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Parallel Programming
Case Studies

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019



15-418/618 course road map

+ Modern multi-core chip architectures: multi-core + SIMD execution + HW multi-threading

T+ Ways to think about parallelism and communication

At the abstraction level -- programming models: shared memory, message passing, data parallelism
At the hardware level -- machine organizations and implementation

+ How to write and optimize parallel programs

Today ——» <+ (ase studies and example techniques

1 Evaluating system performance

+ Shared address space hardware implementation details (memory coherence and consistency)

Examl
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Today: case studies!

m Several parallel application examples
- Ocean simulation
- Galaxy simulation (Barnes-Hut algorithm)
- Parallel scan
- Data-parallel segmented scan (Bonus material!)
- Ray tracing (Bonus material!)

m Will be describing key aspects of the implementations

- Focus on: optimization techniques, analysis of workload
characteristics
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Assumption: shared address space

m For the purposes of today’s lecture | encourage you to think
about the example applications in the context of a large NUMA

shared address space machine.

(single address space, but each processor can access a local region of the address
space more quickly)

B Butissues we discuss certainly also arise in a distributed address
space setting.
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Simulation of Ocean Currents
(grid-based solver)

Example taken from: Culler, Singh, and Gupta 5 CMU 15-418/618, Spring 2019



Simulating of ocean currents
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B Discretize 3D ocean volume into slices represented as 2D grids
® Discretize time evolution of ocean: Ar

® High accuracy simulation requires small Ar and high resolution grids

Figure credit: Culler, Singh, and Gupta 6 CMU 15-418/618, Spring 2019



Where are the dependencies?

Dependencies in one time step of ocean simulation

Boxes correspond to

Initialize
Ya and Ty

Put computed V¥,
values in W3

Put Laplacian Put Laplacian Copy ¥4, V4 Putv,- v,

ofIIl1 in W11 of\Il3 in W13

into T1, T3 in W2

| I

Add f values to columns

Copy Vim: Yam

I

Put Laplacian of

I

Put Jacobian of

Put Laplacian of

computations on grids

iakid bl oY Y Yo P 73 Lines express dependencies
I | I I ) .
Put Jacobians of (Wy, T1), Copy Ty, Ty Put Laplacian of between computations on grids

Figure credit: Culler, Singh, and Gupta

(W2,W3)in W6 W4, 3inW7, 4
I I I
Update the Y expressions The “grid solver” example
[ l | ' ' L corresponds to these parts
I Solve the equation forv, and put the result in y, I of the application

| | | | | |
Compute the integral of v,

I I | I I |
Compute v =y, + C(t) ¥, (Note: v,
and now V are maintained inY, matrix)

| | I I I |

Use V and @ to update ¥4 and VY
| I I I I I

Update streamfunction running sums and determine whether to end pogram

I Solve the equation for® and put result inY, I

Parallelism within a grid (data-parallelism) and across operations on the different grids.
The implementation only leverages data-parallelism (for simplicity)
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Ocean implementation details

Recall shared-memory implementation discussed in previous classes:

m Decomposition:
- Spatial partitioning of grid: each processor receives 2D tile of grid

IAssignment R EIEEEEIDKEX
_ . . . ® . 0 00 0. 0 00 0 0 o
Static assignment of tiles to processors D 4 Y DA > (D D < X

. ° ® © ¢ 0,0 0 & 0|0 & o o

B Synchronization e o o oo o o ole o o o
- Barriers (separate each pass over grid is a ® % % %L °° %
different phase of computation) A A S A

. . ®© © 0 06(0 0 0 0|0 0 0 o0

- Locks for mutual exclusionwhen updating — oo o o oo o o o
shared variables (atomic update of ‘diff’) P P P
.£7..0.P8.0.£9..

® © © 00 0 & 0|0 & o o
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Another question to ask: what are the critical
working sets?

