
Carnegie Mellon

Lecture	14:	

Memory	Consistency	

Parallel	Computer	Architecture	and	Programming	
CMU	15-418/15-618,	Spring	2019	

CMU	15-418/618,	Spring	2019	 1	

Carnegie Mellon

What	is	Correct	Behavior	for	a	Parallel	Memory	Hierarchy?	

•  Note:	side-effects	of	writes	are	only	observable	when	reads	occur	
–  so	we	will	focus	on	the	values	returned	by	reads	

•  Intuitive	answer:	
–  reading	a	location	should	return	the	latest	value	written	(by	any	thread)	

•  Hmm…		what	does	“latest”	mean	exactly?	
–  within	a	thread,	it	can	be	defined	by	program	order	
–  but	what	about	across	threads?	

•  the	most	recent	write	in	physical	time?	
–  hopefully	not,	because	there	is	no	way	that	the	hardware	can	pull	that	off	

»  e.g.,	if	it	takes	>10	cycles	to	communicate	between	processors,	there	is	
no	way	that	processor	0	can	know	what	processor	1	did	2	clock	ticks	ago	

•  most	recent	based	upon	something	else?		
–  Hmm…	

CMU	15-418/618,	Spring	2019	 2	

Carnegie Mellon

Refining	Our	Intuition	

•  What	would	be	some	clearly	illegal	combinations	of	(A,B,C)?	
•  How	about:	

•  What	can	we	generalize	from	this?	
–  writes	from	any	particular	thread	must	be	consistent	with	program	order	

•  in	this	example,	observed	even	numbers	must	be	increasing	(ditto	for	odds)	

–  across	threads:	writes	must	be	consistent	with	a	valid	interleaving	of	threads	
•  not	physical	time!	(programmer	cannot	rely	upon	that)	

CMU	15-418/618,	Spring	2019	 3	

// write evens to X
for (i=0; i<N; i+=2) {
 X = i;
 …
}

Thread	0	
// write odds to X
for (j=1; j<N; j+=2) {
 X = j;
 …
}

Thread	1	
…
A = X;
…
B = X;
…
C = X;
…

Thread	2	

(Assume:	X=0	initially,	and	these	are	the	only	writes	to	X.)	

(4,8,1)?		 (9,12,3)?	 (7,19,31)?	

Carnegie Mellon

Visualizing	Our	Intuition	

•  Each	thread	proceeds	in	program	order	
•  Memory	accesses	interleaved	(one	at	a	time)	to	a	single-ported	memory	

–  rate	of	progress	of	each	thread	is	unpredictable	

CMU	15-418/618,	Spring	2019	 4	

// write evens to X
for (i=0; i<N; i+=2) {
 X = i;
 …
}

Thread	0	
// write odds to X
for (j=1; j<N; j+=2) {
 X = j;
 …
}

Thread	1	
…
A = X;
…
B = X;
…
C = X;
…

Thread	2	

CPU	0	 CPU	1	 CPU	2	

Memory	

Single	port	to	memory	

Carnegie Mellon

Correctness	Revisited	

Recall:	“reading	a	location	should	return	the	latest	value	written	(by	any	thread)”	
à  “latest”	means	consistent	with	some	interleaving	that	matches	this	model	
–  this	is	a	hypothetical	interleaving;	the	machine	didn’t	necessarily	do	this!	

CMU	15-418/618,	Spring	2019	 5	

// write evens to X
for (i=0; i<N; i+=2) {
 X = i;
 …
}

Thread	0	
// write odds to X
for (j=1; j<N; j+=2) {
 X = j;
 …
}

Thread	1	
…
A = X;
…
B = X;
…
C = X;
…

Thread	2	

CPU	0	 CPU	1	 CPU	2	

Memory	

Single	port	to	memory	

Carnegie Mellon

Part	2	of	Memory	Correctness:	Memory	Consistency	Model	

1.  “Cache	Coherence”	
–  do	all	loads	and	stores	to	a	given	cache	block	behave	correctly?	

