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1 Overview

Before you begin, please take the time to review the course policy on academic integrity at:
http://www.cs.cmu.edu/ 418/academicintegrity.html
Download the Assignment 4 starter code from the course Github using:
linux> git clone https://github.com/cmul5418/asst4-s19.git
In order to add support for MPI compilation for the GHC or unix.andrew machines, do one of the following:
e Add the following line to your file "/ .cshrc:

setenv PATH $PATH\:/usr/lib64/openmpi/bin
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e Add the following line to your file "/ .bashrc:

export PATH=$PATH:/usr/1ib64/openmpi/bin

Assignment Objectives

In this assignment, you will explore the use of the MPI library to implement a program consisting of a
number of independent processes that communicate and coordinate with one another via message passing.
The application is typical of the bulk synchronous execution model seen in many scientific applications.
Although the application is the same as you had in Assignment 3, you will find that your implementation
is very different. OpenMP provides a data-parallel programming model, where the program consists of
sequence of steps, each of which performs many operations in parallel. By contrast, an MPI program de-
scribes the behavior of an autonomous process that periodically communicates with other processes running
the same code.

Machines

The MPI (for “Message-Passing Interface”) standard provides a way to write parallel programs that can run
on collections of machines that communicate with one another via message passing. This approach has the
advantage that it can scale to very large machines, with 1000 or more processors. For this lab, you will
run on single, multicore processors, but using message passing, rather than any form of shared memory
communication or synchronization.

You can test and evaluate your programs on any multicore processor, including the GHC machines, or the
unix.andrew machines. For performance evaluation, you will run your programs on the [Latedays cluster.

Resources

There is a lot of information online about MPI. Some resources we have found useful include:

e (General MPI Tutorial
e Longer MPI Tutorial from Lawrence Livermore National Laboratories

e Official documentation on OpenMPI v1.6, the version that runs on the Latedays machines

2 Application

Dr. Roland Dent, Director of the world-famous GraphRats project was quite excited to find that million-rat
simulations are possible using a well-optimized simulator running on a multicore processor. But, he dreams
of more. “There are billions of rats in the world. Shouldn’t we be able to simulate billions of rats?”” You
have convinced him that such large simulations would require much more computing power, beyond what
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shared-memory systems can provide. It might be possible on a modern supercomputer, with ten thousand
or more nodes that communicate by message passing.

As a feasibility study, you propose implementing an MPI version of the GraphRats simulator running on
a single, multicore machine, but using only message passing to communicate and coordinate among the
machine’s cores. Your idea is to partition the graph into separate zones, mapping each zone onto a separate
process (and relying on the OS to map each process onto a separate core.) Each process will keep track of
the rats within its assigned zone, computing the new states of all of these rats. It will communicate with
processes holding nodes adjacent to ones in its zone, both to share the node states and weights along the
boundaries, and to pass along rats as they move from one zone to another.

Fortunately, the graphs used in Assignment 3 have natural partitionings into zones. Each consists of a
collection of identical regions connected only by grid edges. Furthermore, the number of regions for each
of these graphs is divisible by 12. We can therefore partition each graph into P zones, as long as P €
{1,2,3,4, 6,12}, with each zone containing the same number of regions.

Model Parameters

As before, each graph consists of N nodes with a set of edges directed and symmetric edges indicating
which nodes are adjacent. All of the graphs we use are based on a grid of of k& x k£ nodes. Some of the nodes
are designated as “hubs,” with high connectivity to other nodes. The graph file format has been extended to
specify a partitioning of each graph into 12 zones. The code for loading the graphs into memory has been
extended to then coalesce these zones into P zones, where P is one of the values listed above.

Other aspects of the program (rats, reward functions) are the same as in Assignment 3. The code has
been simplified to support only batch update mode. The starter code can be compiled to generate two
different simulators: crun-seq, suitable for sequential execution, and crun-mp1i, providing the starting
framework for an MPI-based parallel simulator. Compiler-directives based on the compile-time constant
MP T designate the differences between the two.

The MPI-based simulator does the following, when invoked to run with P processes:
1. The master process (Process 0), reads a copy of the graph file.
2. It broadcasts the complete graph data structure to the other P — 1 processes.
3. Each process creates a set of data structures to represent its assigned zone.
4. The master process reads a copy of the rat file indicating the starting nodes.

5. The master process runs the entire simulation in sequential mode.

Your job then, is first to have the master distribute the rats, according to the zones containing their starting
nodes. Then the processes should simulate their zones and exchange rats and node information with each
other. Periodically, they will be directed to provide their node counts to the master process, so that it can
supply this information as the program output.