1. Local neighborhood for cell
2. Three rows of a processor’s local partition of grid
3. Processor’s local partition of grid

1. 2, 3.
] e 6 6 ¢ 6 6 6 06 66 0 0 O e 6 6 6 ¢ 6 6 0 ¢ 0 0 O
e 0 o e 6 ¢ 6 ¢ 6 6 06 ¢ 0 0 O e 6 6 6 6 06 6 0 & 0 0 O
[ ] e 6 6 ¢ ¢ 06 6 0 ¢ 0 O O e 6 ¢ 6 6 6 6 06 ¢ 0 0 O
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Recall: Two Static Partitioning Schemes
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B Which oneis better?
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Recall: two layouts of 2D grid in address space

(Blue lines indicate consecutive memory addresses)
2D, row-major array layout 4D array layout (block-major)
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— Staticassignment is sufficient (approximately equal busy time per thread)
(reflected on graph as data wait time)

— 4D blocking of grid reduces time spent on communication
— Synchronization cost is largely due to waiting at barriers

Observations

Figure credit: Culler, Singh, and Gupta



Impact of Line Size and Data Distribution

¥ — ¥ subblock, L= 32 ¢
E 44 @ —& subblock, L= 18 R4
& A—— A subblock, L= 8 -
40 ¥- — —3 column, L = 32 L
@-—--% column, L= 16 id
36 MA-— -4 column,L=8 i
A-——4 nealloc-col, L= 8 #,-’
324 A—aAncaliec-subbiock, L=8 - _
28 .
29 w”_.-":::r - -
20
16§
12
________________ -
8% A

16 20 24 28 32 36 40 48
Number of Processors

(2) 18 KByte Cache, Giid_98
B no-alloc =round-robin page allocation; otherwise, data assigned to local memory.
m | =cachelinesize.
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Galaxy Evolution using Barnes Hut

Image credit: http://www.Isw.uni-heidelberg.de/users/mcamenzi/images/Universe_Box.gif
Example taken from: Culler, Singh, and Gupta, Chapter 3 14CMU 15-418/618, Spring 2019




Galaxy evolution

Barnes-Hut algorithm

Star on which forces
are being computed 0O
O

o |Large group far
O | enough away to
approximate

(treat as single mass)

‘\ 0 9| small group far enough away to
Star too close to 00 approximate to center of mass
approximate (treat as single mass)

m  Represent galaxy as a collection of N particles (think: particle = star)

B Compute forces on each particle due to gravity
- Naive algorithm is 0(N2) — all particles interact with all others (gravity has infinite extent)
- Magnitude of gravitational force falls off with distance (so algorithms approximate forces from

far away stars to gain performance)
= Resultis an O(NIgN) algorithm for computing gravitational forces between all stars
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Barnes-Hut tree

Q
. .| ® ® Q
° ° L g °
— D ® ® O Q D QO
° .. . ’ () )
Spatial Domain Quad-Tree Representation of Bodies

Leaf nodes are star particles
Interior nodes store center of mass + aggregate mass of all child bodies
To compute forces on each body, traverse tree... accumulating forces from all other bodies

= Compute forces using aggregate interior node if L/D < ©, else descend to children

~ 2
Expected number of nodes touched ~IgN/© 6 MU 5-418/618, Spring 2019



Barnes-Hut application structure

for each time step in simulation:
build tree structure

compute (aggregate mass, center-of-mass) for interior nodes
for each particle:

traverse tree to accumulate gravitational forces
update particle position based on gravitational forces

Challenges:
= Amount of work per body is non-uniform, communication pattern is non-

uniform (depends on the local density of bodies)
= The bodies move: so costs and communication patterns change over time
- Irreqular, fine-grained computation

m  But, thereis a lot of locality in the computation (bodies that are near in space
require similar data to compute forces — it seems smart to co-locate these
computations!)

