Lecture 12:

A Basic Snooping-Based
Multi-Processor Implementation

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019

Today: implementing cache coherence

® Wait... haven't we talked about this before?

m Earlier, we talked about cache coherence protocols

— But our discussion was very abstract

— We described what messages/transactions needed to be sent
— We assumed messages/transactions were atomic

Today we will talk about efficiently
implementing an invalidation-based protocol

Today’s point: in a real machine... efficiently
ensuring coherence is complex

PrWr/BusRdX

PrRd / BusRd

(no other cache
ssssssss hared)

PrRd/--
BusRd /-

(another cache
sssss ts shared)

.

.

:

.

.

.

' .
v .
e .

: .
']

Per/Bust‘ U ! BusRdX/-

! BusRdX/--

2 (MU 15-418/618, Spring 2019

The concepts in today’s lecture span much
more than just hardware implementation

m The challenges and techniques we describe today (trade-offs
between simplicity and performance, challenges of correctness in
a parallel system) apply equally well to writing parallel programs

3 (MU 15-418/618, Spring 2019

Review: MESI state transition diagram

PrRd/--
PrWr/--
PrWr/BusUgr > il BusRd / flush
PrWr/ BusRdX w + BusRd /- : ; : BusRdX/ flush
PrRd/-- ' ' "
; - 5
€ EEEEEEE :
PrRd / BusRd PrRd / BusRd w » BusRdX/ -- E BusRdX/ -- E
(no other cache (another cache PrRd/-- . : :
asserts shared) asserts shared) BusRd / -- E . :
v E ;
D '
* ----------------------------------

4 CMU 15-418/618, Spring 2019

Reality: multi-level cache hierarchies

Recall Intel Core i7 hierarchy

Shared L3 Cache

(One bank per core)

I

I

I

Ring Interconnect

I

I

I

L2 Cache

L2 Cache

L2 Cache

L2 Cache

\ 4

\4

\4

\4

L1 Data Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

\4

A

\4

A

\4

A

\ 4

Core

Core

Core

Core

® (Challenge: changes made to data at first
level cache may not be visible to second level

cache controller than snoops the
interconnect.

= How might snooping work for a cache
hierarchy?

1. All caches snoop interconnect
independently? (inefficient)

2. Maintain“inclusion”

5 CMU 15-418/618, Spring 2019

Inclusion property of caches

® Alllines in closer [to processor] cache are also in farther [from processor] cache
- e.g., contents of L1 are a subset of contents of L2

- Thus, all transactions relevant to L1 are also relevant to L2, so it is sufficient
for only the L2 to snoop the interconnect

®m [flineisin owned state (M in MSI/MESI) in L1, it must also be in owned state in L2

= Allows L2 to determine if a bus transaction is requesting a modified cache line
in L1 without requiring information from L1

6 CMU 15-418/618, Spring 2019

Is inclusion maintained automatically if L2 is

larger than L1? No!

B (onsider this example:

- Let L2 cache be twice as large as L1 cache
- Let L1 and L2 have the same line size, are 2-way set associative, and use LRU replacement policy
- LetA, B, Cmap to the same set of the L1 cache

Set2

Set3

A L1
B X Cache
Set0 Set 1
A X
B
Set0 Set1 I-Z
Cache

Processor accesses A (L1+L2 miss)

Processor accesses B (L1+L2 miss).

Processor accesses A many times (all L1 hits).

Processor now accesses C, triggering an L1 and L2
miss. L1 and L2 might choose to evict different
lines, because the access histories differ.

As a result, inclusion no longer holds!

7 CMU 15-418/618, Spring 2019

Maintaining inclusion: handling invalidations

Processor

L1

X x| Cache

T Invalidate

“in L1” bit
\

L2

':'—XX—| Cache

A
+ BusRdX/--

Interconnect

When line Xis invalidated in L2 cache due
to BusRdX from another cache.

