
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Lecture 21:

Domain-specific
programming on graphs

 CMU 15-418/618, Spring 2018

Last time: Increasing acceptance of
domain-specific programming systems
▪ Challenge to programmers: modern computers are parallel, heterogeneous machines

(HW architects striving for high area and power efficiency)

▪ Programming systems trend: give up generality in what types of programs can be
expressed in exchange for achieving high productivity and high performance

▪ “Performance portability” is a key goal: programs should execute efficiently on a
variety of parallel platforms

- Good implementations of same program for different systems required different
data structures, algorithms, and approaches to parallelization — not just
differences in low-level code generation (not a matter of generating SSE vs. AVX vs
ARM Neon vs. NVIDIA PTX instructions)

 CMU 15-418/618, Spring 2018

Today’s topic: analyzing big graphs
▪ Many modern applications:

- Web search results, recommender systems, influence
determination, advertising, anomaly detection, etc.

▪ Public dataset examples:
Twitter social graph, Wikipedia term occurrences, IMDB actors,
Netflix, Amazon communities, G+

Good source of public graphs:
https://snap.stanford.edu/data/
(Jure Leskovec, CMU PhD, 2008)

 CMU 15-418/618, Spring 2018

Thought experiment: if we wanted to design a
programming system for computing on graphs,

where might we begin?

What abstractions do we need?

 CMU 15-418/618, Spring 2018

Whenever I’m trying to assess the importance of a
new programming system, I ask two questions:

Halide (recall last class):

Programmer’s responsibility:

Halide system’s responsibility:

- Describing image processing algorithm as pipeline of
operations on images

- Describing the schedule for executing the pipeline (e.g.,
“block this loop, “parallelize this loop”, “fuse these stages”)

- Implementing the schedule using mechanisms available on
the target machine (spawning pthreads, allocating temp
buffers, emitting vector instructions, loop indexing code)

Liszt (recall last class):

Programmer’s responsibility:
- Describe mesh connectivity and fields defined on mesh
- Describe operations on mesh structure and fields

Liszt system’s responsibility:
- Parallelize operations without violating dependencies or

creating data races (uses different algorithms to parallelize
application on different platforms)

- Choose graph data structure / layout, partition graph across
parallel machine, manage low-level communication (MPI send),
allocate ghost cells, etc.

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc.

▪ “What tasks/problems does the system take off the hands of the programmer?
- (are these problems challenging or tedious enough that I feel the system is

adding sufficient value for me to want to use it?)”

▪ “What problems does the system leave as the responsibility for the programmer?”
- (likely because the programmer is better at these tasks)

 CMU 15-418/618, Spring 2018

Programming system design questions:

▪ What are the fundamental operations we want to be easy to
express and efficient to execute?

▪ What are the key optimizations performed by the best
implementations of these operations?
- high-level abstractions should not prevent these
- maybe even allow system to perform them for the application

 CMU 15-418/618, Spring 2018

Example graph computation: Page Rank
Page Rank: iterative graph algorithm
▪ Devised by Larry Page & Sergey Brinn, 1996

Graph nodes = web pages
Graph edges = links between pages

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

Rank of page i Weighted combination of
rank of pages that link to it

discount

 CMU 15-418/618, Spring 2018

GraphLab

▪ A system for describing iterative computations on graphs

▪ History:
- 2009 Prof Carlos Guestrin at CMU, then at U Washington
- 2013 Commercialized as Turi
- 2016 Acquired by Apple

▪ Implemented as a C++ runtime

▪ Runs on shared memory machines or distributed across clusters
- GraphLab runtime takes responsibility for scheduling work

in parallel, partitioning graphs across clusters of machines,
communication between master, etc.

 CMU 15-418/618, Spring 2018

GraphLab programs: state

▪ The graph: G = (V, E)
- Application defines data blocks on each vertex and directed edge
- Dv = data associated with vertex v

- Du→v = data associated with directed edge u→v

▪ Read-only global data
- Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice: I always first describe program state

And then describe what operations are
available to manipulate this state

 CMU 15-418/618, Spring 2018

GraphLab operations: the vertex program
▪ Defines per-vertex operations on the vertex’s local neighborhood

▪ Neighborhood (aka “scope”) of vertex:
- The current vertex

- Adjacent edges

- Adjacent vertices

= vertex or edge data “in scope” of red vertex
(graph data that can be accessed when executing a
vertex program at the current (red) vertex)

current vertex

 CMU 15-418/618, Spring 2018

Simple example: PageRank *

PageRank_vertex_program(vertex i) {

 // (Gather phase) compute the sum of my neighbors rank
 double sum = 0;
 foreach(vertex j : in_neighbors(i)) {
 sum = sum + j.rank / num_out_neighbors(j);
 }