2.  “Memory	Consistency	Model”	(sometimes	called	“Memory	Ordering”)	
–  do	all	loads	and	stores,	even	to	separate	cache	blocks,	behave	correctly?	

Recall:	our	intuition	

CMU	15-418/618,	Spring	2019	 6	

CPU	0	 CPU	1	 CPU	2	

Memory	

Single	port	to	memory	

Carnegie Mellon

Why	is	this	so	complicated?	

•  Fundamental	issue:	
–  loads	and	stores	are	very	expensive,	even	on	a	uniprocessor	

•  can	easily	take	10’s	to	100’s	of	cycles		

•  What	programmers	intuitively	expect:	
–  processor	atomically	performs	one	instruction	at	a	time,	in	program	order	

•  In	reality:	
–  if	the	processor	actually	operated	this	way,	it	would	be	painfully	slow	
–  instead,	the	processor	aggressively	reorders	instructions	to	hide	memory	latency	

•  Upshot:	
–  within	a	given	thread,	the	processor	preserves	the	program	order	illusion	
–  but	this	illusion	has	nothing	to	do	with	what	happens	in	physical	time!	
–  from	the	perspective	of	other	threads,	all	bets	are	off!	

CMU	15-418/618,	Spring	2019	 7	

Carnegie Mellon

Hiding	Memory	Latency	is	Important	for	Performance	

•  Idea:	overlap	memory	accesses	with	other	accesses	and	computation	

	
•  Hiding	write	latency	is	simple	in	uniprocessors:	

–  add	a	write	buffer		
–  (more	on	this	later)	

•  (But	this	affects	correctness	in	multiprocessors)	

CMU	15-418/618,	Spring	2019	 8	

write A

read B

write A
read B

Processor	

	Cache	

READS	 WRITES	

write	
buffer	

Carnegie Mellon

How	Can	We	Hide	the	Latency	of	Memory	Reads?	

“Out	of	order”	pipelining:	
–  when	an	instruction	is	stuck,	perhaps	there	are	subsequent	instructions	that	

can	be	executed	

•  Implication:	memory	accesses	may	be	performed	out-of-order!!!	

CMU	15-418/618,	Spring	2019	 9	

stuck	waiting	on	true	dependence	stuck	waiting	on	true	dependence	
suffers	expensive	cache	miss	suffers	expensive	cache	miss	x = *p;

y = x + 1;
z = a + 2;
b = c / 3; }	 these	do	not	need	to	wait	

Carnegie Mellon

What	About	Conditional	Branches?	

•  Do	we	need	to	wait	for	a	conditional	branch	to	be	resolved	before	proceeding?	
–  No!		Just	predict	the	branch	outcome	and	continue	executing	speculatively.	

•  if	prediction	is	wrong,	squash	any	side-effects	and	restart	down	correct	path	

CMU	15-418/618,	Spring	2019	 10	

x = *p;
y = x + 1;
z = a + 2;
b = c / 3;
if (x != z)
 d = e – 7;
else d = e + 5;
…

if	hardware	guesses	that	this	is	true	
then	execute	“then”	part	(speculatively)	
(without	waiting	for	x	or	z)	

Carnegie Mellon

How	Out-of-Order	Pipelining	Works	in	Modern	Processors	

•  Fetch	and	graduate	instructions	in-order,	but	issue	out-of-order	

•  Intra-thread	dependences	are	preserved,	but	memory	accesses	get	reordered!	