Must also invalidate line Xin L1

One solution: each L2 line contains an
additional state bit indicating if line also
exists in L1

This bit tells the L2 invalidations of the
cache line due to coherence traffic need to
be propagated to L1.

8 CMU 15-418/618, Spring 2019

Maintaining inclusion: L1 write hit

Assume L1 is a write-back cache. Processor

Processor writes to line X (L1 write hit)
L1 Line Xin L2 cache is in modified state in the
X Cache coherence protocol, but it has stale data!
“modified-but-
stale” bit \ l Flush X
“inl1"bit <IN 12 When coherence protocol requires X to be
=I= . Cache flushed from L2 (e.g., another processor loads X),
n L2 cache must request the data from L1.
BusRd/ Flush X
Interconnect] Add another bit for “modified-but-stale”

(flushing a “modified-but-stale” L2 line requires
getting the real data from L1 first.)

9 CMU 15-418/618, Spring 2019

The goals of our coherence implementation

1. Be correct
- Implements cache coherence

2. Achieve high performance

3. Minimize “cost” (e.g., minimize amount of extra
hardware needed to implement coherence)

As you will see...
Techniques that pursue high performance tend to make ensuring correctness tricky.

10CMU 15-418/618, Spring 2019

What you should know

m Concepts of deadlock, livelock, and starvation

B Have a basic understanding of how a bus works
- But keep in mind most modern interconnects are NOT buses!
(we'll have a whole lecture on interconnects soon)

B Understand why maintaining coherence is challenging, even when operating
under simple machine design parameters

- How do performance optimizations make correctness challenging?
(e.g., how can deadlock, livelock, and starvation occur in coherence
implementations, and how are these problems avoided?)

= Your mental model of hardware should be: there are many components
operating in parallel (even if abstractions don't indicate this is the case)

11CMU 15-418/618, Spring 2019

Terminology

Deadlock
Livelock
Starvation

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

12CMU 15-418/618, Spring 2019

Deadlock

Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Can arise when each operation has
acquired a shared resource that another

operation needs.

In a deadlock situations, there is no way
for any thread (or, in this illustration, a
car) to make progress unless some thread
relinquishes a resource (“backs up”)

13 (MU 15-418/618, Spring 2019

Yinzer deadlock

Non-technical side note for car-owning students:
Deadlock happens in Pittsburgh all the %$*** time

(However, deadlock can be amusing when a bus
driver decides to let another driver know he has

caused deadlock... “go take 418 you fool!”)

14CMU 15-418/618, Spring 2019

More illustrations of deadlock

Why are these examples of deadlock?

15CMU 15-418/618, Spring 2019

Deadlock in computer systems

Example 1: Example 2:

const int numEl = 1024;
float msgBufl[numEl];
float msgBuf2[numEl];

Work queue (full)
int threadId getThreadId();

. do work ...

° MsgSend(msgBufl, numEl * sizeof(int), threadId+1, ...

MsgRecv(msgBuf2, numEl * sizeof(int), threadld-1, ...
Every process sends a message (blocking send) to
the processor with the next higher id

Work queue (full)

A produces work for B's work queue Then receives message from processor with next

B produces work for A's work queue lower id.

Queues are finite and workers wait if
no output space is available

16CMU 15-418/618, Spring 2019

Required conditions for deadlock

1. Mutual exclusion: one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for other
resources needed to complete an operation

3. No preemption: processors don't give up resources until operation they
wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle exists
in the resource dependency graph)

O

Work queue (full)

Work queue (full)

17 (MU 15-418/618, Spring 2019

Livelock

18CMU 15-418/618, Spring 2019

Livelock

19CMU 15-418/618, Spring 2019

Livelock

20CMU 15-418/618, Spring 2019

Livelock

Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Can you think of a good daily life
example of livelock?