17 (MU 15-418/618, Spring 2019



Work assignment

B (Challenge:
- Equal number of bodies per processor = equal work per processor

- Want equal work per processor AND assignment should preserve locality

B (Observation: spatial distribution of bodies evolves slowly

m Use semi-static assignment

- Each time step, for each body, record number of interactions with other
bodies (the application profiles itself)
= Cheap to compute. Just increment local per-body counters

- Use values to periodically recompute assignment
- Serves as estimate of (relative) amount of work for body

18CMU 15-418/618, Spring 2019



Assignment using cost zones

m  |everage locality inherent in tree 22 | 23| 26 | 27 38| 39 | 42| 43
\¥

. . 21 | 24| 25| 28 §-3Af 40|| 41|| 44,

®  Compute total work estimate W for all bodies — ~ EE SN NN

{20 [ 19\30 | 29k 361 35 KR

(computed by summing per-body costs)

| 17 [ 18 fifea] sz ] a4 \
. . S e g N\
m  Each processor is assigned W/P of the total work || 16 | 13| 12 FEeifod | 53| 652}
(P = num processors) fas | 144 T4 554 56 51150

®  Each processor performs depth-first (post-order)
traversal of tree (accumulates work seen so far)

®  Processor P; responsible for processing bodies
corresponding to work: ;W/P to (i+1)W/P

B Each processor can independently compute its
assignment of bodies. (The only synchronization
required is the sum reduction to compute total
amount of work = W)

Figure credit: Culler, Singh, and Gupta 19CMU 15-418/618, Spring 2019



Cost Zone Example ——

Black=1
Green =2
Blue=3
Red=4

Total Cost=12*1+9%*2 +
12*3+8%4=98

4 processors: 24.5 each

7‘//

GGBBKBGGK RKBKBBGKRKKB KRBGKGRBGKG KRBKRBRB

® Sum work across all nodes
m Perform post-order traversal of tree
® Partition into P segments of approximately equal weighted value

20CMU 15-418/618, Spring 2019



Cost Zone Example B

Q
)
O () Q
O .
 Jo
Spatial Domain Quad-Tree Representation of Bodies
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Barnes-Hut: working sets

Q
° o ° () () @
° ° L i
—_t 1 D ® ® ® O Q O O
° .. . * () ()
Spatial Domain Quad-Tree Representation

m Working set 1: data needed to compute forces between body-body (or body-node) pairs
® Working set 2: data encountered in an entire tree traversal

= Expected number of nodes touched for one body: ~ Ig N/ ©?2
- Computation has high locality: consecutively processed bodies are nearby, so processing
touches almost exactly the same nodes! 22CMU 15-418/618, Spring 2019



Barnes-hut: data distribution

m  (Cost zones technique computes a good work assignment. |5, [ o5 | 26 | 27 28| 30| 42| 43

What about data distribution? 21 |24 25| 28 7

19) BN
20119 E30 29 A-36435 NS

= Difficult to distribute data |
- Work assignment changes with time: would haveto || 1/ | 18 | 31 | 321 53| 34 RGNS

. . . . . - ~ N. CEEIAY 770 \ 3
dynamically redistribute all simulation data '.. 16 | 13 | 12 g5 % 53452 @@
- Data accessed at fine granularity (single treenode) | 15 | 125} rolsst s {51 501
—= = - S \’
o . 23874581 5762163
B Luckily: high temporal locality , p
- Bodies assigned to same processor are nearby in .

space, so tree nodes accessed during force
computations are very similar.

- Data for traversal already in cache (Barnes-Hut
benefits from large caches, smaller cache line size)

®  Result: Unlike OCEAN, data distribution in Barnes-Hut
does not significantly impact performance
- Implementation uses static distribution (interleave
particles throughout the machine)

Figure credit: Culler, Singh, and Gupta 23CMU 15-418/618, Spring 2019



ime

execution t

Barnes-hut

Execution on 32-processor SGI Origin 2000 (512K bodies)

Cost-zones assignment

B Data

@ Synch

Static assignment
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NN ™
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Thread

Thread

Load balance is good even with static assignment because of random assignment

each processor does approximately the same amount of work

On average,

But random assignment yields poor locality

Significant amount of inherent communication

Significant amount of artifactual communication (fine-grained accesses to tree nodes)

Common tension: work balance vs. locality (cost-zones get us both!)

