Lecture 14:

Memory Consistency

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019

T Carnegie Metion [N

CMU 15-418/618, Spring 2019 1

What is Correct Behavior for a Parallel Memory Hierarchy?

* Note: side-effects of writes are only observable when reads occur
— so we will focus on the values returned by reads

* |ntuitive answer:

— reading a location should return the latest value written (by any thread)

e Hmm... what does “latest” mean exactly?
— within a thread, it can be defined by program order
— but what about across threads?
* the most recent write in physical time?

— hopefully not, because there is no way that the hardware can pull that off

» e.g., if it takes >10 cycles to communicate between processors, there is
no way that processor 0 can know what processor 1 did 2 clock ticks ago

* most recent based upon something else?
— Hmm...

I Carnegie Metion I

CMU 15-418/618, Spring 2019 2

Refining Our Intuition

Thread 0 Thread 1 Thread 2
// write evens to X // write odds to X
for (i=0; 1i<N; 1+=2) { for (j=1; J<N; J+=2) { A = X;
X = 1i; X = 3
B = X;
} }
C = X;

(Assume: X=0 initially, and these are the only writes to X.)

* What would be some clearly illegal combinations of (&,B,C)?
* How about:
(4,8,1)? (9,12,3)? (7,19,31)?
* What can we generalize from this?
— writes from any particular thread must be consistent with program order
* in this example, observed even numbers must be increasing (ditto for odds)

— across threads: writes must be consistent with a valid interleaving of threads
* not physical time! (programmer cannot rely upon that)

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 3

Visualizing Our Intuition

Thread 0 Thread 1 Thread 2
// write evens to X // write odds to X
for (i=0; 1i<N; 1+=2) { for (j=1; J<N; J+=2) { A = X;
X = 1i; X = 3
B = X;

.
14

i }

Single port to memory

[Memory J

e Each thread proceeds in program order

Memory accesses interleaved (one at a time) to a single-ported memory
— rate of progress of each thread is unpredictable

Carnegie Mellon -

CMU 15-418/618, Spring 2019 4

Correctness Revisited

Thread 0 Thread 1 Thread 2
// write evens to X // write odds to X
for (i=0; 1i<N; 1+=2) { for (j=1; J<N; J+=2) { A = X;
X = 1i; X = 3
B = X;

.
14

i }

Single port to memory

[Memory J

Recall: “reading a location should return the latest value written (by any thread)”

- “latest” means consistent with some interleaving that matches this model
— this is a hypothetical interleaving; the machine didn’t necessarily do this!

Carnegie Mellon -

CMU 15-418/618, Spring 2019 5

Part 2 of Memory Correctness: Memory Consistency Model

1. “Cache Coherence”
— do all loads and stores to a given cache block behave correctly?

2. “Memory Consistency Model” (sometimes called “Memory Ordering”)
— do all loads and stores, even to separate cache blocks, behave correctly?

Recall: our intuition

o /t/;

Slngle port to memory

[Memory J

CMU 15-418/618, Spring 2019 6

Carnegie Mellon -

Why is this so complicated?

e Fundamental issue:

— loads and stores are very expensive, even on a uniprocessor

* can easily take 10’s to 100’s of cycles

e What programmers intuitively expect:

— processor atomically performs one instruction at a time, in program order

* Inreality:
— if the processor actually operated this way, it would be painfully slow

— instead, the processor aggressively reorders instructions to hide memory latency

* Upshot:
— within a given thread, the processor preserves the program order illusion

— but this illusion has nothing to do with what happens in physical time!
— from the perspective of other threads, all bets are off!

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 7

Hiding Memory Latency is Important for Performance

* ldea: overlap memory accesses with other accesses and computation

write A

read B

write A
read B

=

. : . : . Processor
* Hiding write latency is simple in uniprocessors:
— add a write buffer READS WRITES
. write
— (more on this later) buffer
e (But this affects correctness in multiprocessors) Cache
Carnegie Mellon -

CMU 15-418/618, Spring 2019

-
How Can We Hide the Latency of Memory Reads?