Computer system examples:

Operations continually abort and retry

21CMU 15-418/618, Spring 2019

Starvation

State where a system is making overall
progress, but some processes make no

progress.
(green cars make progress, but yellow cars are stopped)

Starvation is usually not a permanent

state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow cars) must
yield to traffic moving up/down (green cars)

22(MU 15-418/618, Spring 2019

Part 1:
A basicimplementation of snooping
(assuming an atomic bus)

Consider a basic system design

— One outstanding memory request per processor

— Single level, write-back cache per processor
— (ache can stall processor as it is carrying out coherence operations
— System interconnect is an atomic shared bus (one cache communicates at a time)

Processor

Cache

Tags

State

Data

Processor

Cache

Tags

State

Data

Interconnect (shared bus)

Memory

24CMU 15-418/618, Spring 2019

Transaction on an atomic bus

1. Clientis granted bus access (result of arbitration)
2. (lient places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

25CMU 15-418/618, Spring 2019

Cache miss logic on a uniprocessor

1. Determine cache set (using appropriate bits of address)

2. Check cache tags (to determine if line is in cache)
[Assume no matching tags, must read data from memory]

. Assert request for access to bus
. Wait for bus grant (as determined by bus arbitrator)

What does atomic bus mean in a multi-

. Wait for command to be accepted processor scenario?
. Receive data on bus BusRd, BusRdX: no other bus

transactions allowed between issuing
address and receiving data

3
4
5. Send address + command on bus
6
7

Address
I - Flush: address and data sent
simultaneously, received by memory
before any other transaction allowed

26CMU 15-418/618, Spring 2019

Multi-processor cache controller behavior

Challenge: both requests from processor and bus require tag lookup
This is another example of contention!

to processor . o e
P If bus receives priority:

I During bus transaction, processor is
locked out from its own cache.

If processor receives priority:

Tags | State Data Cache
__ During processor cache accesses, cache
| “Snoop” controller™ cannot respond with its snoop result
(so it delays other processors even if no
I sharing of any form is present)
to bus

* Snoop controller has its mind on the bus and the bus on its mind
27 (MU 15-418/618, Spring 2019

Alleviate contention: allow simultaneous
access by processor-side and snoop controllers

to processor

Tags

State

Tags

State | :

Option 1: cache duplicate tags
Option 2: multi-ported tag memory

Note: tags must stay in sync for
correctness, so tag update by one
controller will still need to block the other
controller (but modifying tags is
infrequent compared to checking them)

Keep in mind: in either case cost of the

additional performance is additional
hardware resources.

28CMU 15-418/618, Spring 2019

Reporting snoop results protocol in MESI

®m Assume a cache read miss (BusRd)
m (Collective response of caches must appearonbus jciiory needs o

know what to d
- Isline dirty? If so, memory should not respond flowhatiodo

- Isline shared? If so, cache should load into S state, not E

\ Loading cache needs

to know what to do

How are snoop results communicated?
When are snoop results communicated?

29CMU 15-418/618, Spring 2019

Reporting snoop results: how

Bus
e A dress
——
s Shared ‘OR’ of result from all processors
I —————————— Dy ty ‘OR’ of result from all processors
S Snoop-pending ‘OR’ of result from all processors

V.“ (0 value indicates all processors have responded)

These three lines are additional bus
interconnect hardware!

30CMU 15-418/618, Spring 2019

Reporting snoop results: when

® Memory controller could immediately start accessing DRAM, but not
respond (squelch response) if a snoop result from another cache
indicates it has copy of most recent data

- Cache should provide data, not memory

B Memory could assume one of the caches will service request until
snoop results are valid (if snoop indicates no cache has data, then
memory must respond)

31CMU 15-418/618, Spring 2019

Handling write backs

m Write backs involve two bus transactions

1. Incoming line (line requested by processor)
2. Outgoing line (evicted dirty line in cache that must be flushed)

m [deally would like the processor to continue as soon as
possible (it shouldn’t have to wait for the flush to complete)

m Solution: write-back buffer

- Stick line to be flushed in a write-back buffer
- Immediately load requested line (allows processor to continue)
- Flush contents of write-back buffer at a later time

