
Graph	Rats	
15-418/618, Spring 2019

Assignment 3
GraphRats!

Assigned: Fri., Feb. 15
Due: Wed., Mar. 6, 11:59 pm
Last day to handin: Sat., Mar. 9

1 Overview

Before you begin, please take the time to review the course policy on academic integrity at:

http://www.cs.cmu.edu/˜418/academicintegrity.html

Download the Assignment 3 starter code from the course Github using:

linux> git clone https://github.com/cmu15418/asst3-s19.git

Assignment Objectives

This assignment will give you a chance to optimize a program to run fast on a shared-memory multiproces-
sor. You will do so by modifying a sequential implementation of the program to make use of the OpenMP
programming framework. Along the way, you will gain experience with the following:

• Making use of different sources of parallelism during different phases of a program.
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• Identifying bottlenecks that limit the ability to exploit parallelism in a program and then finding ways
to eliminate them.

• Making tradeoffs between deciding what values need to be recomputed and computing just those,
versus simply recomputing everything.

• Finding ways to reduce memory contention by having different threads operate on separate copies of
a data structure, and then merging the results together.

• Recognizing sources of imbalanced load among the threads and finding ways to mitigate these.

Although the particular application is highly contrived, the structure of its computations is similar to that
found in graph and sparse-matrix applications. The skills you develop will be transferable to other problem
domains and to other computing platforms.

Machines

The OpenMP standard is supported by a variety of compilers, including GCC, on a variety of platforms.
Programs can be written in C, C++, and Fortran. For this assignment, you will be working in C. You can
test and evaluate your programs on any multicore processor, including the GHC machines. For performance
evaluation, you will run your programs on the Latedays cluster, a collection of 17 Xeon processors, each
having 12 cores. Jobs are submitted to this cluster through a batch queue, and so you can get fairly reliable
timings.

Resources

There are many documents describing OpenMP, including those linked from the OpenMP home page at
http://www.openmp.org. Like many standards, it started with a small core of simple and powerful con-
cepts but has grown over the years to contain many quirks and features. You only need to use a small subset
of its capabilities. A good starting point is the document at http://www.cs.cmu.edu/˜418/doc/openmp.pdf.

2 Application

The renowned theoretical social scientist Dr. Roland (“Ro”) Dent of the Reinøya Academy for the Technol-
ogy Transfer of Universal Science, located in Reinøya Norway1 has devised a mathematical model of how
the geographic distribution of animals derives from their own social preferences. His thesis is that animals
do not like being alone, but they also don’t like being overcrowded, and they will migrate from one region
to another in a predictable manner to achieve these preferences. He has performed small-scale studies using
colonies of 1000 rats to formulate this model, and he is ready to test his theories at a much larger scale.
His long-term goal is to set up and evaluate a rat colony containing over one million rats. While he is gath-
ering the resources to build the colony and breeding the rats to populate it, he would like to use computer
simulations to further explore his theoretical model.

1Often referred to by its Latin Name “RATTUS Norvegicus”
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(a). Node counts (b). Heat map of node load factors
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   |   |   |   |   |   |   | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   |   |   |   |   |   |   | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   | 1 |   |   |   |   |   | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   |   |   | 1 |   | 1 |   | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   |   |   | 5 |   | 9 | 5 | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   |   | 1 | 1 | 5 | 9 | 12| 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   | 8 | 5 | 7 | 15| 10| 9 | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   |   |   | 9 | 14| 14| 17| 15| 8 | 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   | 1 |   | 1 | 13| 13| 10| 13| 20| 14| 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   | 1 | 3 | 12| 16| 12| 19| 18| 18| 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   | 1 | 11| 15| 12| 20| 17| 16| 16| 
+---+---+---+---+---+---+---+---+---+---+---+---+ 
|   |   |   |   | 3 | 10| 10| 13| 18| 19| 11| 19| 
+---+---+---+---+---+---+---+---+---+---+---+---+ 

Figure 1: Representing the state of the simulation

Last year, Dr. Dent came to CMU as a visiting scholar. He recruited students from 15-418/618 to write
simulators and was very pleased with the insights the simulations provided. He would now like to run
simulations on a more sophisticated, and computationally demanding, theoretical model. Your job is to
support Dr. Dent’s efforts by creating version 2.0 of a high-performance GraphRats simulator. Fortunately,
for you, he has available a well-optimized sequential implementation, and so you can focus your efforts on
maximizing its parallel performance.