“Out of order” pipelining:

— when an instruction is stuck, perhaps there are subsequent instructions that
can be executed

R*P; <+<— suffers expensive cache miss

y = x + 1; «— stuck waiting on true dependence
V4 a + 2;

b=c/ 3;

} <+— these do not need to wait

* Implication: memory accesses may be performed out-of-order!!!

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 9

-
What About Conditional Branches?

Do we need to wait for a conditional branch to be resolved before proceeding?

— No! Just predict the branch outcome and continue executing speculatively.
* if prediction is wrong, squash any side-effects and restart down correct path

X = *p;

y =x + 1;

z =a + 2;

b=c/ 3;

if (x '= z)(__.--—-ifhardwareguessesthatthisistrue

d = e - 7; € then execute “then” part (speculatively)
else d = e + 5; (withoutwaiting for x or z)

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 10

How Out-of-Order Pipelining Works in Modern Processors

e Fetch and graduate instructions in-order, but issue out-of-order

PC: Oxlc = oo | e
. CaChe"00
E
Branch 5
- Y—
Predictor S
@ 0xlc: b = c / 3; |+ issue (out-of-order)
Q .
T|0x18: z = a + 2; [+ issue (out-of-order)
o
L|10x14: y = x + 1; [+ can’tissue
0x10: x = *p; <+<— jssue (cache miss)

* Intra-thread dependences are preserved, but memory accesses get reordered!

I Carnegie Metion [

CMU 15-418/618, Spring 2019 11

Analogy: Gas Particles in Balloons

Thread O Thread 1 Thread 2 Thread 3

Time

(wikiHow)

@ (@ @
9 2] X
R | @
D g [®
UGS

@ 3RE0)

* Imagine that each instruction within a thread is a gas particle inside a twisty balloon
 They were numbered originally, but then they start to move and bounce around
 When a given thread observes memory accesses from a different thread:

— those memory accesses can be (almost) arbitrarily jumbled around
* like trying to locate the position of a particular gas particle in a balloon

 As we’ll see later, the only thing that we can do is to put twists in the balloon

I Carnegie Metlon [

CMU 15-418/618, Spring 2019 12

Uniprocessor Memory Model

* Memory model specifies ordering constraints among accesses

e Uniprocessor model: memory accesses atomic and in program order

. Processor
write A
erite B READS WRITES
read A D Reads check for write
read B matching addresses buffer
in write buffer \
Cache

Not necessary to maintain sequential order for correctness
— hardware: buffering, pipelining
— compiler: register allocation, code motion

Simple for programmers

Allows for high performance

Carnegie Mellon -

CMU 15-418/618, Spring 2019 13

-
In Parallel Machines (with a Shared Address Space)

* Order between accesses to different locations becomes important
(Initially A and Ready = 0)

P1 P2

while (Ready !'= 1);

.= A;

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 14

How Unsafe Reordering Can Happen

A=1; .

Processor Ready = 1; Processor Processor Wa_lt pready== 1);
Memory oo Memory Memory
A: 0 | Ready:0->)1

A=1;
K Ready = 1;

Interconnection Network

T ———————®

e Distribution of memory resources
— accesses issued in order may be observed out of order

Carnegie Mellon -

CMU 15-418/618, Spring 2019 15

Caches Complicate Things More

 Multiple copies of the same location

A=1; > wait (a2 ==1);
B=1; > wait (B ==1);
. = A; Oops!
Processor Processor Processor
Cache Cache Cache
A:0->1 A:0->1 A:0
B:0 =21 B:0->1
| |
Memory Memory Memory

CMU 15-418/618, Spring 2019 16

Our Intuitive Model: “Sequential Consistency” (SC)

* Formalized by Lamport (1979)

— accesses of each processor in program order
— all accesses appear in sequential order