32C(MU 15-418/618, Spring 2019

Cache with write-back buffer

P
Addr lCmd
Data

Tags Tags Processo
and and side
state Cache data RAM state controller
for for
snoop P

-

controller ‘
To
@ controiie
Tag Write-back buffer

L -

Y4 iy > To

1 gontrollen

— ’

.. >
s Y Y
Snoop state Addr Cmd Data buffer Addr Cmd
) \ \ ?
System bus'
< Y Y,

Figure credit: Culler, Singh, and Gupta

What if a request for the address of
the data in the write-back buffer
appears on the bus?

Snoop controller must check the
write-back buffer addresses in
addition to cache tags.

If there is a write-back buffer
match:

1. Respond with data from write-
back buffer rather than cache

2. Cancel outstanding bus access
request (for the write back)

33 (MU 15-418/618, Spring 2019

In practice state transitions are not atomic

m (Coherence protocol state transition diagrams (like the one below) assumed that
transitions between states were atomic

m We've assumed the bus transaction itself is atomic, but all the operations the system
performs as a result of a memory operation are not

- e.g., look up tags, arbitrate for bus, wait for actions by other controllers, ...
® [mplementations must be careful to handle race conditions appropriately

PrWr/ BusRdX —>‘ ! Buskd/flush

PrRd/ BusRd Per/Bust‘ L)/ ' BusRdX/- | BusRdX/-
PrRd/-- | :

‘M i g
34CMU 15-418/618, Spring 2019

An example race condition

Processors P1 and P2 write to valid (and shared) cache line A simultaneously
(both need to issue BusUpg to move line from S state to M state)

P1“wins” bus access (as determined by arbiter), P1 sends BusUpg

P2 is waiting for bus access (to send its own BusUpg), can’t proceed because P1 has bus

P2 receives BusUpg, must invalidate line A (as per MESI protocol)

P2 must also change its pending BusUpg request to a BusRdX

Cache must be able to handle
requests while waiting to acquire
bus AND be able to modify its own
outstanding requests

35CMU 15-418/618, Spring 2019

Fetch deadlock

P1 has a modified copy of cache line B
P1 is waiting for the bus so it can issue BusRdX on cache line A

BusRd for B appears on bus while P1 is waiting

To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue requests

36CMU 15-418/618, Spring 2019

Livelock

Two processors writing to cache line B

P1 acquires bus, issues BusRdX

P2 invalidates

Before P1 performs cache line update, P2 acquires bus, issues BusRdX
P1invalidates

and so on...

To avoid livelock, a write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

37CMU 15-418/618, Spring 2019

Self check: when does a write “commit?”

A write commits when a read-exclusive transaction appears on bus
and is acknowledged by all other caches

= At this point, the write is “committed”

= All future reads will reflect the value of this write (even if data from P has not yet been
written to P’s dirty cache line, or to memory)

- Keyidea: order of transactions on the bus defines the global order of writes in the
parallel program (write serialization)

m Commit!= complete: a write completes when the updated value is
in the cache line

® Why does a write-back buffer not affect time of commit?

38CMU 15-418/618, Spring 2019

Starvation

m Multiple processors competing for bus access

- Must be careful to avoid (or minimize likelihood of) starvation
- E.g., what if processor with “lowest id” wins.

m Example policies that achieve greater fairness:

- FIFO arbitration
- Round-robin arbitration

= Priority-based heuristics (frequent bus users have priority drop)

39CMU 15-418/618, Spring 2019

Design issues we have seen

m Design of cache controller and tags
(to support access from processor and bus)

How and when to present snoop results on bus
Dealing with write backs
Dealing with non-atomic state transitions

Avoiding deadlock, livelock, starvation

These issues arose even though we only implemented a few optimizations on a
very basic invalidation-based, write-back system!

