative time in calling trees

▪  Can be useful with large call graphs

▪  $./paraGraph pagerank -t 8 -r soc-pokec_30m.graph

▪  $gprof

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 69.35 0.43 0.43 1 430.00 430.00 build_incoming_edges(graph*)
 30.65 0.62 0.19 18 10.56 10.56 pagerank(graph*, ...)
 0.00 0.62 0.00 1632803 0.00 0.00 addVertex(VertexSet*, int)
 0.00 0.62 0.00 7 0.00 0.00 newVertexSet(T, int, int)
 0.00 0.62 0.00 7 0.00 0.00 freeVertexSet(VertexSet*)

 CMU 15-418/618,
Spring 2019

Perf
▪  Modern architectures expose performance counters

-  Cache misses, branch mispredicts, IPC, etc

▪  Perf tool provides easy access to these counters
-  perf list – list counters available on the system
-  perf stat – count the total events
-  perf record – profile using one event
-  perf report – Browse results of perf record

▪  Perf is present on GHC machines tested

 CMU 15-418/618,
Spring 2019

Perf stat
▪  Can be run with specific events or a general suite

▪  perf stat [-e …] app
-  Many counters come in pairs, each needs a separate -e

-  cycles, instructions
-  branches, branch-misses
-  cache-references, cache-misses
-  stalled-cycles-frontend
-  stalled-cycles-backend

-  Processors can only enable ~4 counters, else it must
multiplex

 CMU 15-418/618,
Spring 2019

Perf stat (default) output
./paraGraph -t 8 -r pagerank /afs/cs/academic/class/15418-s16/public/asst3_graphs/soc-
pokec_30m.graph':

 2366.633970 task-clock (msec) # 1.758 CPUs utilized

 109 context-switches # 0.046 K/sec

 9 cpu-migrations # 0.004 K/sec

 6,168 page-faults # 0.003 M/sec

7,513,900,068 cycles # 3.175 GHz (83.23%)

6,327,732,886 stalled-cycles-frontend # 84.21% frontend cycles idle (83.42%)

4,019,403,839 stalled-cycles-backend # 53.49% backend cycles idle (66.86%)

3,222,030,372 instructions # 0.43 insns per cycle

 # 1.96 stalled cycles per insn (83.43%)

 457,170,532 branches # 193.173 M/sec (83.30%)

 12,354,902 branch-misses # 2.70% of all branches (83.24%)

So what is the bottleneck?

 CMU 15-418/618,
Spring 2019

More perf stat
▪  Maybe memory is a bottleneck.

201,493,787 cache-references

 49,347,882 cache-misses # 24.491 % of all cache refs

▪  24% misses, that’s not good.

▪  But what should we do?

 CMU 15-418/618,
Spring 2019

Perf record
▪  Pick an event (or use the default cycles)

▪  When the event’s counter overflows
-  The processor sends an interrupt
-  The kernel records where (PC value) of the program

▪  NOTE: counters update in funny, microarchitectural ways so
intuition may be required

“Because of latency in the microarchitecture between the generation of events and the generation
of interrupts on overflow, it is sometimes difficult to generate an interrupt close to an event that
caused it.”

 CMU 15-418/618,
Spring 2019

Perf cache misses
▪  Are cache misses the problem?

-  Sort of.
Samples: 11K of event 'cache-misses', Event count (approx.):
181771931

Overhead Command Shared Object Symbol

 47.18% paraGraph paraGraph [.] edgeMapS<State<float> >

 46.84% paraGraph paraGraph [.] build_incoming_edges

 2.70% paraGraph [unknown] [k] 0xffffffff813b2537

 1.37% paraGraph [unknown] [k] 0xffffffff813b2915

 CMU 15-418/618,
Spring 2019

Perf report cycles
▪  perf report shows analysis from record

-  Commandline interactive interface
Samples: 13K of event 'cycles', Event count (approx.): 11108635969

Overhead Command Shared Object Symbol

 65.93% paraGraph paraGraph [.] edgeMapS<State<float> >

 27.66% paraGraph paraGraph [.] build_incoming_edges

 1.85% paraGraph paraGraph [.] vertexMap<Local<float> >

 1.02% paraGraph [kernel.kallsyms] [k] clear_page_c

 0.88% paraGraph paraGraph [.] addVertex

 0.60% paraGraph [kernel.kallsyms] [k] copy_user_generic_string

▪  Over 25% of program time is in creating the graph
-  This also skews the perf stats