Model Parameters

Dr. Dent formulated the GraphRats model by discretizing space into unit squares, forming the nodes of a
graph. The graph has N nodes. The edges E of the graph indicate which nodes are adjacent. That is,
(u, v) ∈ E when square u is adjacent to square v. The edges are directed and symmetric: (u, v) ∈ E if and
only if (v, u) ∈ E. All of the graphs we use are based on a grid of of k × k nodes. That is, node u has an
edge to its neighbors to the left, right, above, and below. The graphs also have edges connecting nodes to
ones beyond the grid connections.

Rats are numbered from 0 toR−1. At any given time, each rat is assigned to a node, indicating its location.
Rats move among the nodes, with each move following an edge.

We define the average density as the ratio λ = R/N , indicating the average number of rats per node. For a
node u, we define its count p(u) to be the number of rats at that node, and its load factor l(u) = p(u)/λ to
be the ratio between its count and the average.
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Figure 2: Reward as a function of actual and ideal load factors. The ideal load factors range between 1.25
and 2.25.

Simulation State

At any time, the state of the model is represented by the positions of the rats. Based on these positions,
the state of each node u can be expressed in terms of its count p(u) or its load factor l(u). Figure 1 shows
two ways the GraphRats simulator can represent the model state for a 12× 12 graph. In the text format (a),
the count of each node in the grid is given as a decimal value. Blank grid positions indicate nodes u with
p(u) = 0. In the heat-map format (b), the load factors are represented by colors, with longer wavelength
colors (red, orange) indicating high load factors, and shorter wavelength colors (blue, violet) indicating low
load factors. Black indicates a count of 0. As this figure demonstrates, the text format is only suitable for
small graphs, but it can be useful for debugging.

Movement

Rats prefer to group together, but they don’t like being too crowded, and they migrate in order to achieve
these preferences. This migration is represented in the model by having the rats move from one node to
another in order to maximize a reward function expressed in terms of the load factor l by the equation

Reward(l) =
1

1 +

(
log2

[
1 + α(l − l∗)

])2 (1)

where l∗ is the ideal load factor (ILF) and α is a coefficient determined experimentally. Based on his
observations of rat colonies, Dr. Dent conjectures that α = 0.40.
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Figure 3: Reward functions over wide range of load factors. The reward value drops off slowly.

He also conjectures that the ideal load factor l∗ ranges between 1.25 and 2.25, as explained below. This
range indicates that rats like to cluster into groups above the average density. The values of the reward
function are illustrated in Figures 2 and 3 for ILF values of 1.25, 1.75, and 2.25. In Figure 2, we see the
reward is maximized when the load factor equals the ideal. Lower densities are less preferable, down to
rewards ranging between 0.083 and 0.500 as the load factor approaches 0.0.

Similarly, more crowded conditions are less desirable, with the reward dropping as the load factor increases.
As Figure 3 illustrates, this drop is very gradual (note the log scale), and less dependent on the ideal load
factor, with Reward(10) ranging between 0.175 and 0.194, Reward(100) ranging between 0.03388 and
0.03406, and Reward(100) ranging between 0.013202 and 0.013206.