The simulator has a subset of options seen in Assignment 3:



linux> ./crun-seq -h
Usage: ./crun-seq —g GFILE -r RFILE [-n STEPS] [-s SEED] [-u (r|bls)] [-g] [-1i INT]
-h Print this message
-g GFILE Graph file
-r RFILE 1Initial rat position file
-n STEPS Number of simulation steps
-s SEED Initial RNG seed
-q Operate in quiet mode. Do not generate simulation results
-1 INT Display update interval

As before, you can use the Python program grun . py to visualize the simulation results.

To run a program under MPI, you use the program mpirun. A typical invocation could be:

linux> mpirun -np 6 ./crun-mpi -g data/g-t180x180.gph -r data/r-180x180-t32.rats -n 5 —-qg

This has the simulator run with P = 6.

3 Test Programs and Performance Evaluation

The provided program regress . py has similar options before, except that you specify a number of MPI
processes rather than OMP threads. Its usage is as follows:

linux> ./regress.py -h
Usage: ./regress.py [-h] [-c] [-p PROCS]
-h Print this message
e Clear expected result cache
-p P Specify number of MPI processes
If > 1, will run crun-mpi. Else will run crun-seqg

The provided program benchmark . py has the following options:

linux> ./benchmark.py -h

Usage: ./benchmark.py [-h] [-k K] [-b BENCHLIST] [-n NSTEP] [-p P] [-r RUNS] [-i ID] [-f OUTFILE]
-h Print this message
-k Specify graph dimension
—-b BENCHLIST Specify which benchmark(s) to perform as substring of ’ABCDEF’
-n NSTEP Specify number of steps to run simulations
-p P Specify number of MPI processes
If > 1, will run crun-mpi. Else will run crun-seq
-r RUNS Set number of times each benchmark is run
-i ID Specify unique ID for distinguishing check files
-f OUTFILE Create output file recording measurements

If file name contains field of form XX..X,
will replace with ID having that many digits

The intention is that you run this program on either a GHC, a unix.andrew, or a Latedays machine. In all of
these cases, it will automatically invoke mpirun with a set of arguments that specify the use of processor
affinity, a specific way to map processes onto cores. Running on a GHC machine requires setting the number
of processes to 1, 2, 3, 4, or 6. The other supported machines can also handle 12 processes. By default, the
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program will run each simulation three times and take the minimum of their execution times. This helps
make the timings more reliable. You can change this with the command-line option ’~r.’

The guidelines for using the Latedays machines are the same as for Assignment 3. The provided program
submit job.py is used to generate and submit the control files to the job queue.

The performance will be evaluated on the same combinations of graphs and initial rat positions as in As-
signment 3. Each run will be benchmarked against the provided program: either crun-soln-ghc (GHC
or unix.andrew) or crun—-soln—-latedays (Latedays). Performance points are computed as they were
in Assignment 3: each benchmark will count up to 15 points, for a maximum total of 90 points.

4 Some Adyvice

Important Requirements

The following are some aspects of the assignment that you should keep in mind:

e You may only use MPI library routines for communicating and coordinating between the MPI pro-
cesses. You cannot use any form of shared-memory parallelism. The idea is to develop a program
that could ultimately be deployed on a large, message-passing system.

e Although performance will be measured with just 12 processes, your program should be able to run
on P processes, as long as 12 is divisible by P.

e You are free to add other header and code files and to modify the make file. You can switch over to
C++ (or Fortran) if you like. The only code you cannot modify is in the file rutil.c. You must use
the provided version of the function imbalance, which computes the imbalance factor 3, and you
must not attempt to reduce the number of calls to this function.

e You can use any kind of code, including calls to standard libraries, as long as it is platform indepen-
dent. You may not use any constructs that make particular assumptions about the machine instruction
set, such as embedded assembly or calls to an intrinsics library. (The exception to this being the code
incycletimer.c.)

e You may not include code generated by other parallel-programming frameworks, such as ISPC,
OpenMP, PThreads, etc..

e Although your simulator will only be tested on graphs of up to size 180 x 180, and P up to 12, you
should write your code to scale up to graphs of arbitrary size, arbitrary rat counts, and an arbitrary
number of processes.

e You are to restrict your performance improvement techniques to ones that enhance or make better use
of parallelism. Any optimizations that would improve the sequential simulator performance are not
allowed. In particular:

— You may not modify the function neighbor_ilf in sim.c. You also cannot use other meth-
ods to compute the ideal load factor (ILF) for a node.

— You may not modify any functions in rutil. c or use different versions of these functions.



Useful Parts of MPI

The MPI standard is large and complex. You only need to use a core subset of its features. Ideas that are
especially useful for this assignment include:

e Using synchronous and asynchronous send and receive constructs for point-to-point communica-
tions. Asynchronous communication is preferred, because it allows the processes to operate in a
more loosely coupled manner. When exchanging data with adjacent zones, it works well to have a
process first initiate all of its send operations, then perform the receives, and then wait for the sends
to complete.

e Using the probe operation to determine the size of an incoming message. This is useful when sending
variable length buffers of rats between processes.

e Using broadcast to send copies of the initial rat positions from Process 0 (the master) to the others at
the beginning of the simulation.