 // (Apply phase) Update my rank (i)
 i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;
}

Programming in GraphLab amounts to defining how to update graph state at each
vertex. The system takes responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we’ll see on the next slide

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

(Shown for 𝛼 = 0.85)

 CMU 15-418/618, Spring 2018

GraphLab: data access
▪ The application’s vertex program executes per-vertex

▪ The vertex program defines:
- What adjacent edges are inputs to the computation

- What computation to perform per edge

- How to update the vertex’s value

- What adjacent edges are modified by the computation

- How to update these output edge values

▪ Note how GraphLab requires the program to tell it all data
that will be accessed, and whether it is read or write access

 CMU 15-418/618, Spring 2018

GraphLab-generated vertex program (C++ code)
struct web_page {
 std::string pagename;
 double pagerank;
 web_page(): pagerank(0.0) { }
}

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;

class pagerank_program:
 public graphlab::ivertex_program<graph_type, double>,
 public graphlab::IS_POD_TYPE {
public:
 // we are going to gather on all the in-edges
 edge_dir_type gather_edges(icontext_type& context,
 const vertex_type& vertex) const {
 return graphlab::IN_EDGES;
 }

 // for each in-edge gather the weighted sum of the edge.
 double gather(icontext_type& context, const vertex_type& vertex,
 edge_type& edge) const {
 return edge.source().data().pagerank / edge.source().num_out_edges();
 }

 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
 const gather_type& total) {
 double newval = total * 0.85 + 0.15;
 vertex.data().pagerank = newval;
 }

 // No scatter needed. Return NO_EDGES
 edge_dir_type scatter_edges(icontext_type& context,
 const vertex_type& vertex) const {
 return graphlab::NO_EDGES;
 }
};

Define edges to gather
over in “gather phase”

Graph has record of type
web_page per vertex,
and no data on edges

Compute value to
accumulate for
each edge

Update vertex rank

PageRank example
performs no scatter

 CMU 15-418/618, Spring 2018

Running the program

GraphLab runtime provides “engines” that manage scheduling of vertex programs
engine.signal_all() marks all vertices for execution

graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync");
engine.signal_all();
engine.start();

You can think of the GraphLab runtime as a work queue scheduler.
And invoking a vertex program on a vertex as a task that is placed in the work queue.

So it’s reasonable to read the code above as: “place all vertices into the work queue”
Or as: “foreach vertex” run the vertex program.

 CMU 15-418/618, Spring 2018

Vertex signaling: GraphLab’s mechanism for
generating new work

Iterate update of all R[i]’s 10 times
Uses generic “signal” primitive (could also wrap code on previous slide in a for loop)

struct web_page {
 std::string pagename;
 double pagerank;
 int counter;
 web_page(): pagerank(0.0),counter(0) { }
}

 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
 const gather_type& total) {
 double newval = total * 0.85 + 0.15;
 vertex.data().pagerank = newval;
 vertex.data().counter++;
 if (vertex.data().counter < 10)
 vertex.signal();
 }

If counter < 10, signal to scheduler to run the
vertex program on the vertex again at some
point in the future

Per-vertex “counter”

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

 CMU 15-418/618, Spring 2018

Signal: general primitive for scheduling work
Parts of graph may converge at different rates
(iterate PageRank until convergence, but only for vertices that need it)
class pagerank_program:
 public graphlab::ivertex_program<graph_type, double>,
 public graphlab::IS_POD_TYPE {

private:
 bool perform_scatter;

public:

 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
 const gather_type& total) {
 double newval = total * 0.85 + 0.15;
 double oldval = vertex.data().pagerank;
 vertex.data().pagerank = newval;
 perform_scatter = (std::fabs(oldval - newval) > 1E-3);
 }

 // Scatter now needed if algorithm has not converged
 edge_dir_type scatter_edges(icontext_type& context,
 const vertex_type& vertex) const {
 if (perform_scatter) return graphlab::OUT_EDGES;
 else return graphlab::NO_EDGES;
 }

 // Make sure surrounding vertices are scheduled
 void scatter(icontext_type& context, const vertex_type& vertex,
 edge_type& edge) const {
 context.signal(edge.target());
 }
};

Schedule update of
neighbor vertices

Check for convergence

Private variable set during apply phase,
used during scatter phase

 CMU 15-418/618, Spring 2018

Synchronizing parallel execution
Local neighborhood of vertex (vertex’s “scope”) can be read and written to by a vertex
program

Programs specify what granularity of
atomicity (“consistency”) they want
GraphLab runtime to provide: this
determines amount of available parallelism

- “Full consistency”: implementation
ensures no other execution reads or
writes to data in scope of v when vertex
program for v is running.