 CMU 15-418/618,
Spring 2019

Deep dive
▪  Selecting a function will display its assembly with function-local %

 | bool update(Vertex s, Vertex d)
 | {
 | float add = pcurr[s] / outgoing_size(graph, s);
 2.97 | divss %xmm1,%xmm0
 5.22 | jmp 162
 | nop
 |160: mov %eax,%edx
 | #pragma omp atomic
 | pnext[d] += add;
 0.16 |162: mov %edx,0x18(%rsp)
 1.28 | mov %edx,%eax
 0.01 | movss 0x18(%rsp),%xmm2
 2.71 | addss %xmm0,%xmm2
 4.63 | movss %xmm2,0x18(%rsp)
 1.16 | mov 0x18(%rsp),%r15d
 3.99 | lock cmpxchg %r15d,(%rcx)
 25.22 | cmp %eax,%edx
 | jne 160

1.  OMP atomic -> lock cmpxchg
2.  This instruction is 25%*65% of �

 execution time

 CMU 15-418/618,
Spring 2019

Deep dive 2
▪  kBFS is really, really slow. Why?
Samples: 48K of event 'cycles', Event count (approx.):
39218498652

Overhead Command Shared Object Symbol

 63.78% paraGraph paraGraph [.] edgeMapS<RadiiUpdate>

 19.33% paraGraph paraGraph [.] edgeMap<RadiiUpdate>

 8.21% paraGraph paraGraph [.] build_incoming_edges

 3.88% paraGraph paraGraph [.] vertexMap<VisitedCopy>

▪  That’s almost all my code. :(

 CMU 15-418/618,
Spring 2019

Disassemble it!
▪  What is taking all of kbfs’s time?
bool update(Vertex src, Vertex dst) {
 | bool changed = false;
 | for (int j = 0; j < NUMWORDS; j++) {
 | if (visited[dst][j] != visited[src][j]) {
 0.11 | mov 0x0(%r13),%rax
 0.21 | mov (%rax,%rdi,1),%rbp
 0.20 | mov (%rax,%rcx,8),%rax
 14.88 | mov 0x0(%rbp),%ebp
 1.15 | mov (%rax),%eax
 68.27 | cmp %eax,%ebp
 0.02 | je 108
 | // word-wide or
 | __sync_fetch_and_or(&(nextVisited[dst][j]), visited[dst]
 1.54 | mov 0x8(%r13),%rcx
 0.34 | or %eax,%ebp
 0.02 | mov (%rcx,%rdi,1),%rcx
 0.31 | lock or %ebp,(%rcx)
 | int oldRadius = radii[dst];
 | if (radii[dst] != iter) {
 6.45 | mov 0x18(%r13),%ebp

 CMU 15-418/618,
Spring 2019

VTune
▪  Part of Intel’s Parallel Studio XE

-  Requires (free student) license from Intel

▪  Similar to perf
-  Also includes analysis across related counters

 CMU 15-418/618,
Spring 2019

VTune Memory Bound
▪  That Spring, I asked many students in office hours:

-  “Do you think the graph code is memory bound?”

▪  Let’s find out!
-  Create a project (select program + arguments to analyze)
-  Create an analysis

-  Microarchitecture -> Memory Access Analysis
-  Start!

 CMU 15-418/618,
Spring 2019

Memory Access Analysis Results

 CMU 15-418/618,
Spring 2019

Further Analysis
▪  Input: soc-pokec…

D
R

A
M

 B
an

dw
id

th
 (

G
B/

se
c)

Execution Time (ms)

Graph Initialization kBFS Iterations

 CMU 15-418/618,
Spring 2019

Further Analysis
▪  Input: com-orkut

D
R

A
M

 B
an

dw
id

th
 (

G
B/

se
c)

Execution Time (s)

Graph Initialization kBFS Iterations

 CMU 15-418/618,
Spring 2019

Instrumentation Tool Families
▪  Program Optimization

-  Gprof
-  Perf
-  VTune

▪  Program Debugging
-  Valgrind
-  Sanitizers

▪  Advanced Analysis
-  Pin
-  Contech

 CMU 15-418/618,
Spring 2019

Valgrind
▪  Heavy-weight binary instrumentation

-  Designed to shadow all program values: registers and
memory

-  Shadowing requires serializing threads
-  4x overhead minimum

▪  Comes with several useful tools
-  Usually used for memcheck

 CMU 15-418/618,
Spring 2019

Valgrind memcheck
▪  Validates memory operations in a program

-  Each allocation is freed only once
-  Each access is to a currently allocated space
-  All reads are to locations already written
-  10 – 20x overhead