(similar to work balance vs. synchronization trade-offs in “work distribution” lecture)

24(MU 15-418/618, Spring 2019

Figure credit: Culler, Singh, and Gupta



Another Partitioning Approach: ORB

®  (Orthogonal Recursive Bisection:

= Recursively bisect space into subspaces with equal work

- Work is associated with bodies, as before
- Continue until one partition per processor

(MU 15-418/618, Spring 2019



ORB vs. Cost Zones

o 128.0 o ldeal

o
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AT
48.0 e
32.0 "g':f::‘d
&

16.0 m‘
0.0 1 ! | | | | |
0 16 32 48 64 80 96 112 128
NMumber of Processors

m Extra work in ORB is the difference
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Summary

m Today so far: two examples of parallel program optimization
m Keyissues when discussing the applications

- How to balance the work?

- How to exploit locality inherent in the problem?

- What synchronization is necessary?

27 (MU 15-418/618, Spring 2019



Parallel Scan

28CMU 15-418/618, Spring 2019



Data-parallel scan

let A = [a0,a1,32,33,...,an-1]

let ® be an associative binary operator with identity element I

scan_inclusive(®, A) = [ae, ae®ai, aAe@ai®ay,

scan_exclusive(®, A) [I, Ao, ae®ai,

If operator is +, then scan_inclusive(+,A) is a prefix sum

prefix_sum(A) = [aQe, ae+ai, QAe+ait+ay,

29CMU 15-418/618, Spring 2019



Data-parallel inclusive scan

(Subtract original vector to get exclusive scan result: not shown)

do

d1

d>2

ds

da

ds

de6

dz

as

d1o

d11 | d12 | d13 | d14 | di5

NN

l\Al\l\l\l\‘l\l\l

do

do-1

di-2

d2-3

ds-4

dis-s

ds_6

ds-7

d7-g

ds-9

do-10|d16-11|d11-12|A12-13|A13-14|A14-15

\\.l\\l\. \l\\.l\\.l\. vy Svy Ry Sy Sty Sy Sy S

do

do-2

1

ds-7

ds_g

ds-9

d7-10

dsg-11|dog-12 |d16-13|A11-14/A12-15

\\\,\,S\%\S‘BS%E%\%\.%LJ

do

do-1

do-2

do-3

do-4

do-s

do-6

do-7

di-g

d2-o

ds-10

d4-11|ds-12 |A6-13|A7-14 | Ag-15

1

|

do

do-1

do-2

do-3

do-4

do-s

do-6

do-7

do-g

do-9

do-10

do-11|de-12 |de-13|de-14 | Ae-15

Work: O(N Ig N)
Span: O(lg N)

* not showing all dependencies in last step

Inefficient compared to sequential algorithm!
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Work-efficient parallel exclusive scan (O(N) work)

do | d1 | d2 | d3 | d4 | A5 | de | A7 dg | d9 [ die | d11 | d12 | A13 | di14 | Ais

NN SN N SN SN SN N

do | de-1| d2 |A2-3| A4 |Aas | A | de-7| A8 | ds-9| A10 [A1e-11| A12 |[A12-13| A14 |A14-15

do [do-1| d2 [de-3| A4 [dsas | d6 [ds-7| A8 | ds-9| A10 [ds-11| A12 [A12-13] A14 |A12-15

O | Ao | Ae-1|Ae-2|de-3 |de-4 |Ae-5 | Ae-6 | Ao-7| Ae-8| Ae-9 |Ae-10|Ae-11|Ae-12| Ae-13| Ao-14
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Work efficient exclusive scan algorithm

(with @ ="+")

Up-sweep:
for d=0 to (log:n - 1) do
forall k=0 to n-1 by 2d+1 do
alk + 2d+1 - 1] = a[k + 249 - 1] + a[k + 2d+1 - 1]

Down-sweep:

x[n-1] = ©
for d=(log.n - 1) down to © do
forall k=0 to n-1 by 2d+1 do
tmp = a[k + 2d - 1]
alk + 2d - 1] = a[k + 2d+1 - 1]
alk + 2d+1 - 1] = tmp + a[k + 2d+1 - 1]

Work: O(N) (but what is the constant?)
Span: O(lg N)  (but what is the constant?)
Locality: 7?