In his earlier model, Dr. Dent used a constant value for the ideal load factor l∗ across all nodes. In recent
observations of rats, however, he has noted that they are more willing to crowd together in one location if the
nearby locations have a relatively higher population. He would like to test out the impact of this preference
by formulating an adaptive ideal load factor. That is, for counts cl (the local count) and cr (the remote
count), define the imbalance factor β(cl, cr) as:

β(cl, cr) =


−1.0 (cr = 0and cl > 0) or cl/cr ≥ 10.0
+1.0 (cl = 0and cr > 0) or cr/cl ≥ 10.0
log10 cr/cl else

(2)

For node u, let β̂(u) to be the average value of β(p(u), p(v)) for all adjacent nodes v. Then the ideal load
factor for u is computed as:

l∗(u) = 1.75 + 0.5 · β̂(u) (3)

We can see that the ILF will have its minimum value of 1.25 when β̂(u) = −1 (the neighboring cells are
much less crowded) and its maximum value of 2.25 when β̂(u) = +1 (the neighboring cells are much
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Figure 4: Next move computation. Each rat moves randomly, weighted by the reward values for the potential
destinations.

more crowded.) Observe that this value will change over time, as the counts at u and its neighboring nodes
change.

Each time a rat moves, it does so randomly, but with the random choice weighted by the rewards at the
possible destinations. More precisely, a rat at node u considers the count at its current node p(u), as well as
those at each adjacent node p(v), such that (u, v) ∈ E. This is illustrated in Figure 4(a), for a node having
only grid connections. Each of the possible destinations (including possibly staying at the current node) has
an associated reward value, based on computing the reward function for its load factor. These values are
shown in Figure 4(b) for the case of λ = 10. If we arrange these values along a line (starting with the node
and then following a row-major ordering of the neighbors), as is shown in Figure 4(c), they form a sequence
of subranges summing to a total value s. (In the example of Figure 4, s = 1.665.) Choosing a random value
x ∈ [0, s) selects the destination node v, for which x lies within the subrange associated with v. The figure
illustrates the case where x = 1.24, causing the rat to move to the square on the right.

Each time a rat moves, the count at the previous node decreases, while the count at the new node increases.
This, in turn, will causes changes in the reward and ILF values at these nodes, as well as the ILF values of
nodes adjacent to them, and this will affect the choices made by other rats. We consider three different rules
for computing and updating the rat positions:

Synchronous: All new positions are computed, and then all rats are moved.

Rat-order: For each rat, a new position is computed and then the rat is moved.

Batch: For batch sizeB, the new positions for one set ofB rats is computed, and then these rats are moved.
This process is repeated for all batches.
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(a). Synchronous mode (b). Rat-order mode (c). Batch mode

Figure 5: Effect of different simulation modes.

More precisely, we can characterize all three of these rules as variants of a batch mode, where the batch size
equals R for synchronous mode, 1 for rat-order mode, and some intermediate value B for batch mode. The
computation can therefore be summarized by the following pseudo-code:

For b from 0 to dR/Be − 1
For r from b ·B to min[(b+ 1) ·B,R]− 1

Compute destination node for rat r
For r from b ·B to min[(b+ 1) ·B,R]− 1

Move rat r to its destination

Figure 5 illustrates how the different modes lead to different simulation behavior. These examples all started
by initializing the simulation with 12,960 rats in the lower, right-hand corner of a 36×36 graph and running
for 50 steps. In the synchronous mode simulation (a), we can see a checkered pattern. This is an artifact of
the mode—on each step, all of the rats base their next choice on the previous distribution of counts. Many
will move to the same, low-count nodes, leaving their previous nodes almost empty. When you watch the
simulation running, you will see oscillatory behavior, yielding the checkering pattern. Rat-order mode (b)
yields a much smoother spreading of the rats. Unfortunately, rat-order mode does not lend well to parallel
computation, and so batch-order mode (c) is presented as a compromise. By setting the batch size B to 2%
of R, the smooth spreading occurs, but in a way that is amenable to parallel execution.