(atomic bus, one outstanding memory request per processor, single-level caches)

40CMU 15-418/618, Spring 2019

First-half summary: parallelism and concurrency in
coherence implementation are sources of complexity

® Processor, cache, and bus all are resources operating in parallel
- Often contending for shared resources:
- Processor and bus contend for cache
- (Caches contend for bus access

® “Memory operations” that are abstracted by the architecture as atomic (e.g.,
loads, stores) are implemented via multiple transactions involving all of
these hardware components

B Performance optimization often entails splitting operations into several,
smaller transactions

- Splitting work into smaller transactions reveals more parallelism (recall pipelining)
- Cost: more hardware needed to exploit additional parallelism
- (ost: care needed to ensure abstractions still hold (the machine is correct)

41CMU 15-418/618, Spring 2019

Part 2:

Building the system around non-atomic
bus transactions

42 (MU 15-418/618, Spring 2019

What you should know

®m What is the major performance issue with atomic bus transactions that
motivates moving to a more complex non-atomic system?

® You should know the main components of a split-transaction bus, and how
transactions are split into requests and responses

B Therole of queues in a parallel system (today is yet another example)

43CMU 15-418/618, Spring 2019

Review: transaction on an atomic bus

1. Clientis granted bus access (result of arbitration)
2. (lient places command on bus (may also place data on bus)

Problem: bus is idle while response is pending
(this decreases effective bus bandwidth)

This is bad, because the interconnect is a limited,

shared resource in a multi-processor system.
(So it is important to use it as efficiently as possible)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

44CMU 15-418/618, Spring 2019

Split-transaction bus

Bus transactions are split into two transactions:

1. Therequest
2. Theresponse

Other transactions can intervene between a
transaction’s request and response.

P1 P2

Consider this scenario:
Read miss to A by P1
Bus upgrade of B by P2

Cache Cache

C Split-Transaction Bus

Memory

Possible timeline of eventson a
split-transaction bus:

P1 gains access to bus

P1 sends BusRd command
[memory starts fetching data now...]

P2 gains access to bus
P2 sends BusUpg command
Memory gains access to bus

Memory places A on bus

45CMU 15-418/618, Spring 2019

New issues arise due to split transactions

1. How to match requests with responses?

2. How to handle conflicting requests on bus? Consider:

- P1 has outstanding request for line A
- Before response to P1 occurs, P2 makes request for line A

3. Flow control: how many requests can be outstanding at a time,
and what should be done when buffers fill up?

4. When are snoop results reported? During the request? or during
the response?

46CMU 15-418/618, Spring 2019

A basic design

m Up to eight outstanding requests at a time (system wide)

m Responses need not occur in the same order as requests
- Butrequest order establishes the total order for the system

® Flow control via negative acknowledgements (NACKs)
= When a buffer is full, client can NACK a transaction, causing a retry

47CMU 15-418/618, Spring 2019

Initiating a request

Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:

I
cnd + address Request Table

(assume a copy of this table is maintained

data

256 bits Requestor Addr State
___| Response tag . .
3 bits Transaction tag is PO Oxbeef

just the index into
the request table

Step 1: Requestor asks for request bus access

Step 2: Bus arbiter grants access, assigns transaction a tag

Step 3: Requestor places command + address on the request bus

48CMU 15-418/618, Spring 2019

Read miss: cycle-by-cycle bus behavior (phase 1)

ARB RSLV ADDR DCD ACK Clocks

—5 i i i - i i i i i i i i i i i i >
Request Bus Addr Addr
(Addr/cmd) req | Grant | Addr Ack

A A A T

Caches acknowledge this snoop result is ready

(or signal they could not complete snoop in time here (e.g., raise inhibit wire)
Caches perform snoop: look up tags, update cache state, etc.

Memory operation commits here!