32C(MU 15-418/618, Spring 2019



Now consider scan implementation on just two cores

do | d1 | d2 | d3 [ d4 | ds | de | d7 § dg8 | A9 | die | di11 | di12 | di13 | d14 | d15
NN N N E N N NN

de | do-1| A2 [d2-3| A4 |ds-5 | d6 | de-7 A8 | As-9| A10 |A1e-11| A12 |A12-13| A14 |A14-15
do [do-1| d2 [de-3| A4 [dss | de [ds-7 W A8 | ds-9| A10 [ds-11| A12 [A12-13] A14 |A12-15
dg | de-1| d2 |[de-3| d4 |da-5 | de |de-7 § A8 | ds-9| d10 |ds-11| A12 |d12-13] A14 | Qg_1:

do

do-1| d2 | de-3

d4

ds-s

do-7

dsg

ds-o

d10

do

P2 33(MU 15-418/618, Spring 2019



Exclusive scan: two processor implementation

do | d1 | d2 | A3 | d4 | A5 | de | A7 dg | d9 [ die | d11 | d12 | A13 | di14 | A1is

P1 P2
Sequential scan on elements [0-7] Sequential scan on elements [8-15]
Let base = ap-7
Add base to elements as thru ag-11 Add base to elements as-12 thru as-1s

Work: O(N)  (but constant is now only 1.5)
Data-access:

- Very high spatial locality (contiguous memory access)

- P71’'s access to ag through as.11 may be more costly on large NUMA system, but on small-scale system
access likely same cost as from P2

34CMU 15-418/618, Spring 2019



Exclusive scan: SIMD implementation (in CUDA)

Example: perform exclusive scan on 32-element array: SPMD program, assume 32-wide SIMD execution
When scan_warp is run by a group of 32 CUDA threads, each thread returns the
exclusive scan result for element 1dx

(also: upon completion ptr|[ ] stores inclusive scan result)

__device__ int scan_warp(volatile int

{

const unsigned int lane = idx & 31;

if (lane >= 1) ptr[idx] = ptr[idx
if (lane >= 2) ptr[idx] = ptr[idx
if (lane >= 4) ptr[idx] = ptr[idx
if (lane »>= 8) ptr[idx] = ptr[idx
if (lane >= 16) ptr[idx] = ptr[idx

return (lane > @) ? ptr[idx-1] : ©

CUDA thread

/ index of caller

*ptr, const unsigned int idx)

// index of thread in warp (0..31)

- 1] + ptr[idx];

- 2] + ptr[idx]; Note: Don't need __synch_threads|()
- 4] + ptr[idx]; _ o

- 8] + ptr[idx]; since all within single warp

- 16] + ptr[idx);

Work: 7? \l\l\l\l\l\l\l\l\l\l\l\l\l\l\l

\l\.\l\\l\\J\\J\\J\\l\Tl\\hl\\l\\.l\\J\l
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Exclusive scan: SIMD implementation (in CUDA)

__device__ int scan_warp(volatile int *ptr, const unsigned int idx)

{

const unsigned int lane

if (lane
if (lane
if (lane
if (lane
if (lane

return (lane > @) ? ptr[idx-1] : ©;

= 1) ptr[idx]
= 2) ptr[idx]
= 4) ptr[idx]
= 8) ptr[idx]
= 16) ptr[idx]

Work: N Ig(N)

Work-efficient formulation of scan is not beneficial in this context because it results
in low SIMD utilization. It would require more than 2x the number of instructions as
the implementation above!