What is Provided

e You will find that the modifications you made to the starter code for Assignment 3 are not very useful
here. You’d do better to work from the new starter code.

e The provided code stores a complete representation of the graph for each process. This uses more
space than is necessary, but it allows you to have a univeral numbering scheme for nodes, edges, and
rats. It also will not harm the performance of your program—cache behavior depends on how much
memory actually gets used rather than on how much has been allocated.

e The provided code has each process construct data structures representing its assigned zone, stored as
fields in the graph__t structure (declared in file crun.h). All lists of nodes are in sorted order.

— Array local_node_1list is a list of the nodes in the zone. Its length is given by the field
local node_count.

— Array export_node_list is an array of P lists, where list j consists of the nodes in this
zone that have edges to nodes in zone j. Its length is given by the field export_node_count [J].

— Array import_node_1list is an array of P lists, where list j consists of the nodes in zone j
that have edges to nodes in this zone. Its length is given by the field import_node_count [ J].
Given the symmetry of the graph, you can assume that the contents of export_node_list []]
for process 1 is identical to those of import_node_list [i] for process j.

What You Need to Do

e You will find comments in some of the . h and . c files with the header “TODO.” These indicate some
of the key places you will need to add or modify the existing code.



e You will need to allocate space to store information about the rats in each zone, as well as the buffers
you use for communication via MPI. Generally, it is best to allocate these at the beginning of the
program. Some you can allocate according to the maximum required size. Others you may want to
allocate smaller amounts and then grow dynamically (via realloc) as needed.

e You will need to understand the processing steps in the function do_batch (file sim. c) and adapt
them for use on a single zone. This will require several rounds of exchanging data with adjacent
zones: rats, node counts, and node weights.

e When sending a rat to a new zone, you must also send along its associated seed for random number
generation.

e You will need to implement the capability to have every process send its copy of the node counts
to Process 0, and for Process 0 to collect these counts from other processes. These should be imple-
mented as functions send_node_state and gather_node_state, respectively (file simutil.c.)

How to Optimize the Program

You will find that you need to represent different forms of sets for this assignment, e.g., the set of all rats
within a particular zone. There are several common ways to do this:

e Asabit vector, where bit position ¢ is set to 1 if ¢ is in the set and to O if it is not. Although it is possible
to pack multiple bits into a word, a simple approach is to allocate an array of type unsigned char
and just use one bit per byte as the flag.

e As alist, consisting of all of the members of the set.

e As a hash table. These can be problematic for very large sets due to poor cache behavior and unpre-
dictable branches.

Other Tips

e The data files include two very small graphs: one of size 2 x 2, and the other of size 3 x 3, along with
associated rat position files. The former can be run with P € {1,2,4}, while the latter can be run
with P € {1,3,9}. These can be useful when doing detailed debugging.

e You can do direct comparisons of two versions of your code by renaming one of the executables to
be either crun-soln—ghc or crun-soln-latedays (depending on which class of machine
you’re using). Be sure to keep the original copy of this program, of course.

5 Your Report (20 points)

Your report should provide a concise, but complete description of the thought process that went into design-
ing your program and how it evolved over time based on your experiments.



Your report should include a detailed discussion of the design and rationale behind your approach to paral-
lelizing the algorithm. Specifically try to address the following questions:

1. What sequence of computations and communications is performed for each batch?
2. How did you maximize the decoupling of processes to avoid waiting for messages from each other.

3. How successful were you in getting speedup in your program? (This should be backed by experimen-
tal measurements.)

4. How did the performance scale as you went from 1 to 4 to 6 to 12 processes?
5. How did the graph structure and the initial rat positions affect your ability to exploit parallelism?

6. How did your program perform compared to your solution for Assignment 3? To what do you attribute
the differences?

7. Were there any techniques that you tried but found ineffective?

6 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For the code, you will be submitting
your entire directory tree.

1. Your code

(a) If you are working with a partner, form a group on Autolab. Do this before submitting your
assignment. One submission per group is sufficient.
(b) Make sure all of your code is compilable and runnable.
i. We should be able to simply run make in the code subdirectory and have everything
compile.

ii. We should be able to replace your versions of all of the Python code, as well as the file
rutil.c with the original versions and then perform regression testing and benchmark-
ing.

(c) Remove all nonessential files, especially output images from your directory.
(d) Run the command “make handin.tar.” This will run “make clean” and then create an
archive of your entire directory tree.

(e) Submit the file handin.tar to Autolab.
2. Your report

(a) Please upload your report in PDF format to Gradescope, with one submission per team. After
submitting, you will be able to add your teammate using the add group members button on the
top right of your submission.
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