- “Edge consistency”: no other execution
reads or writes any data in v or in edges
adjacent to v

- “Vertex consistency”: no other execution
reads or writes to data in v ...

= vertex or edge data in scope of red vertex

current vertex

 CMU 15-418/618, Spring 2018

GraphLab: job scheduling order
GraphLab implements several work scheduling policies
- Synchronous: update all scheduled vertices “simultaneously” (vertex programs

observe no updates from programs run on other vertices in same “round”)

Run vertex programs for all
scheduled vertices.
(output to copy of graph structure)

Updated graph
(stored in data structure B)

Updated graph
(stored in data structure A)

Run vertex programs for all
scheduled vertices.
(output to copy of graph structure)

Graph
(stored in data structure A)

 CMU 15-418/618, Spring 2018

GraphLab: job scheduling order
▪ GraphLab implements several work scheduling policies

- Synchronous: update all vertices simultaneously (vertex programs observe no
updates from programs run on other vertices in same “round”)

- Round-robin: vertex programs observe most recent updates
- Graph coloring: Avoid simultaneous updates by adjacent vertices
- Dynamic: based on new work created by signal

- Several implementations: fifo, priority-based, “splash” ...

▪ Application developer has flexibility for choosing consistency guarantee and
scheduling policy
- Implication: choice of schedule impacts program’s correctness/output
- Our opinion: this seems like a weird design at first glance, but this is common

(and necessary) in the design of efficient graph algorithms

 CMU 15-418/618, Spring 2018

Summary: GraphLab concepts
▪ Program state: data on graph vertices and edges + globals

▪ Operations: per-vertex update programs and global reduction
functions (reductions not discussed today)
- Simple, intuitive description of work (follows mathematical formulation)

- Graph restricts data access in vertex program to local neighborhood

- Asynchronous execution model: application creates work dynamically by
“signaling vertices” (enable lazy execution, work efficiency on real graphs)

▪ Choice of scheduler and consistency implementation
- In this domain, the order in which nodes are processed can be critical property

for both performance and quality of result

- Application responsible for choosing right scheduler for its needs

 CMU 15-418/618, Spring 2018

Elements of good domain-specific
programming system design

 CMU 15-418/618, Spring 2018

#1: good systems identify the most important cases,
and provide most benefit in these situations

▪ Structure of code should mimic natural structure of problems in the
domain
- e.g., graph processing algorithms are designed in terms of per-vertex

operations

▪ Efficient expression: common operations are easy and intuitive to express

▪ Efficient implementation: the most important optimizations in the
domain are performed by the system for the programmer
- Our experience: a parallel programming system with “convenient” abstractions

that precludes best-known implementation strategies will almost always fail

 CMU 15-418/618, Spring 2018

#2: good systems are usually simple systems

▪ They have a small number of key primitives and operations
- GraphLab: run computation per vertex, trigger new work by signaling

- But GraphLab’s design gets messy with all the scheduling options
- Halide: only a few scheduling primitives
- Hadoop: map + reduce

▪ Allows compiler/runtime to focus on optimizing these primitives
- Provide parallel implementations, utilize appropriate hardware

▪ Common question that good architects ask: “do we really need that?”
(can this concept be reduced to a primitive we already have?)
- For every domain-specific primitive in the system: there better be a strong

performance or expressivity justification for its existence

 CMU 15-418/618, Spring 2018

#3: good primitives compose

▪ Composition of primitives allows for wide application scope,
even if scope remains limited to a domain
- e.g., frameworks discussed today support a wide variety of graph algorithms

▪ Composition often allows for generalizable optimization

▪ Sign of a good design:
- System ultimately is used for applications original designers never anticipated

▪ Sign that a new feature should not be added (or added in a
better way):
- The new feature does not compose with all existing features in the system

 CMU 15-418/618, Spring 2018

Optimizing graph computations
(now we are talking about implementation)

 CMU 15-418/618, Spring 2018

Wait a minute…
▪ So far in this lecture, we’ve discussed issues such as parallelism,

synchronization …

▪ But graph processing typically has low arithmetic intensity

R[i] =
1� ↵

N
+ ↵

X

j links to i

R[j]

Outlinks[j]

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop

VTune profiling results: Memory bandwidth bound!