CUDA thread
index of caller

idx & 31; // index of thread in warp (0..31)

ptr[idx
ptr[idx
ptr[idx
ptr[idx
ptr[idx

- 1]
- 2]
- 4]
- 8]
- 16]

+ + + + +

ptr[idx];
ptr[idx];
ptr[idx];
ptr[idx];
ptr[idx];

36CMU 15-418/618, Spring 2019



Building scan on larger array

Example: 128-element scan using four-warp thread block

length 32 SIMD scan
warp 0

length 32 SIMD scan
warp 1

length 32 SIMD scan
warp 2

length 32 SIMD scan

warp 3

do-31

max length 32 SIMD scan
warp 0

do-31/de-63 |de-95 [Ae-127

ds32-63

add base[0]
warp 1

add base[1]
warp 2

add base[2]
warp 3

37CMU 15-418/618, Spring 2019



Multi-threaded, SIMD implementation

Example: cooperating threads in a CUDA thread block perform scan

We provided similar code in assignment 2. CUDA thread
Code assumes length of array given by ptr is same as number of threads per block. / index of caller
__device__ void scan_block(volatile int *ptr, const unsigned int idx)
{
const unsigned int lane = idx & 31; // index of thread in warp (0..31)

const unsigned int warp_id = idx »>> 5; // warp index in block

int val = scan_warp(ptr, idx); // Step 1. per-warp partial scan
// (Performed by all threads in block,
// with threads in same warp communicating
// through shared memory buffer ‘ptr’)

if (lane == 31) ptr[warp_id] = ptr[idx]; // Step 2. thread 31 in each warp copies
__syncthreads(); // partial-scan bases in per-block
// shared mem

if (warp_id == @) scan_warp(ptr, idx); // Step 3. scan to accumulate bases

__syncthreads(); // (only performed by warp 0)

if (warp_id > 0) // Step 4. apply bases to all elements
val = val + ptr[warp_id-1]; // (performed by all threads in block)

__syncthreads();

ptr[idx] = val;

38CMU 15-418/618, Spring 2019



Building a larger scan

Example: one million element scan (1024 elements per block)

Block 0 Scan Block 1 Scan Block N-1 Scan
SIMD scan SIMD scan SIMD scan
warp 0 warp0 | | warpN-1
Kernel
Launch 1 ¢‘/ YY)
SIMD scan
warp 0
e———
T~ |add base[0] add base[0]
warp1 | | warpN-1
/#
[ «T < | I 1T 1| <
Kernel
Launch 2 Block 0 scan
NS
Kernel Block 0 Add Block 1 Add Block N-1Add
Launch 3

Exceeding 1 million elements requires partitioning phase two into multiple blocks
39CMU 15-418/618, Spring 2019



Scan implementation

® Parallelism

- Scan algorithm features O(N) parallel work

- But efficient implementations only leverage as much parallelism as required to
make good utilization of the machine
- Goal is to reduce work and reduce communication/synchronization

m Locality

= Multi-level implementation to match memory hierarchy
(CUDA example: per-block implementation carried out in local memory)

m Heterogeneity: different strategy at different machine levels

- CUDA example: Different algorithm for intra-warp scan than inter-thread scan

- Low core count CPU example: based largely on sequential scan
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Parallel Segmented Scan
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Segmented scan

m Common problem: operating on sequence of sequences
®m Examples:

- For each vertex in a graph:

- For each edge incoming to vertex:

- For each particle in simulation

- For each particle within cutoff radius

m Also there’s two levels of parallelism in the problem that a
programmer might want to exploit

m Butitsirregular: the size of edge lists, particle neighbor lists, etc,
may be very different from vertex to vertex (or particle to particle)
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Segmented scan

®m Generalization of scan

m Simultaneously perform scans on arbitrary contiguous partitions
of input collection

let A
let @

segmented _scan_exclusive(®,A) = [[0,1], [©9], [©,1,3,6]]