CMU	15-418/618,	Spring	2019	 11	

issue	(cache	miss)	

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

PC:		0x10	
Inst.	
Cache	

Branch	
Predictor	

0x14	0x18	0x1c	

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

Re
or
de

r	B
uf
fe
r	

issue	(cache	miss)	

issue	(out-of-order)	
issue	(out-of-order)	

can’t	issue	can’t	issue	
issue	(out-of-order)	
issue	(out-of-order)	

Carnegie Mellon

Analogy:	Gas	Particles	in	Balloons	

•  Imagine	that	each	instruction	within	a	thread	is	a	gas	particle	inside	a	twisty	balloon	
•  They	were	numbered	originally,	but	then	they	start	to	move	and	bounce	around	
•  When	a	given	thread	observes	memory	accesses	from	a	different	thread:	

–  those	memory	accesses	can	be	(almost)	arbitrarily	jumbled	around	
•  like	trying	to	locate	the	position	of	a	particular	gas	particle	in	a	balloon	

•  As	we’ll	see	later,	the	only	thing	that	we	can	do	is	to	put	twists	in	the	balloon	

CMU	15-418/618,	Spring	2019	 12	

(wikiHow)	

1	4	

1	3	

1	2	

1	5	

1	1	

1	5	

1	1	

1	4	

1	3	

1	2	

1	2	

1	3	

1	5	

1	1	

1	4	

1	1	

1	2	

1	3	

1	4	

1	5	

Thread	0	 Thread	1	 Thread	2	 Thread	3	

Time	

Carnegie Mellon

Uniprocessor	Memory	Model	

•  Memory	model	specifies	ordering	constraints	among	accesses	

•  Uniprocessor	model:	memory	accesses	atomic	and	in	program	order	

•  Not	necessary	to	maintain	sequential	order	for	correctness	
–  hardware:	buffering,	pipelining	
–  compiler:	register	allocation,	code	motion	

•  Simple	for	programmers	

•  Allows	for	high	performance	

CMU	15-418/618,	Spring	2019	 13	

write A
write B
read A
read B

Processor	

	Cache	

READS	 WRITES	

write	
buffer	

Reads	check	for	
matching	addresses	
in	write	buffer	

Carnegie Mellon

In	Parallel	Machines	(with	a	Shared	Address	Space)	

•  Order	between	accesses	to	different	locations	becomes	important	

CMU	15-418/618,	Spring	2019	 14	

A = 1;

Ready = 1;
while (Ready != 1);

… = A;

P1	 P2	

(Initially	A	and	Ready	=	0)	

Carnegie Mellon

How	Unsafe	Reordering	Can	Happen	

•  Distribution	of	memory	resources	
–  accesses	issued	in	order	may	be	observed	out	of	order	

CMU	15-418/618,	Spring	2019	 15	

Processor	

		Memory	
	

Processor	

	Memory	
	

Processor	

		Memory	
	

	Interconnection	Network	

…	
A = 1;
Ready = 1;

A: 0 Ready:0

wait	(Ready==	1);	
…	=	A;

A = 1;

Ready = 1;

à1

Carnegie Mellon

Caches	Complicate	Things	More	
•  Multiple	copies	of	the	same	location	

CMU	15-418/618,	Spring	2019	 16	

	Interconnection	Network	

A = 1; wait	(A ==	1);	
B = 1;

A = 1;

B = 1;

Processor	

		Memory	

	Cache	
 A:0

	

Processor	

		Memory	

	Cache	
 A:0
 B:0

Processor	

		Memory	

	Cache	
 A:0
 B:0

wait	(B ==	1);	
… = A;

A = 1;

à1 à1
à1 à1

Oops!	