(NO BUS TRAFFIC)

Bus “winner” places command/address on the bus

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request (see previous slide)
Special arbitration lines indicate tag assigned to request

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

49CMU 15-418/618, Spring 2019

Read miss: cycle-by-cycle bus behavior (phase 2)

ARB RSLV ADDR DCD ACK ARB RSLY ADDR DCD ACK Clocks
—1 i i i i i i i i i i i i i i i >
Request Bus Addr Addr
(Addr/cmd) req | Grant | Addr Ack
Response Bus Data | - .| Tag
(Data Arbitration) red check
A A N
(Data)

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Data bus arbiter grants one responder bus access

Data response arbitration: responder presents intent to respond
torequest withtag T
(many caches --or memory-- may be doing so in the same cycle)

50CMU 15-418/618, Spring 2019

Read miss: cycle-by-cycle bus behavior (phase 3)

ARB RSLV ADDR DCD ACK ARB RSLY ADDR DCD ACK Clocks

—1 i i i i i i i i i i i i i i i >
Request Bus Addr Addr
(Addr/cmd) req | Grant | Addr Ack
Response Bus Data | - .| Tag
(Data Arbitration) red check
(Data) Data | Data | Data | Data

A

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed

Here: assume 128 byte cache lines — 4 cycles on 256 bit bus

51CMU 15-418/618, Spring 2019

Pipelined transactions

ARB RSLV ADDR DCD ACK ARB RSLY ADDR DCD ACK Clocks
—1 i i i i | i i i i | i | >
Request Bus Addr Addr || Addr Addr
(Addr/cmd) req | 61Nt | Addr ack || ‘req | Grant | Addr i
Response Bus Data | o I:agk [i:ta Grant cII:sc’k
(Data Arbitration) req . q
(Data) Data | Data | Data | Data Data | Data

= memory transaction 1

= memory transaction 2

Note: write backs and BusUpg transactions do not have a response component
write backs acquire access to both request address bus and data bus as part of “request” phase

BusUpg does not need any acknowledgement or data

52CMU 15-418/618, Spring 2019

Pipelined transactions

Clocks
—t— >

Request Bus
(/e RN

Response Bus
(Data Arbitration)

, Note out-of-order completion.
= memory transaction 1

= memory transaction 2
= memory transaction 3

- = memory transaction 4 (No response required)

53CMU 15-418/618, Spring 2019

Key issues to resolve

m (Conflicting requests
- Avoid conflicting requests by disallowing them
- Each cache has a copy of the request table

= Simple policy: caches do not make requests that conflict with requests
in the request table

® Flow control:

- (Caches/memory have buffers for receiving data off the bus

- If the buffer fills, client NACKs relevant requests or responses
(NACK = negative acknowledgement)

- Triggers a later retry

54CMU 15-418/618, Spring 2019

Situation 1: P1 read miss to X, read transaction
involving X is outstanding on bus

Requestor Addr

P1 Request Table

State

P2

X

Op:BusRd , share

read X

P1

P2

Cache

Cache

Split-Transaction Bus

Memory

If outstanding request is a read: there is no conflict. No need to make a new bus request,

just listen for the response to the outstanding one.

55CMU 15-418/618, Spring 2019

Situation 2: P1 read miss to X, write transaction
involving X is outstanding on bus

Requestor Addr

P1 Request Table

State

P2

X

Op: BusRdX

read X

P1

P2

Cache

Cache

Split-Transaction Bus

Memory

If there is a conflicting outstanding request (as determined by checking the request

table), cache must hold request until conflict clears

56CMU 15-418/618, Spring 2019

Why do we have queues in a parallel system?

O —(

Answer: to accommodate variable (unpredictable) rates of production and consumption.

As long as A and B, on average, produce and consume at the same rate, both workers can
run at full rate.

No queue: notice A stalls waiting for B to accept new input (and B sometimes stalls waiting for A to produce new input).

A [EIN T N [6]
2 3

never stall

B 1 4 5 6
time »
With queueof A |NSENN (NUN) S (N E
size2:Aand B ; o | : — - : .
0 12 0 0 1 :0 31 211 10— Size of queue

when A completes
. . : S . - a piece of work (or
B 1 2 3| 4 > |6 B begins work)

57 (CMU 15-418/618, Spring 2019

Multi-level cache hierarchies

Numbers indicate steps in a cache miss from processor on left. Serviced by cache on right.