▪  valgrind --tool=memcheck <prog …>

...
==29991== HEAP SUMMARY:
==29991== in use at exit: 2,694,466,576 bytes in 2,596 blocks
==29991== total heap usage: 16,106 allocs, 13,510 frees, 3,001,172,305 bytes allocated
==29991==
==29991== LEAK SUMMARY:
==29991== definitely lost: 112 bytes in 1 blocks
==29991== indirectly lost: 0 bytes in 0 blocks
==29991== possibly lost: 7,340,200 bytes in 7 blocks
==29991== still reachable: 2,687,126,264 bytes in 2,588 blocks
==29991== suppressed: 0 bytes in 0 blocks

 CMU 15-418/618,
Spring 2019

Address Sanitizer
▪  Compilation-based approach to detect memory issues

-  GCC and LLVM support
-  ~2x overhead

▪  Add “-fsanitize=address”, make clean …
==1902== ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7f683e4c008c
at pc 0x41cb77 bp 0x7f683bc14a20 sp 0x7f683bc14a18
READ of size 4 at 0x7f683e4c008c thread T6
 #0 0x41cb76 (paraGraph+0x41cb76)
 #1 0x7f6852efdf62 (/usr0/local/lib/libiomp5.so+0x89f62)
 #2 0x7f6852ea7ae3 (/usr0/local/lib/libiomp5.so+0x33ae3)
 #3 0x7f6852ea620a (/usr0/local/lib/libiomp5.so+0x3220a)
 #4 0x7f6852ecab80 (/usr0/local/lib/libiomp5.so+0x56b80)
 #5 0x7f684fdb7b97 (/usr/lib/x86_64-linux-gnu/libasan.so.0.0.0+0x18b97)
 #6 0x7f684efa4181 (/lib/x86_64-linux-gnu/libpthread-2.19.so+0x8181)
 #7 0x7f684f2b447c (/lib/x86_64-linux-gnu/libc-2.19.so+0xfa47c)
...

 CMU 15-418/618,
Spring 2019

Instrumentation Tool Families
▪  Program Optimization

-  Gprof
-  Perf
-  VTune

▪  Program Debugging
-  Valgrind
-  Sanitizers

▪  Advanced Analysis
-  Pin
-  Contech

 CMU 15-418/618,
Spring 2019

Pin
▪  CompArch research project, now Intel tool
▪  Binary instrumentation tool framework

-  “Low” overhead
-  Provides many sample tools

▪  Given its architecture roots, it is best suited to specific
architectural questions about a program
-  What is the instruction mix?
-  What memory addresses does it access?

 CMU 15-418/618,
Spring 2019

Pin cont.
▪  Pin acts as a virtual machine

-  It reassembles the instructions with appropriate
instrumentation

▪  Each “pintool” requests specific instrumentation
-  On basic block entry, record the static instruction count
-  On every memory operation, record the address
-  …

 CMU 15-418/618,
Spring 2019

(Pin) Instrumentation Granularity
▪  Instruction
▪  Basic Block

-  A sequence of instructions
-  Single entry, single exit
-  Terminated with one control flow instruction

▪  Trace
-  A sequence of executed basic blocks
-  May span multiple functions

 CMU 15-418/618,
Spring 2019

Pintool Example Instruction Count
▪  For every basic block in an identified trace

-  Insert somewhere in the block an instrumentation call to my routine
-  Pass my routine two arguments: number of instructions, thread ID

// Pin calls this function every time a new basic block is encountered.
// It inserts a call to docount.
VOID Trace(TRACE trace, VOID *v)
{
 // Visit every basic block in the trace
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 {
 // Insert a call to docount for every bbl, passing the number of
instructions.