Graphs

Figure 6 illustrates the graphs that will be used in benchmarking your simulator. All of them are based on
grids consisting of a k × k array of nodes, augmented with a set of hub nodes (shown in red). Each hub
connects to every node in a region (shown with black outlines). A hub provides a high degree of connectivity
among the nodes within a region, whereas the only connections from one region to another are via the grid
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(a). Tiled (b). Horizontal

(c). Vertical (c). Parquet

Figure 6: Graph types, for k = 36. Red nodes denote hubs, having edges to every node in the region
enclosed in its box.

Graph Edges Hubs Max. Degree
Tiled 193,320 36 899
Horizontal 193,560 12 2,699
Vertical 193,560 12 2,699
Parquet 193,560 12 2,699

Figure 7: Graph statistics for k = 180 (32,400 nodes)
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edges. Figure 7 provide the statistics for 180× 180 versions of these graphs. These graphs all have 32,400
nodes and either 193,320 or 193,560 edges. One consequence of the hub structure is that the nodes have
varying degrees, with most nodes having at most five connections (four grid edges plus one connection to a
hub), while the hubs have degrees of either 899 or 2,699, depending on the graph type.

For benchmarking purposes, your simulator will be run on these 180×180 graphs with average load factors
of 32, for a total of 1,036,800 rats.

3 Your Task

The starter code, in the code subdirectory, contains two fully functional GraphRats simulators, one written
in Python (grun.py) and one in C (compiling to a sequential version crun-seq and a parallel version
crun-omp.) The Python version is very slow, but it serves as the standard definition of correct behavior.
The C versions compile (compile with make all) and run correctly. The sequential version has already
been carefully optimized. It computes and stores the various weights once for each batch, and it uses binary
search to determine where each rat should move. Your job is to make the C version run faster through
parallel execution, using OpenMP pragmas and functions, along with whatever changes you want to make
to the data structures and simulation code.

In doing your optimizations, you must preserve the exact functionality of the provided code. Despite the
seeming randomness of how rat moves are generated, the program is completely deterministic. Given the
following parameters: 1) the graph, 2) the initial rat positions, 3) a global seed, 4) the update mode, and
5) the number of simulation steps, the program will produce the exact same sequence of rat moves—and
therefore the exact same node counts—every time it is run. This determinism is maintained in a way that
won’t cause any sequential bottlenecks by associating a separate pseudo-random number seed with each rat.

Running the Simulator

The simulator can be run with many options. Its usage is as follows:

linux> ./crun-XXX -h
Usage: ./crun-XXX -g GFILE -r RFILE [-n STEPS] [-s SEED] [-u (r|b|s)] [-q] [-i INT] [-t THD]

-h Print this message
-g GFILE Graph file
-r RFILE Initial rat position file
-n STEPS Number of simulation steps
-s SEED Initial RNG seed
-u UPDT Update mode:

s: Synchronous. Compute all new states and then update all
r: Rat order. Compute update each rat state in sequence
b: Batch. Repeatedly compute states for small batches

of rats and then update
-q Operate in quiet mode. Do not generate simulation results
-i INT Display update interval
-t THD Set number of threads

where XXX is either “seq” or “omp.”
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You must provide a graph file and a file describing the initial rat positions. These are included in the
subdirectory code/data. Graph file names have the form g-TKKKxKKK.gph, where T indicates the
graph type: t for a tiled graph, h for a horizontal graph, v for a vertical graph, and p for a parquet graph.
The number KKK indicates the value of k.

Rat file names have the form r-KKKxKKK-PLL.rats, where KKK indicates the value of k, P describes
the initial positions: u for distributed uniformly, d for distributed along the diagonal, and r for all being in
the lower, right-hand corner. The number LL indicates the average load factor.

Additional optional arguments allow you to specify the number of simulation steps, the global seed, the
update mode (random, batch, or synchronous), and the number of threads (only meaningful when running
crun-omp.)

By default, the simulator prints the node counts on every step. Be careful to do this only for small graphs
and small simulation runs! The optional flag -q instructs the simulator to operate in “quiet” mode, where
it does not print any simulation results. Setting the display update interval to I with the -i flag causes the
simulator to only print the node counts once every I time steps.