* Any order implicitly assumed by programmer is maintained

CMU 15-418/618, Spring 2019

PO

P1

s

Memory

17

Pn

Carnegie Mellon -

Example with Sequential Consistency

Simple Synchronization:

PO Pl

A=1 (a)

Ready = 1 (b) x = Ready (c)
y = A (d)

e all locations are initialized to 0
* possible outcomes for (x,y):
- (0,0),(0,1), (1,1)
* (xy)=(1,0)is not a possible outcome (i.e. Ready =1, A =0):
— we know a->b and c->d by program order
— b->c implies that a->d
— y==0 implies d->a which leads to a contradiction

— but real hardware will do this!

I Carnegie Metion I

CMU 15-418/618, Spring 2019 18

Another Example with Sequential Consistency

Stripped-down version of a 2-process mutex (minus the turn-taking):

PO Pl
want[0] =1 (a) want[1l] = 1 (c)
x = want[1] (b) y = want[0] (d)

e all locations are initialized to 0
e possible outcomes for (x,y):
- (0,1), (1,0), (1,1)
* (x,y)=(0,0) is not a possible outcome (i.e. want[0]=0, want[1]=0):
— a->b and c->d implied by program order
— x =0 implies b->c which implies a->d
— a->d says y = 1 which leads to a contradiction
— similarly, y = 0 implies x = 1 which is also a contradiction
— but real hardware will do this!

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 19

One Approach to Implementing Sequential Consistency

1. Implement cache coherence
- writes to the same location are observed in same order by all processors

2. For each processor, delay start of memory access until previous one completes
— each processor has only one outstanding memory access at a time

 What does it mean for a memory access to complete?

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 20

When Do Memory Accesses Complete?

e Memory Reads:

— aread completes when its return value is bound
X =777

—

X=17

load rl € X

(Find X in memory system)

rl=17

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 21

When Do Memory Accesses Complete?

e Memory Reads:

— aread completes when its return value is bound
* Memory Writes:

— a write completes when the new value is “visible” to other processors

store 23 2 X X=23

(Commit to memory order)
(aka “serialize”)

 What does “visible” mean?
— it does NOT mean that other processors have necessarily seen the value yet
— it means the new value is committed to the hypothetical serializable order (HSO)
e alater read of X in the HSO will see either this value or a later one
— (for simplicity, assume that writes occur atomically)

I Carnegie Metlon I

CMU 15-418/618, Spring 2019 22

Summary for Sequential Consistency

* Maintain order between shared accesses in each processor

READ

|«—

READ

* Balloon analogy:

READ

[«

WRITE

WRITE

[«

READ

WRITE

Don’t start until

l(—’ previous aCcess

WRITE

completes

— like putting a twist between each individual (ordered) gas particle

e Severely restricts common hardware and compiler optimizations

CMU 15-418/618, Spring 2019

23

Carnegie Mellon -

Performance of Sequential Consistency

* Processor issues accesses one-at-a-time and stalls for completion

100

E 80 -

=

g

S 60|

= .

3 m Wri

> B Kkea

84 W Synch

o @ Busy

S 401

oy

E

]

Z

20 From Gupta et al, “Comparative
evaluation of latency reducing and
tolerating techniques.” In Proceedings of
the 18th annual International Symposium
0 on Computer Architecture (ISCA '91)

MP3D LU PTHOR

* Low processor utilization (17% - 42%) even with caching

I Carnegie Metlon [N

CMU 15-418/618, Spring 2019 24

Alternatives to Sequential Consistency

e Relax constraints on memory order

READ READ WRITE WRITE
READ WRITE READ WRITE

Total Store Ordering (TSO) (Similar to Intel)

See Section 8.2 of “Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part 1”,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

READ READ WRITE WRITE
READ WRITE READ WRITE

Partial Store Ordering (PSO)

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 25

Performance Impact of TSO vs. SC

100

30 “Base” = SC
% “WR” =TSO
=
g
g= 60
Q B Write
2 B Read
- B Synch
g I Busy
240
=
g
3
Z.