[[1,2],[6],[1,2,3,4]]
-+

We'll assume a simple “head-flag” representation:

A = [[132:3]:[4:5:6:7:8]]
flag: © 006061060000
data: 1 2345678
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Work-efficient segmented scan  win @ -+

Up-sweep:
for d=0 to (log:n - 1) do:
forall k=0 to n-1 by 2d+1 do:
if flag[k + 2d+1 - 1] == @:
data[k + 2d+1 - 1] = data[k + 29 - 1] + data[k + 2d+1 - 1]
flag[k + 2d+1 - 1] = flag[k + 2d - 1] || flag[k + 2d+1 - 1]

Down-sweep:
data[n-1] = ©
for d=(logzn - 1) down to O do:
forall k=0 to n-1 by 2d+1 do:
tmp = data[k + 29 - 1]
data[k + 2d - 1] = data[k + 2d+1 - 1]
if flag original[k + 2d] == 1: # must maintain copy of original flags
data[k + 2d+1 - 1] = @ # start of segment
else if flag[k + 2d - 1] == 1:
data[k + 2d+1 - 1] = tmp
else:
data[k + 2d+1 - 1] = tmp + data[k + 2d+1 - 1]
flag[k + 2d - 1] = ©
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Segmented scan

dg | d1 | d2 | d3 | d4 | d5 | d6 dg | do alO 311 di2 [ di13 | di4

p T a1 Thiln SToST
d aeg d2 [d23| d4 | ds | de |de-7| A8 | ds-o| d10 ale 11| d12 |[d12-13| A14 |A14-15
d ae-g d>2 ae-a d4 | ds | de |ds-7 | A8 asg‘ alaamg‘ d12 ([d12-13| A14 |A12-15
aﬂ ae-q d> ae-q d4 asﬂ‘ de as-H ds as-a aleqale-ll d12 [di2-13| d14 al@—E

-
-

d4 |Ae3 | de | Qs | A di1 O | a12 [Q10-11] 914 [A10-13
© | Qo |Qe-1| Q02|03 @ | s |Ass| O ds | O | Qie |Q10-11|010-12{A10-13|Q10-14
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Scan/segmented scan summary

E Scan
- Parallel implementation of (intuitively sequential application)
- Theory: parallelism linear in number of elements

- Practice: exploit locality, use only as much parallelism as necessary to fill
the machine

- Great example of applying different strategies at different levels of
the machine

® Segmented scan

- Express computation and operate on irreqular data structures (e.g., list
of lists) in a regular, data parallel way
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Parallel Ray Tracing on SIMD Architectures

(since many students always ask about parallel ray tracing)
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Ray tracing

Problem statement:
Given a “ray’, find closest intersection with scene geometry

Virtual

Image Plane Virtual .
Pinhole ~  _.-°  __.--7
Camera  _.-" _.--"7"
-- '.'-'.'.:".:_:_"_‘;'."f':'.'_':'_ DT
Simplest ray tracer:

For each image pixel, shoot ray from camera through pixel into scene.

Color pixel according to first surface hit.
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Accelerating ray-scene intersection

Preprocess scene to build data structure that accelerates finding “closest” geometry along ray
Idea: group objects with spatial proximity (like quad-tree in Barnes-Hut)
- Hierarchical grouping adapts to non-uniform density of scene objects

Bounding Volume Hierarchy (BVH)
(Binary tree organizing the scene)

Scene objects (in 2D) @

p
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Parallelize across rays

Simultaneously intersect multiple rays with scene

Different cores trace different rays in parallel

- Trivial “embarrassingly parallel” implementation

But how to leverage SIMD parallelism within a core?