The simulator measures its elapsed time and expresses the performance in terms of nanoseconds per move
(NPM). If a simulation of R rats running for S steps requires T seconds, then NPM is computed as 109 ·
T/(R · S).

Visualizing the Simulation Results

The Python program grun.py can act as a simulator, accepting the same arguments as crun. In addition,
it can serve as a visualizer for other simulators, generating both the text and heat-map displays of the
simulation state. This is done by piping the output of the simulator into grun.py operating in driven
mode.
As an example, the visualization shown in Figure 5(c) was generated with the command:

linux> ./crun-seq -g data/g-t036x036.gph -r data/r-036x036-r10.rats -n 50 -u b | ./grun.py -d -v h

We can see that the simulation was run on a 36 × 36 grid graph, with 12,960 rats initially in the lower,
right-hand corner. The simulation ran for 50 steps in batch mode. These results were piped into grun.py
to provide a heat-map visualization. (You must have an X window connection to view the heat maps.) The
command line option -v a (for “ASCII”) will generate a text representation of the node counts. (If you try
to do this for a graph that won’t fit in your terminal window, the program will fail silently.)

Regression Testing

The provided program regress.py provides a convenient way for you to check the functionality of your
program. It compares the output of the C versions of the simulator with the Python version for a number of
(mostly small) configurations. Its usage is as follows:

linux> ./regress.py -h
Usage: ./regress.py [-h] [-c] [-t THD]

-h Print this message
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Name Graph Type Rat Positions
A Tiled Uniform
B Horizontal Uniform
C Vertical Uniform
D Parquet Uniform
E Vertical Lower Right
F Parquet Diagonal

Figure 8: Graph and initial rat position combinations used for performance benchmarking.

-c Clear expected result cache
-t THD Specify number of OMP threads

If > 1, will run crun-omp. Else will run crun-seq

The program maintains a cache holding the simulation results generated by the Python simulator. You can
force the simulator to regenerate the cached values with the -c flag. When the option -t 1 is given, it will
test program crun-seq. For higher thread counts, it will run crun-omp with that number of threads.
The default is 12. The benchmarking program also checks that the node counts generated by your simulator
match those of the reference implemetantion. This will help you test larger cases, for which the Python
simulator would be much too slow.

Doing frequent regression testing will help you avoid optimizing incorrect code. Realize also, that the tests
performed are not comprehensive. We reserve the right to evaluate your program for correctness on other
graphs!

Performance Evaluation (90 points)

The provided program benchmark.py runs simulations of six different combination of graphs and initial
rat positions, as documented in Figure 8. All simulations are run in batch mode. By default, the program
runs with 12 threads for 100 simulation steps. It also runs the provided reference version of the simulator,
named crun-soln on each benchmark. It captures the final output of the two simulators in files and then
checks that they are identical.
The full set of options is as follows

linux> ./benchmark.py -h
./benchmark.py [-h][-Q] [-k K] [-b BENCHLIST] [-n NSTEP] [-u UPDATE]

[-t THREADLIMIT] [-r RUNS] [-i ID] [-f OUTFILE] [-c]
-h Print this message
-Q Quick mode: Don’t compare with reference solution
-k Specify graph dimension
-b BENCHLIST Specify which benchmark(s) to perform as substring of ’ABCDEF’
-n NSTEP Specify number of steps to run simulations
-u UPDATE Specify update mode

r: rat order
s: synchronous
b: batch
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-t THREADLIMIT Specify number of OMP threads
If > 1, will run crun-omp. Else will run crun-seq.

-r RUNS Set number of times each benchmark is run
-i ID Specify unique ID for distinguishing check files
-f OUTFILE Create output file recording measurements

If file name contains field of form XX..X, will replace with
ID having that many digits

Here’s a brief description of the options:

-Q Run in “quick” mode. Do not compare the functionality or performance to that of the reference solution,
and do not generate a score.