20

Processor
READS WRITES
0 Base WR Base WR Base WR write
buffer
MP3D LU PTHOR v
 Can use a write buffer Cache

* Write latency is effectively hidden

I Carnegie Metion [

CMU 15-418/618, Spring 2019 26

But Can Programs Live with Weaker Memory Orders?

 “Correctness”: same results as sequential consistency
* Most programs don’t require strict ordering (all of the time) for “correctness”

Program Order Sufficient Order
A=1; A=1;
W
B =1; B =1;
W W
unlock L; lock L; unlock L; lock L;

?’
I
¥

| € €

yy)
Il
yy)

 But how do we know when a program will behave correctly?

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 27

Identifying Data Races and Synchronization

 Two accesses conflict if:

— (i) access same location, and (ii) at least one is a write
e Order accesses by:

— program order (po)

— dependence order (do): opl --> op2 if op2 reads opl

P1 P2
Write A
\l' PO do
Write Flag -> Read Flag
¥ po
Read A

* Data Race:

— two conflicting accesses on different processors
— not ordered by intervening accesses

 Properly Synchronized Programs:

— all synchronizations are explicitly identified
— all data accesses are ordered through synchronization

I Carnegie Metion [

CMU 15-418/618, Spring 2019 28

Optimizations for Synchronized Programs

* |ntuition: many parallel programs have mixtures of “private” and “public” parts”
— the “private” parts must be protected by synchronization (e.g., locks)
— can we take advantage of synchronization to improve performance?

READ/WRITE

READ/WRITE Example:

v

SYNCH € Grab alock

READ{_NRITE €&——— |nsert node into data structure
READ/WRITE * Essentially a “private” activity; reordering is ok

SYNCH €&—— Release the lock

\l, * Now we make it “public” to the other nodes
READ/WRITE
READ/WRITE “Caveat: shared data is in fact always visible to other threads.

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 29

Optimizations for Synchronized Programs

* Exploit information about synchronization

READ/WRITE
READ/WRITE

v

SYNCH

v

READ/WRITE
READ/WRITE

SYNCH

Between synchronization operations:
& ¢+ we can allow reordering of memory operations
* (aslong as intra-thread dependences are preserved)

Just before and just after synchronization operations:

READ/WRITE
READ/WRITE

e thread must wait for all prior operations to complete

“Weak Ordering” (WO)

e properly synchronized programs should yield the same result as on an SC machine

I Carnegie Metlon [N

CMU 15-418/618, Spring 2019

30

-]
Intel’s MFENCE (Memory Fence) Operation

* An MFENCE operation enforces the ordering seen on the previous slide:
— does not begin until all prior reads & writes from that thread have completed
— no subsequent read or write from that thread can start until after it finishes

READ/WRITE Balloon analogy: it is a twist in the balloon
READ/WRITE * no gas particles can pass through it

v

MFENCE

v

READ/WRITE
READ/WRITE

MFENCE

Vi wiki a
+ (wikiHow)

READ/WRITE
READ/WRITE Good news: xchg does this implicitly!

I Carnegie Metlon [N

CMU 15-418/618, Spring 2019 31

-]
Implementing Lock with Xchg

temp = *mem;
*mem = reg; = Done atomically

xchg (mem, regqg)

reg = temp;

acquire () : release() :
reg = 0;
while (1) { xchg (&lock, req);
reg = 1;

xchg (&lock, req);
if (reg == 0)
break;

T Carnegie Metion [N

CMU 15-418/618, Spring 2019 32

ARM Processors

 ARM processors have a very relaxed consistency model

« ARM has some great examples in their programmer’s reference:
— http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/

Barrier Litmus Tests and Cookbook A08.pdf

* Agreat list regarding relaxed memory consistency in general:
— http://www.cl.cam.ac.uk/~pes20/weakmemory/