Walking over edges accesses
information from “random”
graph vertices

 CMU 15-418/618, Spring 2018

Two ideas to increase the performance of
operations on large graphs *

1. Reorganize graph structure to increase locality

2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge

 CMU 15-418/618, Spring 2018

Directed graph representation

1
2 3 3 5

2 3
2 4 5 6

4
1 2 3 6
5

1 5Outgoing Edges
Vertex Id 6

2 4

Vertex Id
Incoming Edges 4 5

1 2
1 3 5 6

3
1 2 5

4
3 6

5
2 3 4

6
3 6

1

2

3

4
5

6

 CMU 15-418/618, Spring 2018

Memory footprint challenge of large graphs
▪ Challenge: cannot fit all edges in memory for large graphs

(graph vertices may fit)
- From example graph representation:

- Each edge represented twice in graph structure (as incoming/outgoing edge)
- 8 bytes per edge to represent adjacency

- May also need to store per-edge values (e.g., 4 bytes for a per-edge weight)
- 1 billion edges (modest): ~12 GB of memory for edge information
- Algorithm may need multiple copies of per-edge structures (current, prev data, etc.)

▪ Could employ cluster of machines to store graph in memory
- Rather than store graph on disk

▪ Would prefer to process large graphs on a single machine
- Managing clusters of machines is difficult
- Partitioning graphs is expensive (also needs a lot of memory) and difficult

 CMU 15-418/618, Spring 2018

“Streaming” graph computations
▪ Graph operations make “random” accesses to graph data (edges

adjacent to vertex v may distributed arbitrarily throughout storage)
- Single pass over graph’s edges might make billions of fine-grained accesses to disk

* By fast storage, in this context I mean DRAM. However, techniques for streaming from disk into memory
would also apply to streaming from memory into a processor’s cache

▪ Streaming data access pattern
- Make large, predictable data accesses to slow storage

(achieve high bandwidth data transfer)
- Load data from slow storage into fast storage*, then

reuse it as much as possible before discarding it
(achieve high arithmetic intensity)

- Can we restructure graph data structure so that data
access requires only a small number of efficient bulk
loads/stores from slow storage?

Processor

Fast storage
(low latency, high BW,

low capacity)

Slow storage
(high latency, low BW,

high capacity)

Disk, SSD, etc.

 CMU 15-418/618, Spring 2018

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

Notice: to construct subgraph containing vertices in shard 1 and their incoming and
outgoing edges, only need to load contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes

Yellow = data required to process subgraph
containing vertices in shard 1

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

1

2

3

4
5

6
src dst value src dst value src dst value
1 2 0.3
3 2 0.2

4 1 0.8

5 1 0.25
 2 0.6

6 2 0.1

1 3 0.4
2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
 6 0.85

4 5 0.3

5 6 0.2

 CMU 15-418/618, Spring 2018

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

1

2

3

4
5

6

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

Yellow = data required to process subgraph
containing vertices in shard 2

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value
1 2 0.3
3 2 0.2

4 1 0.8

5 1 0.25
 2 0.6

6 2 0.1

1 3 0.4
2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
 6 0.85

4 5 0.3

5 6 0.2

 CMU 15-418/618, Spring 2018

Sharded graph representation
- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

1

2

3

4
5

6

Observe: due to sort of incoming edges, iterating over all intervals results in
contiguous sliding window over the shards

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

Yellow = data required to process subgraph
containing vertices in shard 3

Shard 1:
vertices (1-2)

Shard 2:
vertices (3-4)

Shard 3:
vertices (5-6)

src dst value src dst value src dst value
1 2 0.3
3 2 0.2

4 1 0.8

5 1 0.25
 2 0.6

6 2 0.1

1 3 0.4
2 3 0.9

3 4 0.15

5 3 0.2

6 4 0.9

2 5 0.6

3 5 0.9
 6 0.85

4 5 0.3

5 6 0.2

 CMU 15-418/618, Spring 2018

Putting it all together: looping over all
graph edges
For each partition i of vertices:

- Load shard i (contains all incoming edges)

- For each other shard s

- Load section of s containing data for edges leaving i
and entering s

- Construct subgraph in memory

- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data for next iteration of loop

 CMU 15-418/618, Spring 2018

PageRank in GraphChi
GraphChi is a system that implements the out-of-core sliding window approach

optimization to the PSW method can now be used: On
the first iteration, it creates a sparse index for each shard,
which contains the file indices of each sub-interval. Using
the index, GraphChi can skip unscheduled vertices.

5 Programming Model
Programs written for GraphChi are similar to those written
for Pregel [33] or GraphLab [32], with the following main
differences. Pregel is based on the messaging model, while
GraphChi programs directly modify the values in the edges
of the graph; GraphLab allows programs to directly read
and modify the values of neighbor vertices, which is not
allowed by GraphChi, unless there is enough RAM to
store all vertex values in memory. We now discuss the
programming model in detail, with a running example.