-k k Specify the value of k. Possible values are: 12, 36, 60, and 180 (the default).

-b BSTRING Specify which of the benchmarks to run as a string consisting of characters in the range A–F.
For example, the string “DF” would run the two parquet-graph benchmarks.

-n S Run the simulations for S steps. Running for small values of S provides a useful way to test your
program without requiring a full length run.

-u (r|b|s) Run the simulator in the specified update mode.

-t T Run with T threads. When T = 1, the program crun-seq will be run. Otherwise crun-omp will
be tested.

-r r Run each benchmark r times and take minimum of the execution times. The default is 3.

-i ID Specify a unique identifier for use in naming the check files (capturing the outputs of the two
simulators.) This is used to allow multiple benchmarking runs to take place simultaneously without
causing name collisions.

-f FILE Generate an output report in file FILE, in addition to printing it on standard output. As a special
feature, if the file name contains a string of the form XXX· · ·XX, then the generated file will be named
by replacing these characters by randomly generated digits. This provides an easy way to do multiple
runs of the simulator to compensate for statistical variations in the program performance.

Suppose your program runs in time T and the reference version runs in time Tr. You will get 15 points if
the output matches that of the reference version, and the runtimes satisfy Tr/T ≤ 0.9. You will get partial
credit as long as the outputs match and Tr/T < 0.5, i.e., your program is less than 2× slower than ours.
The ratio Tr/T is included in the output report for each benchmark. You can run benchmark.py on any
machine, but the grading standards will be based on the performance running on a Latedays processor (see
the next section about how to use these processors.)

Running on the Latedays Cluster

The Latedays cluster contains 18 machines (1 head node plus 17 worker nodes). Each machine features:
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• Two, six-core Xeon e5-2620 v3 processors (2.4 GHz, 15MB L3 cache, hyper-threading, AVX2 in-
struction support).

• 16 GB RAM (60 GB/sec of BW)

You can login to the Latedays head node latedays.andrew.cmu.edu via your Andrew login. You
can edit and compile your code on the head node, and then run jobs on the cluster’s worker nodes using a
batch queue. You have a home directory on Latedays that is not your Andrew home directory. (You have a
2GB quota.) However, your Andrew home directory is mounted as ˜/AFS.

Do not attempt to submit jobs from your AFS directory, since that directory is not mounted when your job
runs on the worker nodes of the cluster. (It is only mounted and accessible on the head node.) Instead, copy
your source code over to a subdirectory you have set up in your Latedays directory and recompile it.

The program submitjob.py is used to generate and submit command files to the job queue. It is invoked
as follows:

linux> ./submitjob.py -h
Usage: %s -h -J -s NAME -a ARGS -r ROOT -d DIGITS

-h Print this message
-J Don’t submit job (just generate command file)
-s NAME Specify command file name
-a ARGS Arguments for benchmark.py (can be quoted string)
-r ROOT Specify root name of benchmark output file
-d DIGITS Specify number of randomly generated digits in command and

benchmark output file names

Here’s a brief description of the options:

-J Generate the command file, but do not submit it.

-s NAME Specify the name of the command file. The default will name is of the form latedays-DDDD.sh,
where DDDD is a sequence of random digits.

-a ARGS Provide arguments(s) for benchmark.py. Typically, ARGS is a quoted string. For example,
specifying -a ’-t 6’ will cause the benchmarking to be done with 6 threads rather than 12.

-r ROOT Specify the prefix of the summary output file name. The output file is generally of the form
ROOT-DDDD.out, where DDDD is a sequence of random digits.

-d d Specify the number of random digits to include in the command and output file names.

The inclusion of random digits in the file names provides a way to avoid naming collisions. For example,
you can invoke submitjob.py n times with the same arguments, submitting n jobs, each with distinct
file names.