Carnegie Mellon

Our	Intuitive	Model:	“Sequential	Consistency”	(SC)	

•  Formalized	by	Lamport	(1979)	
–  accesses	of	each	processor	in	program	order	
–  all	accesses	appear	in	sequential	order	

	
	
•  Any	order	implicitly	assumed	by	programmer	is	maintained	

CMU	15-418/618,	Spring	2019	 17	

	
Memory	

	

P0	 P1	 Pn	…	

Carnegie Mellon

Example	with	Sequential	Consistency	

Simple	Synchronization:	

	 	P0 	 	 		P1	
	 	A = 1 									(a)	
	 	Ready = 1		(b) 	 	x = Ready (c)	
	 	 	 	 	y = A (d)	

	

•  all	locations	are	initialized	to	0	
•  possible	outcomes	for	(x,y):		

–  (0,0),	(0,1),	(1,1)	
•  (x,y)	=	(1,0)	is	not	a	possible	outcome	(i.e.	Ready	=	1,	A	=	0):	

–  we	know	a->b	and	c->d	by	program	order	
–  b->c		implies	that	a->d	
–  y==0	implies	d->a	which	leads	to	a	contradiction	

–  but	real	hardware	will	do	this!	

CMU	15-418/618,	Spring	2019	 18	

Carnegie Mellon

Another	Example	with	Sequential	Consistency	

Stripped-down	version	of	a	2-process	mutex	(minus	the	turn-taking):	

	 	P0 	 	 	 		P1	
	 	want[0] = 1					(a) 	 	want[1] = 1			(c)	
	 	x = want[1] 		(b) 	 	y = want[0] (d)		
	 	 	 	 		

•  all	locations	are	initialized	to	0	
•  possible	outcomes	for	(x,y):		

–  (0,1),	(1,0),	(1,1)	
•  (x,y)	=	(0,0)	is	not	a	possible	outcome	(i.e.	want[0]=	0,	want[1]=	0):	

–  a->b	and	c->d	implied	by	program	order	
–  x	=	0	implies	b->c	which	implies	a->d	
–  a->d	says	y	=	1	which	leads	to	a	contradiction	
–  similarly,	y	=	0	implies	x	=	1	which	is	also	a	contradiction	
–  but	real	hardware	will	do	this!	

CMU	15-418/618,	Spring	2019	 19	

Carnegie Mellon

One	Approach	to	Implementing	Sequential	Consistency	

1.  Implement	cache	coherence	
à writes	to	the	same	location	are	observed	in	same	order	by	all	processors	

2.  For	each	processor,	delay	start	of	memory	access	until	previous	one	completes	
à each	processor	has	only	one	outstanding	memory	access	at	a	time	

•  What	does	it	mean	for	a	memory	access	to	complete?	
	

	

CMU	15-418/618,	Spring	2019	 20	

Carnegie Mellon

When	Do	Memory	Accesses	Complete?	

•  Memory	Reads:	
–  a	read	completes	when	its	return	value	is	bound	

CMU	15-418/618,	Spring	2019	 21	

load r1 ß X X	=	???	

(Find	X	in	memory	system)	
X	=	17	

r1	=	17	

Carnegie Mellon

When	Do	Memory	Accesses	Complete?	

•  Memory	Reads:	
–  a	read	completes	when	its	return	value	is	bound	

•  Memory	Writes:	
–  a	write	completes	when	the	new	value	is	“visible”	to	other	processors	

•  What	does	“visible”	mean?	
–  it	does	NOT	mean	that	other	processors	have	necessarily	seen	the	value	yet	
–  it	means	the	new	value	is	committed	to	the	hypothetical	serializable	order	(HSO)	

•  a	later	read	of	X	in	the	HSO	will	see	either	this	value	or	a	later	one	
–  (for	simplicity,	assume	that	writes	occur	atomically)	

CMU	15-418/618,	Spring	2019	 22	

store 23 à X X	=	23	

(Commit	to	memory	order)	
(aka	“serialize”)	

Carnegie Mellon

Summary	for	Sequential	Consistency	

•  Maintain	order	between	shared	accesses	in	each	processor	

	
•  Balloon	analogy:	

