Lecture 23b:

Implementing Parallel
Runtimes, Part 2

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Objectives

m What are the costs of using parallelism APIs?
= How do the runtimes operate?

(MU 15-418/618,
Spring 2018

Basis of Lecture

® This lecture is based on runtime and source code analysis of
Intel’s open source parallel runtimes

- OpenMP - https://www.openmprtl.org/

- Cilk — https://bitbucket.org/intelcilkruntime/intel-cilk-
runtime

= And using the LLVM compiler
- OpenMP - part of LLVM as of 3.8
- Cilk - http://cilkplus.github.io/

(MU 15-418/618,
Spring 2018

https://www.openmprtl.org/
https://bitbucket.org/intelcilkruntime/intel-cilk-runtime
http://cilkplus.github.io/

OpenMP and Cilk

= What do these have in common?
- pthreads

= What benefit does abstraction versus implementation
provide?

(MU 15-418/618,
Spring 2018

Simple OpenMP Loop Compiled

= What is this code doing?
= What do the OpenMP semantics specify?
= How might you accomplish this?

extern float foo(void);
int main (int argc, char** argv) {
inti;
float r=0.0;
#pragma omp parallel for schedule(dynamic) reduction(+:r)
(i=0;i<10;i++){
r += foo();
}

return O;

}

Example from OpenMP runtime documentation (MU 15-418/618,
Spring 2018

Simple OpenMP Loop Compiled

extern float foo(void);
int main (int argc, char** argv) {
static int zero = 0;
auto int gtid;
auto float r = 0.0;
__kmpc_begin(& loc3,0);
gtid = __kmpc_global thread num(& loc3);
__kmpc_fork call(&loc7, 1, main_7_parallel_3, &r);
__kmpc_end(&\oc0);
0;

Call a function in parallel with the argument(s)

Example from OpenMP runtime documentation (MU 15-418/618,
Spring 2018

Simple OpenMP Loop Compiled

= OpenMP “microtask”

- Each thread runs the task
m |nitializes local iteration

bounds and reduction

= Each iteration receives a
chunk and operates locally

m After finishing all chunks,

combine into global
reduction

Example from OpenMP runtime documentation

struct main_10_reduction_t_5 {float r_10_rpr; };

void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {

auto inti_7_pr;

auto int lower, upper, liter, incr;

auto struct main_10_reduction_t_5 reduce;
reduce.r_10_rpr =0.F;

liter = 0;

__kmpc_dispatch_init_4(& loc7,*gtid, 35,0,9,1, 1);

(__kmpc_dispatch_next_4(& loc7, *gtid, &liter,
&lower, &upper, &incr)) {

reduce.r_10_rpr += foo();

(__kmpc_reduce_nowait(& loc10, *gtid, 1, 4,
&reduce, main_10_reduce_5, &lck)) {

1:

*r_7_shp +=reduce.r_10_rpr;
__kmpc_end_reduce_nowait(& loc10, *gtid, &Ick);
2:

__kmpc_atomic_float4_add(& loc10, *gtid,

r_7_shp, reduce.r_10_rpr);

(MU 15-418/618,
Spring 2018

Simple OpenMP Loop Compiled

= All code combined

extern float foo(void);
int main (int argc, char** argv) {
static int zero = 0;
auto int gtid;
auto float r = 0.0;
__kmpc_begin(& loc3,0);
gtid = __kmpc_global thread num(& loc3);
__kmpc_fork call(&loc7, 1, main_7_parallel_3, &r);
__kmpc_end(& loc0);
0;
}

struct main_10_reduction_t_5 { float r_10_rpr; };
static kmp_critical_name Ick={0};
static ident_t loc10;

void main_10_reduce_5(struct main_10_reduction_t_5 *reduce_lhs,

struct main_10_reduction_t_5 *reduce_rhs))

{

reduce_lhs->r_10_rpr +=reduce_rhs->r_10_rpr;

}

Example from OpenMP runtime documentation

void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {

autointi_7_pr;

auto int lower, upper, liter, incr;

auto struct main_10_reduction_t_5 reduce;
reduce.r_10_rpr =0.F;

liter = 0;