After a successful submission, the program will echo the Id of your job. For example, if your job was given
the number 337 by the job queue system, the job would have the Id 337.latedays.andrew.cmu.edu.
After you submit a job, you can check the status of the queue via one of the following commands:
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linux> showq
linux> qstat

When your job is complete, log files from standard output and standard error will be placed in your working
directory. If the command file was latedays-1234.sh, then the generated files will be latedays-1234.sh.o337
and latedays-1234.sh.e337 (substituting your job number for 337, of course.) In addition, a sum-
mary of the results will be written to the output file.

Looking at the command file, you will see that the maximum wall clock time for the job is limited to 30
minutes. This means that the job scheduler will cut your program off after 30 minutes without generating
any output.

Some other things to keep in mind:

• Only use the Latedays head node for tasks that require minimal execution time, e.g., editing files,
compiling them, and running short tests.

• The Latedays Python installation does not contain the libraries required by qrun.py for visualiza-
tion.

4 Some Advice

How to Optimize the Program

• There are many possible sources of parallelism in the simulator, and you will want to exploit different
forms at different stages. For example, sometimes you can run in parallel over the nodes, and other
times in parallel over the rats.

• When you get a parallel version working, you may notice a big performance difference when running
on a vertical versus a horizontal graph, even though one is just a rotated version of the other. Think
about how the nodes are numbered (according to a row-major order) and what sort of load imbalance
that can create.

• When you use OpenMP static partitioning of for loops, it will divide the iterations into blocks of
even size. When done across the nodes, this might yield an unbalanced load, due to the nonuniform
degrees of the nodes. You could use dynamic parallelism, but it might be better to devise problem-
specific ways of avoiding load imbalance.

• Having multiple threads attempt to update a set of global values will require costly synchronization.
Instead, it can be better to have each thread generate data separately, and then use the threads to
collaboratively aggregate the separate copies.

Important Requirements and Tips

The following are some aspects of the assignment that you should keep in mind:
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• Use caution when evaluating performance by running on other machines. For example, the GHC ma-
chines are good ones to use for code development. For benchmarking, you will want to set the number
of threads to either 6 or 12, to get a partitioning of nodes similar to what will happen when you run
the benchmarks on the Latedays machines. However, the GHC machines have a higher performance
memory system than the Latedays machines, which can potentially mask memory performance bot-
tlenecks that will arise on a Latedays machine. Plan to do many runs on the Latedays machines.

• Don’t print on stdout. Since the simulator is designed to pipe its output into a visualization pro-
gram, standard output should be reserved for simulation results. If you want to print error messages
or other information, use stderr. The provided function outmsg will prove useful for this.

• You are free to add other header and code files and to modify the make file. You can switch over to
C++ (or Fortran) if you like. The only code you cannot modify is in the file rutil.c. You must use
the provided version of the function imbalance, which computes the imbalance factor β.

• Although you will only be tuning your code for a small number of graphs and initial rat states, you
should design your code to use techniques and algorithms that will generalize across a wide range of
graph/state combinations. Think of the benchmark cases as points in a large parameter space. Your
program should be designed to achieve reasonable performance across the entire space. You can
assume that the graphs of interest will consist of grids combined with a small number of high-degree
hub nodes.

• The provided simulator has some features that you should maintain in your version:

– It does not use any global variables. It encapsulates the graph structure and the simulation state
into structs

– It does not assume any limits on the number of nodes, rats, or any other parameters. All data
structures are allocated dynamically.

– It allocates all of the data structures it requires at the beginning of the simulation, and never
requires dynamic allocation after that point.

• The provided cycletimer.h and cycletimer.c files provide low cost timer routines. You
would do well to instrument your code to track the time spent doing different types of operations
required, e.g., computing the next moves, updating the rat positions, etc. This will help you identify
the most costly operations and to determine how the different operations scale as the number of
threads increases.

• You can use any kind of code, including calls to standard libraries, as long as it is platform indepen-
dent. You may not use any constructs that make particular assumptions about the machine instruction
set, such as embedded assembly or calls to an intrinsics library. (The exception to this being the code
in cycletimer.c.)