–  like	putting	a	twist	between	each	individual	(ordered)	gas	particle	

•  Severely	restricts	common	hardware	and	compiler	optimizations	

CMU	15-418/618,	Spring	2019	 23	

READ	 READ	 WRITE	 WRITE	

READ	 WRITE	 READ	 WRITE	

Don’t	start	until	
previous	access	
completes	

Carnegie Mellon

•  Processor	issues	accesses	one-at-a-time	and	stalls	for	completion	

•  Low	processor	utilization	(17%	-	42%)	even	with	caching	

Performance	of	Sequential	Consistency	

CMU	15-418/618,	Spring	2019	 24	

From	Gupta	et	al,	“Comparative	
evaluation	of	latency	reducing	and	
tolerating	techniques.”	In	Proceedings	of	
the	18th	annual	International	Symposium	
on	Computer	Architecture	(ISCA	'91)	

Carnegie Mellon

Alternatives	to	Sequential	Consistency	

•  Relax	constraints	on	memory	order	

CMU	15-418/618,	Spring	2019	 25	

READ	 READ	 WRITE	 WRITE	

READ	 WRITE	 READ	 WRITE	

Total	Store	Ordering	(TSO)	(Similar	to	Intel)	

READ	 READ	 WRITE	 WRITE	

READ	 WRITE	 READ	 WRITE	

Partial	Store	Ordering	(PSO)	

See	Section	8.2	of	“Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual,	Volume	3A:	System	Programming	Guide,	Part	1”,	
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf	

Carnegie Mellon

Performance	Impact	of	TSO	vs.	SC	

•  Can	use	a	write	buffer	
•  Write	latency	is	effectively	hidden	

CMU	15-418/618,	Spring	2019	 26	

“Base”	=	SC	
“WR”	=	TSO	

Processor	

	Cache	

READS	 WRITES	

write	
buffer	

Carnegie Mellon

But	Can	Programs	Live	with	Weaker	Memory	Orders?	

•  “Correctness”:	same	results	as	sequential	consistency	
•  Most	programs	don’t	require	strict	ordering	(all	of	the	time)	for	“correctness”	

•  But	how	do	we	know	when	a	program	will	behave	correctly?	

CMU	15-418/618,	Spring	2019	 27	

Program	Order	

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Sufficient	Order	

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Carnegie Mellon

Identifying	Data	Races	and	Synchronization	

•  Two	accesses	conflict	if:	
–  (i)	access	same	location,	and	(ii)	at	least	one	is	a	write	

•  Order	accesses	by:	
–  program	order	(po)	
–  dependence	order	(do):	op1	-->	op2	if	op2	reads	op1	

	
	
•  Data	Race:	

–  two	conflicting	accesses	on	different	processors	
–  not	ordered	by	intervening	accesses	

•  Properly	Synchronized	Programs:	
–  all	synchronizations	are	explicitly	identified	
–  all	data	accesses	are	ordered	through	synchronization	

CMU	15-418/618,	Spring	2019	 28	

P1 	 	 		P2	
Write	A	
	
Write	Flag 	 	Read	Flag	
	

	 	 	Read	A	
	
	

po	

po	

do	

Carnegie Mellon

Optimizations	for	Synchronized	Programs	

•  Intuition:	many	parallel	programs	have	mixtures	of	“private”	and	“public”	parts*	

–  the	“private”	parts	must	be	protected	by	synchronization	(e.g.,	locks)	
–  can	we	take	advantage	of	synchronization	to	improve	performance?	

	
CMU	15-418/618,	Spring	2019	 29	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

SYNCH	

SYNCH	

Example:	

Grab	a	lock	

Release	the	lock	

Insert	node	into	data	structure	
•  Essentially	a	“private”	activity;	reordering	is	ok	

•  Now	we	make	it	“public”	to	the	other	nodes	

*Caveat:	shared	data	is	in	fact	always	visible	to	other	threads.	