Processor Processor
Response T l Processor request T v
T L $ l T L, $
N AN |
8
Responsp */ ;l ®RGSPOHSE/ $/ @ ;l
e, T RON ;

Response/ * Request/response + *

request @ @ to Sus P @ @

from bus * ‘ + *

< -
Bus

Figure credit: Culler, Singh, and Gupta 58CMU 15-418/618, Spring 2019

Recall the fetch-deadlock problem

Processor Processor
Response T l Processor request T Y
P [
N N
8
Response/C) */ ;l @Response/ */ @ ;l
s b L PO ¢

Ilf{ezz%c;rt\se/ + @ @ E)e:::sest/response + @ @ *
from bus * * *
- >

Bus

Assume one outstanding memory request per processor.

Consider fetch-deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

Figure credit: Culler, Singh, and Gupta 59CMU 15-418/618, Spring 2019

Deadlock due to full queues

Assume buffers are sized so that the maximum

to processor queue size is one message. (buffer size =1)
L1 Cache
¢ T / Outgoing read request (initiated by processor)
//
- Incoming read request (due to another cache) **
L1—12 queue 1211 queue Both requests generate responses that require
¢ T space in the other queue (circular dependency)
L2 Cache
to bus

will only occur if L1 is write back 60CMU 15-418/618, Spring 2019

Multi-level cache hierarchies

Processor Processor
Response T l Processor request T l
[P
N LN
o) vw® i/ v,
ey e R O S
frc?m L, to Ly T + fromLqto L f %‘
|
R ——
} v } Y
Response/ Request/response
request @ @ to t?us P @ @
from bus f * + *
-t \

Bus

Assume one outstanding memory request per processor.

Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

Sizing all buffers to accommodate the maximum number of outstanding requests on bus is
one solution to avoiding deadlock. But a costly one!

Figure credit: Culler, Singh, and Gupta 61CMU 15-418/618, Spring 2019

Avoiding buffer deadlock with separate
request/response queues

L1—12
request queue

L1—12
response queue

to processor

!

L1 Cache

--- 1211

request queue

--. 211

response queue

L2 Cache

|

to bus

System classifies all transactions as requests or
responses

Key insight: responses can be completed without
generating further transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no

new work so there’s no circular dependence),
eventually freeing up resources for requests

62CMU 15-418/618, Spring 2019

Putting it all together

Class exercise: describe everything that might occur during the
execution of this statement

volatile int x = 10; // write to memory

63 CMU 15-418/618, Spring 2019

Class exercise: describe everything that might
occur during the execution of this statement *

int x = 10 3 *This list is certainly not complete, it’s just what |
came up with off the top of my head. (This would

1. Virtual address to physical address conversion (TLB lookup) be a great job interview question!)

2. TLB miss

3. TLB update (might involve 0S)

4. 0S may need to swap in page to get the appropriate page table (load from disk to physical address)

5. (Cache lookup (tag check)

6. Determine line not in cache (need to generate BusRdX)

7. Arbitrate for bus

8. Winbus, place address, command on bus

9. All caches perform snoop (e.g., invalidate their local copies of the relevant line)

10. Another cache or memory decides it must respond (let’s assume it’s memory)

—
—

. Memory request sent to memory controller

. Memory controller is itself a scheduler

. Memory controller checks active row in DRAM row buffer. (May need to activate new DRAM row. Let’s assume it does.)
. DRAM reads values into row buffer

. Memory arbitrates for data bus

. Memory wins bus

. Memory puts data on bus

. Requesting cache grabs data, updates cache line and tags, moves line into exclusive state

. Processor is notified data exists

. Instruction proceeds

N o o) oemd e oed oed omd wd
O VOO NSOV A WN

64CMU 15-418/618, Spring 2019