• You may not include code generated by other parallel-programming frameworks, such as ISPC.
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5 Your Report (20 points)

Your report should provide a concise, but complete description of the thought process that went into de-
signing your program and how it evolved over time based on your experiments. It should include a detailed
discussion of the design and rationale behind your approach to parallelizing the algorithm. Specifically try
to address the following questions:

• What approaches did you take to parallelize the different parts of the program?

• How did you avoid wasting time using synchronization constructs?

• How successful were you in getting speedups from different parts of the program? (These should be
backed by experimental measurements.)

• How does the performance scale as you go from 1 (running crun-seq) to 12 threads? What were
the relative speedups of different parts of your program?

• How did the graph structure and the initial rat positions affect your ability to exploit parallelism?
What steps did you take to work around any performance limitations?

• Were there any techniques that you tried but found ineffective?

6 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For the code, you will be submitting
your entire directory tree.

1. Your code

(a) If you are working with a partner, form a group on Autolab. Do this before submitting your
assignment. One submission per group is sufficient.

(b) Make sure all of your code is compilable and runnable.

i. We should be able to simply run make in the code subdirectory and have everything
compile

ii. We should be able to replace your versions of all of the Python code, as well as the file
rutil.c with the original versions and then perform regression testing and benchmark-
ing.

(c) Remove all nonessential files, especially output images from your directory.

(d) Run the command “make handin.tar.” This will run “make clean” and then create an
archive of your entire directory tree.

(e) Submit the file handin.tar to Autolab.

2. Your report
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(a) Please upload your report in PDF format to Gradescope, with one submission per team. After
submitting, you will be able to add your teammate using the add group members button on the
top right of your submission.

A A Gallery of Rat Simulations

We encourage you to explore the behavior of the simulator using different combinations of graph structure
and initial state. You will gain a better understanding of the factors that affect simulation performance. For
starters, the provided make file will run 10 different demonstrations. Try running

linux> make demoX

for X ranging from 1 to 10.

Figure 9 shows simulations of the same graph—a 36× 36 tiled graph with different initial conditions. With
the rats initially in the lower right hand corner (a), they expand outward to reduce crowding. The progression
is slow, however, since nodes with low occupancy also have low reward values. You can see a few nodes
that are dark violet. These have only a single, isolated rat. With the rats initially along the diagonal (b),
they expand outward, but then they begin to form uneven distributions. This unevenness is even more
pronounced when starting with a uniform distributions (c). The fact that the reward value is maximized
with a load factor greater than 1.0 causes the rats to gather into clumps. As the simulation continues, these
clumps become larger and more distinct. You can see the hubs tend to get higher counts than other nodes.
Their high connectivity causes many rats to go to them, even though they are crowded.

Figure 10 shows simulations of three different 36×36 graphs, in each case with the rats distributed uniformly
along the diagonal. The simulation of the tiled graph (a) is the same as in Figure 9(b). For the other graphs,
the high connectivity of the hub nodes causes them to become highlighted. These hubs also cause the rats
to quickly distribute among their regions. The hubs of the parquet graph (c) become highlighted and cause
the rats to distribute among their regions, but there is less spreading from the regions in the upper left and
lower right quadrants to those in the upper right and lower left quadrants.
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(a). Rats initially in lower, right-hand corner
t = 2 t = 20 t = 200

(b). Rats initially along diagonal
t = 2 t = 20 t = 200

(c). Rats initially distributed uniformly
t = 2 t = 20 t = 200

Figure 9: Simulations of a 36× 36 tiled graph with different initial conditions (λ = 10)
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(a). Tiled graph
t = 2 t = 20 t = 200

(b). Vertical graph
t = 2 t = 20 t = 200

(c). Parquet graph
t = 2 t = 20 t = 200

Figure 10: Simulations of different 36× 36 graphs. Rats initially distributed along the diagonal (λ = 10)
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