__kmpc_dispatch_init_4(& loc7,*gtid, 35,0,9,1,1);

(__kmpc_dispatch_next_4(& loc7, *gtid, &liter,
&lower, &upper, &incr)) {
(i_7_pr=Ilower; upper>=i_7 pr;i_7_pr++)
reduce.r_10_rpr += foo();

(_kmpc_reduce_nowait(& loc10, *gtid, 1, 4,
&reduce, main_10_reduce_5, &lck)) {

1:

*r_7_shp +=reduce.r_10_rpr;
__kmpc_end_reduce_nowait(& loc10, *gtid, &Ick);
2:

__kmpc_atomic_float4_add(& loc10, *gtid, r_7_shp,

reduce.r_10_rpr);

(MU 15-418/618,
Spring 2018

Fork Call

= “Forks” execution and calls a specified routine (microtask)

= Determine how many threads to allocate to the parallel
region

= Setup task structures

= Release allocated threads from their idle loop

(MU 15-418/618,
Spring 2018

Iteration Mechanisms

= Static, compile time iterations
- __ kmp_for_static_init
- Compute one set of iteration bounds

= Everything else
- __ kmp_dispatch_next
- Compute the next set of iteration bounds

(MU 15-418/618,
Spring 2018

OMP Barriers

Two phase -> gather and release
- Gather non-master threads pass, master waits
- Release is opposite

Barrier can be:

Linear

Tree
Hypercube
Hierarchical

(MU 15-418/618,
Spring 2018

OMP Atomic

= (Can the compiler do this in a read-modify-write (RMW) op?

m (Otherwise, create a compare-and-swap loop

T* val;
T update;
#pragma omp atomic

*val += update;

If Tis int, thisis “lockadd ...”.

If Tis float, this is “lock cmpxchg ...

Why?

n

(MU 15-418/618,
Spring 2018

OMP Tasks

= #pragma omp task depend (inout:x) ...

= (reate microtasks for each task
- Track dependencies by a list of address / length tuples

(MU 15-418/618,
Spring 2018

Cilk

= (overedin Lecture5
= We discussed the what and why, now the how

(MU 15-418/618,
Spring 2018

Simple Cilk Program Compiled

= What is this code doing?
= What do the Cilk semantics specify?
® Which is the child? Which is the continuation?

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = fib(n-2);
cilk sync;
return a + b;

(MU 15-418/618,
Spring 2018

How to create a continuation?

= (Continuation needs all of the state to continue
- Register values, stack, etc.

= What function allows code to jump to a prior point of
execution?

= Setjmp(jmp_buf env)
- Save stack context
- Return via longjmp(env, val)
- Setjmp returns 0 if saving, val if returning via longjmp

(MU 15-418/618,
Spring 2018

Basic Block

= Unit of Code Analysis -

m Sequence of instructions
- Execution can only enter at the first instruction
- Cannot jump into the middle
- Execution can only exit at the last instruction
- Branch or Function Call
- Or the start of another basic block (fall through)

(MU 15-418/618,
Spring 2018

Simple Cilk Program Revisited

0 maybe

L fib(n-1)
Save Continuation * parallel

setjmp ls sync?

0

fib1 + fib2 fib1 + fib2

—

Leave frame

cilkrts_sync

CMU 15-418/618,
Spring 2018

Cilk Workers

= While there may be work
- Try to get the next item from our queue
- Else try to get work from a random queue
- If there is no work found, wait on semaphore

= |fworkitem is found
- Resume with the continuation’s stack

(MU 15-418/618,
Spring 2018

Thread Local Storage

= Linux supports thread local storage
- New: (11 - _Thread_local keyword
- one global instance of the variable per thread
- Compiler places values into .thss
- 0S provides each thread with this space

® Since Cilk and OpenMP are using pthreads
- These values are in the layer below them

(MU 15-418/618,
Spring 2018

DEMO

(MU 15-418/618,
Spring 2018