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 33

Common Misconception about MFENCE

* MFENCE operation does NOT push values out to other threads
— itis not a magic “make every thread up-to-date” operation
e It simply stalls the thread that performs the MFENCE until write buffer empty

READ/WRITE
READ/WRITE Thread 0 Thread 1 Thread 2 Thread 3

v

MFENCE Time

READ/WRITE

¥ | %
READ/WRITE @7 .
hO)

V7
MFENCE @?’
b

READ/WRITE
READ/WRITE

@ f)
S %
0,8 o}
O ©
\J 9

(PP

MFENCE operations create partial orderings
e that are observable across threads

Carnegie Mellon -

CMU 15-418/618, Spring 2019 34

Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

PO P1
[1: Here?]
A=1
[2: Here?] [4: Here?]
Ready =1 x = Ready
[3: Here?] [5: Here?]
y = A
[6: Here?]

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 35

Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

PO P1
[1: Here?]
A=1
MFENCE [4: Here?]
Ready =1 x = Ready
[3: Here?] MFENCE

y = A

[6: Here?]

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 36

Exploiting Asymmetry in Synchronization: “Release Consistency”

* Lock operation: only gains (“acquires”) permission to access data

 Unlock operation: only gives away (“releases”) permission to access data

READ/WRITE
READ/WRITE | 1
Overly o> i
Conservative [ock ACQUIRE
: " READ/WRITE *
cee 1
READ/WRITE , READ/WRITE READ/WRITE , \
READ/WRITE \ READ/WRITE READ/WRITE
3
S READ/WRITE
UNLOCK RELEASE
READ/WRITE , Release Consistency (RC)
READ/WRITE Make sure writes completed before exit critical section
Weak Ordering (WO) Make sure don’t read/write shared state until lock acquired
i

Carnegie Mellon -

CMU 15-418/618, Spring 2019 37

Intel’s Full Set of Fence Operations

* In addition to MFENCE, Intel also supports two other fence operations:
— LFENCE: serializes only with respect to load operations (not stores!)

— SFENCE: serializes only with respect to store operations (not loads!)
* Note: It does slightly more than this; see the spec for details:

— Section 8.2.5 of “Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A: System Programming Guide, Part 1

* In practice, you are most likely to use:
— MFENCE
— xchg

I Carnegie Metion [

CMU 15-418/618, Spring 2019 38

Earlier (Broken) Example Revisited

Where exactly should we insert FENCE operations to fix this?

PO P1
[1: Here?]
A=1
SFENCE [4: Here?]
Ready =1 x = Ready
[3: Here?] LFENCE

y = A

[6: Here?]

I Carnegie Metion [

CMU 15-418/618, Spring 2019 39

Take-Away Messages on Memory Consistency Models

 DON'T use only normal memory operations for synchronization
— e.g., Peterson’s solution for mutual exclusion

boolean want[2] = {false, false};
int turn = 0O;

want[i] = true; Exercise for the reader:

turn = 1-i; Where should we add

while (want[l-i] && turn == 1-i) rences (and which type)
continue; to fix this?

... critical section ...

want[i] = false;

* DO use either explicit synchronization operations (e.g., xchg) or fences

while (!xchg(&lock available, 0)
continue;

... critical section ...

xchg(&lock_available, 1);

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 40

Summary: Relaxed Consistency

* Motivation:

— obtain higher performance by allowing reordering of memory operations
* (reordering is not allowed by sequential consistency)

* One cost is software complexity:

— the programmer or compiler must insert synchronization
* to ensure certain specific orderings when needed

* |n practice:

— complexities often encapsulated in libraries that provide intuitive primitives
* e.g., lock/unlock, barriers (or lower-level primitives like fence)

* Relaxed models differ in which memory ordering constraints they ignore

I Carnegie Metion [N

CMU 15-418/618, Spring 2019 41