Today: we'll discuss one approach: ray packets

- Code is explicitly written to trace N rays at a time, not 1 ray
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Simple ray tracer (using a BVH)

// stores information about closest hit found so far
struct ClosestHitInfo {

Primitive primitive;

float distance;

}s
trace(Ray ray, BVHNode node, ClosestHitInfo hitInfo)
{
if (!intersect(ray, node.bbox) || (closest point on box is farther than hitInfo.distance))
return;
if (node.leaf) {
for (each primitive in node) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitInfo.distance) {
hitInfo.primitive = primitive;
hitInfo.distance = distance;
}
}
} else {
trace(ray, node.leftChild, hitInfo);
trace(ray, node.rightChild, hitInfo);
}
}

51CMU 15-418/618, Spring 2019



Ray packet tracing Waldetal 2001

Program explicitly intersects a collection of rays against BVH at once

RayPacket

{
Ray rays[PACKET_SIZE];

bool active[PACKET_SIZE];

}s
trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo)
{
if (!'ANY_ACTIVE_intersect(rays, node.bbox) ||
(closest point on box (for all active rays) is farther than hitInfo.distance))
return;
update packet active mask
if (node.leaf) {
for (each primitive in node) {
for (each ACTIVE ray r in packet) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitlInfo.distance) {
hitInfo[r].primitive = primitive;
hitInfo[r].distance = distance;
}
}
}
} else {
trace(rays, node.leftChild, hitInfo);
trace(rays, node.rightChild, hitInfo);
}
}
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Ray packet tracing

Blue = active rays after node box test

///

\\\t

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F
C



Advantages of packets

m Map packet operations to wide SIMD execution
- One vector lane per ray

m Amortize BVH data fetch: all rays in packet visit node at same
time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64)

m Amortize work (packets are hierarchies over rays)

- Use interval arithmetic to conservatively test entire set of rays against node
bbox (e.g., think of a packet as a beam)

= Further arithmetic optimizations possible when all rays share origin

- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets ) -
ue = active raya ter node box test

®  [fany ray must visit a node, it drags all l uuu
rays in the packet along with it) v

m  Loss of efficiency: node traversal, l lu \|
intersection, etc. amortized over less v \
than a packet’s worth of rays B

T
PR

TGt

rAREDS
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B Not all SIMD lanes doing useful work



- \ 7
[}

When rays are incoherent, benefit of packets can decrease
significantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling benefit!)

D




Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Improving packet tracing with ray reordering

[Boulos et al. 2008]
Idea: when packet utilization drops below threshold, re-sort rays and
continue with smaller packet
— Increases SIMD utilization
— Amortization benefits of smaller packets, but not large packets

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

16-ray packet: 7 of 16 rays active l l u l l l

\ 4

Reorder rays
Recompute intervals/bounds for active rays luuu

Continue tracing with 8-ray packet: luuu
7 of 8 rays active
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Giving up on packets

® Even with reordering, ray coherence during BVH traversal will
diminish
- Diffuse bounces result in essentially random ray distribution
- High-resolution geometry encourages incoherence near leaves of tree

B |nthese situations there s little benefit to packets (can even
decrease performance compared to single ray code)
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Packet tracing best practices

m Use large packets for eye/reflection/point light shadow rays

or higher levels of BVH [Wald et al. 2007]
- Ray coherence always high at the top of the tree

[Benthin etal. 2011]
m Switch to single ray (intra-ray SIMD) when packet utilization

drops below threshold

- For wide SIMD machine, a branching-factor-4 BVH works well for both packet
traversal and single ray traversal

m (an use packet reordering to postpone time of switch [Boulosetal. 2008]

- Reordering allows packets to provide benefit deeper into tree
- Not often used in practice due to high implementation complexity
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Summary

m Today we looked at several different parallel programs

m Key questions:

What are the dependencies?

What synchronization is necessary?

How to balance the work?

= How to exploit locality inherent in the problem?

® Trends

= Only need enough parallelism to keep all processing elements busy (e.g., data-
parallel scan vs. simple multi-core scan)

- Different parallelization strategies may be applicable under different workloads
(packets vs. no packets) or different locations in the machine (different
implementations of scan internal and external to warp)
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