Carnegie Mellon

Optimizations	for	Synchronized	Programs	

•  Exploit	information	about	synchronization	

•  properly	synchronized	programs	should	yield	the	same	result	as	on	an	SC	machine	

CMU	15-418/618,	Spring	2019	 30	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

SYNCH	

SYNCH	

“Weak	Ordering”	(WO)	

Between	synchronization	operations:	
•  we	can	allow	reordering	of	memory	operations	
•  (as	long	as	intra-thread	dependences	are	preserved)	

Just	before	and	just	after	synchronization	operations:	
•  thread	must	wait	for	all	prior	operations	to	complete	

Carnegie Mellon

Intel’s	MFENCE	(Memory	Fence)	Operation	

•  An	MFENCE	operation	enforces	the	ordering	seen	on	the	previous	slide:	
–  does	not	begin	until	all	prior	reads	&	writes	from	that	thread	have	completed	
–  no	subsequent	read	or	write	from	that	thread	can	start	until	after	it	finishes	

CMU	15-418/618,	Spring	2019	 31	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

MFENCE	

MFENCE	

Balloon	analogy:	it	is	a	twist	in	the	balloon	
•  no	gas	particles	can	pass	through	it	

(wikiHow)	

Good	news:	xchg	does	this	implicitly!	

Carnegie Mellon

CMU	15-418/618,	Spring	2019	 32	

Implementing	Lock	with	Xchg	

acquire():

 while (1) {
 reg = 1;
 xchg(&lock, reg);
 if (reg == 0)
 break;
 }

release():
 reg = 0;
 xchg(&lock, reg);

xchg(mem, reg)
temp = *mem;
*mem = reg;
reg = temp;

Done	atomically	=	

Carnegie Mellon

ARM	Processors	

•  ARM	processors	have	a	very	relaxed	consistency	model	

•  ARM	has	some	great	examples	in	their	programmer’s	reference:	
–  http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/

Barrier_Litmus_Tests_and_Cookbook_A08.pdf

•  A	great	list	regarding	relaxed	memory	consistency	in	general:	
–  http://www.cl.cam.ac.uk/~pes20/weakmemory/

CMU	15-418/618,	Spring	2019	 33	

Carnegie Mellon

Common	Misconception	about	MFENCE	

•  MFENCE	operation	does	NOT	push	values	out	to	other	threads	
–  it	is	not	a	magic	“make	every	thread	up-to-date”	operation	

•  It	simply	stalls	the	thread	that	performs	the	MFENCE	until	write	buffer	empty	

CMU	15-418/618,	Spring	2019	 34	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

MFENCE	

MFENCE	 1	4	

1	3	

1	1	

1	5	

1	2	

1	5	

1	1	

1	4	

1	3	

1	2	

1	3	

1	2	

1	1	

1	1	

1	2	

1	3	

1	4	

1	5	

Thread	0	 Thread	1	 Thread	2	 Thread	3	

Time	

1	4	

1	5	

MFENCE	operations	create	partial	orderings		
•  that	are	observable	across	threads	

Carnegie Mellon

Earlier	(Broken)	Example	Revisited	

Where	exactly	should	we	insert	MFENCE	operations	to	fix	this?	

	 	P0 	 	 		P1	
	 	[1:	Here?]	
	 	A = 1 		
	 	[2:	Here?]	 	[4:	Here?]	
	 	Ready = 1	 	 	x = Ready	
	 	[3:	Here?]	 	[5:	Here?]	
	 	 	 	 	y = A
	 	 	 	 	[6:	Here?]	
 	

	

CMU	15-418/618,	Spring	2019	 35	

Carnegie Mellon

Earlier	(Broken)	Example	Revisited	

Where	exactly	should	we	insert	MFENCE	operations	to	fix	this?	

	 	P0 	 	 		P1	
	 	[1:	Here?]	
	 	A = 1 		
	 	MFENCE 	 	 	[4:	Here?]	
	 	Ready = 1	 	 	x = Ready	
	 	[3:	Here?]	 	MFENCE	
	 	 	 	 	y = A
	 	 	 	 	[6:	Here?]	
 	