 BBL_InsertCall(bbl, IPOINT_ANYWHERE, (AFUNPTR)docount,
IARG_FAST_ANALYSIS_CALL, IARG_UINT32, BBL_NumIns(bbl), IARG_THREAD_ID,
IARG_END);
 }
}

 CMU 15-418/618,
Spring 2019

Pintool Instruction Count Output
▪  $ pin -t pin/source/tools/ManualExamples/obj-intel64/inscount_tls.so

-- ./paraGraph bfs -t 8 -r soc-pokec_30m.graph
▪  $ cat inscount_tls.out
Total number of threads = 9
Count[0]= 561617530
Count[1]= 16153
Count[2]= 44659367
Count[3]= 44863462
Count[4]= 44436576
Count[5]= 44458686
Count[6]= 43808683
Count[7]= 44055917
Count[8]= 43408645

 CMU 15-418/618,
Spring 2019

Pin Cache Example
▪  … -t source/tools/Memory/obj-intel64/dcache.so …
▪  cat dcache.out
PIN:MEMLATENCIES 1.0. 0x0

DCACHE stats

L1 Data Cache:
Load-Hits: 131764147 59.69%
Load-Misses: 88995193 40.31%
Load-Accesses: 220759340 100.00%

Store-Hits: 71830273 71.07%
Store-Misses: 29242668 28.93%
Store-Accesses: 101072941 100.00%

Total-Hits: 203594420 63.26%
Total-Misses: 118237861 36.74%
Total-Accesses: 321832281 100.00%

 CMU 15-418/618,
Spring 2019

Pin Trace Example
▪  From a prior project

-  Records the instruction count
-  Records read/write and the address

▪  The trace was then used by a simulator

// Print a memory write record and the number of instructions between
// previous memory access and this access
VOID RecordMemWrite(UINT32 thread_id, VOID * addr)
{
 // format: W - [total num ins so far] - [num ins between prev mem access and this
access] - [address accessed]
 total_counts[thread_id]++;
 files[thread_id] << "W " << total_counts[thread_id] << " " << icounts[thread_id] <<
" " << addr << std::endl;
 reset_count(thread_id);
}

 CMU 15-418/618,
Spring 2019

Contech
▪  Compiler-based instrumentation

-  Uses Clang and LLVM
-  Record control flow, memory accesses, concurrency

▪  Multi-language: C, C++, Fortran
▪  Multi-runtime: pthreads, OpenMP, Cilk, MPI
▪  Multi-architecture: x86, ARM

 CMU 15-418/618,
Spring 2019

Contech continued
▪  Designed around writing analysis not instrumentation

-  All instrumentation is always used
-  Assumes the program is correct
-  Traces are analyzed after collection, not during

▪  Sample backends (i.e., analysis tools) are available
-  Cache Model
-  Data race detection
-  Memory usage

 CMU 15-418/618,
Spring 2019

Contech Trace Collection
▪  Running the instrumented program generates a trace

-  Traces are processed into taskgraphs
-  Taskgraphs store the ordering of concurrent work

Taskgraphs

 CMU 15-418/618,
Spring 2019

Contech Trace Collection Example
▪  ./paraGraph bfs -t 8 -r soc-

pokec_30m.graph

-  BFS Time: 0.0215s -> 0.2108s (9.8x slowdown)
-  1855MB trace -> 1388MB taskgraph

-  91 million basic blocks
-  321 million memory accesses
-  3 million synchronization operations

 CMU 15-418/618,
Spring 2019

Summary Questions
▪  If you may have a performance issue:

-  Is the issue reproducible?
-  Do you have a workload?
-  Is the system stable?

-  Is the workload at full CPU?
-  If not, are there other users / processes running?
-  Or does the workload rely heavily on IO?

-  Is the CPU time confined to a small number of functions?
-  What is the most time consuming function(s)?
-  What is their algorithmic cost and complexity?

time / top

gprof / perf

 CMU 15-418/618,
Spring 2019

Summary Continued
▪  You have a reproducible, stable workload

-  The machine is otherwise idle
-  The workload is fully using its CPUs
-  The algorithms are appropriate

▪  Is there a small quantity of hot functions?
-  Are their cycles confined to specific functions?
-  Are the costs of the instructions understood?

perf / VTune

 CMU 15-418/618,
Spring 2019

Instrumentation Tool Links
▪  Gprof - https://sourceware.org/binutils/docs/gprof/
▪  Perf - https://perf.wiki.kernel.org/index.php/Main_Page
▪  VTune -

https://software.intel.com/en-us/qualify-for-free-software/student
▪  Valgrind - http://valgrind.org/
▪  Sanitizers - https://github.com/google/sanitizers
▪  Pin -

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

▪  Contech - http://bprail.github.io/contech/

 CMU 15-418/618,
Spring 2019

Other links
▪  Performance Anti-patterns:

http://queue.acm.org/detail.cfm?id=1117403