	

CMU	15-418/618,	Spring	2019	 36	

Carnegie Mellon

Overly	
Conservative	

Exploiting	Asymmetry	in	Synchronization:	“Release	Consistency”	

•  Lock	operation:	only	gains	(“acquires”)	permission	to	access	data	
•  Unlock	operation:	only	gives	away	(“releases”)	permission	to	access	data	

CMU	15-418/618,	Spring	2019	 37	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

READ/WRITE	
…	

READ/WRITE	

LOCK	

UNLOCK	

Weak	Ordering	(WO)	

1	

2	

3	
Release	Consistency	(RC)	

Make	sure	writes	completed	before	exit	critical	section	
Make	sure	don’t	read/write	shared	state	until	lock	acquired	

READ/WRITE	
…	

READ/WRITE	

ACQUIRE	

RELEASE	

READ/WRITE	
…	

READ/WRITE	 1	
2	

READ/WRITE	
…	

READ/WRITE	
3	

Carnegie Mellon

Intel’s	Full	Set	of	Fence	Operations		

•  In	addition	to	MFENCE,	Intel	also	supports	two	other	fence	operations:	
–  LFENCE:	serializes	only	with	respect	to	load	operations	(not	stores!)	
–  SFENCE:	serializes	only	with	respect	to	store	operations	(not	loads!)	

•  Note:	It	does	slightly	more	than	this;	see	the	spec	for	details:	
–  Section	8.2.5	of	“Intel®	64	and	IA-32	Architectures	Software	Developer’s	

Manual,	Volume	3A:	System	Programming	Guide,	Part	1	

•  In	practice,	you	are	most	likely	to	use:	
–  MFENCE	
–  xchg	

CMU	15-418/618,	Spring	2019	 38	

Carnegie Mellon

Earlier	(Broken)	Example	Revisited	

Where	exactly	should	we	insert	FENCE	operations	to	fix	this?	

	 	P0 	 	 		P1	
	 	[1:	Here?]	
	 	A = 1 		
	 	SFENCE 	 	 	[4:	Here?]	
	 	Ready = 1	 	 	x = Ready	
	 	[3:	Here?]	 	 	LFENCE	
	 	 	 	 	y = A
	 	 	 	 	[6:	Here?]	
 	

	

CMU	15-418/618,	Spring	2019	 39	

Carnegie Mellon

Take-Away	Messages	on	Memory	Consistency	Models	

•  DON’T	use	only	normal	memory	operations	for	synchronization	
–  e.g.,	Peterson’s	solution	for	mutual	exclusion	
	
	
	
	
	
	
	
	

•  DO	use	either	explicit	synchronization	operations	(e.g.,	xchg)	or	fences	

CMU	15-418/618,	Spring	2019	 40	

boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = 1-i;
while (want[1-i] && turn == 1-i)
 continue;
…	critical	section	…	
want[i] = false;	

Exercise	for	the	reader:	
Where	should	we	add	
fences	(and	which	type)	
to	fix	this?	

while (!xchg(&lock_available, 0)
 continue;
…	critical	section	…	
xchg(&lock_available, 1);

Carnegie Mellon

Summary:	Relaxed	Consistency	

•  Motivation:	
–  obtain	higher	performance	by	allowing	reordering	of	memory	operations	

•  (reordering	is	not	allowed	by	sequential	consistency)	

•  One	cost	is	software	complexity:	
–  the	programmer	or	compiler	must	insert	synchronization	

•  to	ensure	certain	specific	orderings	when	needed	

•  In	practice:	
–  complexities	often	encapsulated	in	libraries	that	provide	intuitive	primitives	

•  e.g.,	lock/unlock,	barriers	(or	lower-level	primitives	like	fence)	

•  Relaxed	models	differ	in	which	memory	ordering	constraints	they	ignore	

CMU	15-418/618,	Spring	2019	 41	