Running Example: As a running example, we use a
simple GraphChi implementation of the PageRank [36]
algorithm. The vertex update-function is simple: at each up-
date, compute a weighted sum of the ranks of in-neighbors
(vertices with an edge directed to the vertex). Incomplete
pseudo-code is shown in Algorithm 4 (definitions of the
two internal functions are model-specific, and discussed
below).The program computes by executing the update
function for each vertex in turn for a predefined number of
iterations.4

Algorithm 4: Pseudo-code of the vertex update-
function for weighted PageRank.

typedef: VertexType float1
Update(vertex) begin2

var sum 03
for e in vertex.inEdges() do4

sum += e.weight * neighborRank(e)5
end6
vertex.setValue(0.15 + 0.85 * sum)7
broadcast(vertex)8

end9

Standard Programming Model: In the standard set-
ting for GraphChi, we assume that there is not enough
RAM to store the values of vertices. In the case of PageR-
ank, the vertex values are floating point numbers corre-
sponding to the rank (Line 1 of Algorithm 4).

The update-function needs to read the values of its neigh-
bors, so the only solution is to broadcast vertex values via
the edges. That is, after an update, the new rank of a vertex
is written to the out-edges of the vertex. When neighboring

4Note that this implementation is not optimal, we discuss a more
efficient version in the next section

vertex is updated, it can access the vertex rank by reading
the adjacent edge’s value, see Algorithm 5.

Algorithm 5: Type definitions, and implementations
of neighborRank() and broadcast() in the standard
model.

typedef: EdgeType { float weight, neighbor rank; }1
neighborRank(edge) begin2

return edge.weight * edge.neighbor rank3
end4
broadcast(vertex) begin5

for e in vertex.outEdges() do6
e.neighbor rank = vertex.getValue()7

end8

end9

If the size of the vertex value type is small, this model
is competitive even if plenty of RAM is available. There-
fore, for better portability, it is encouraged to use this form.
However, for some applications, such as matrix factoriza-
tion (see Section 6), the vertex value can be fairly large
(tens of bytes), and replicating it to all edges is not efficient.
To remedy this situation, GraphChi supports an alternative
programming model, discussed next.

Alternative Model: In-memory Vertices: It is com-
mon that the number of vertices in a problem is relatively
small compared to the number of edges, and there is suf-
ficient memory to store the array of vertex values. In this
case, an update-function can read neighbor values directly,
and there is no need to broadcast vertex values to incident
edges (see Algorithm 6).

Algorithm 6: Datatypes and implementations of
neighborRank() and broadcast() in the alternative
model.

typedef: EdgeType { float weight; }1
float[] in mem vert2
neighborRank(edge) begin3

return edge.weight * in mem vert[edge.vertex id]4
end5
broadcast(vertex) /* No-op */6

We have found this model particularly useful in several
collaborative filtering applications, where the number of
vertices is typically several orders of magnitude smaller
than the number of edges, and each vertex must store a
vector of floating point values. The ability to access directly
vertex values requires us to consider consistency issues.
Fortunately, as GraphChi sequentializes updates of vertices
that share an edge, read-write races are avoided assuming
that the update-function does not modify other vertices.

9

PageRank in GraphChi:

Take per-vertex rank and distribute to all outbound edges
(memory inefficient: replicates per-vertex rank to all edges)

optimization to the PSW method can now be used: On
the first iteration, it creates a sparse index for each shard,
which contains the file indices of each sub-interval. Using
the index, GraphChi can skip unscheduled vertices.

5 Programming Model
Programs written for GraphChi are similar to those written
for Pregel [33] or GraphLab [32], with the following main
differences. Pregel is based on the messaging model, while
GraphChi programs directly modify the values in the edges
of the graph; GraphLab allows programs to directly read
and modify the values of neighbor vertices, which is not
allowed by GraphChi, unless there is enough RAM to
store all vertex values in memory. We now discuss the
programming model in detail, with a running example.

Running Example: As a running example, we use a
simple GraphChi implementation of the PageRank [36]
algorithm. The vertex update-function is simple: at each up-
date, compute a weighted sum of the ranks of in-neighbors
(vertices with an edge directed to the vertex). Incomplete
pseudo-code is shown in Algorithm 4 (definitions of the
two internal functions are model-specific, and discussed
below).The program computes by executing the update
function for each vertex in turn for a predefined number of
iterations.4

Algorithm 4: Pseudo-code of the vertex update-
function for weighted PageRank.

typedef: VertexType float1
Update(vertex) begin2

var sum 03
for e in vertex.inEdges() do4

sum += e.weight * neighborRank(e)5
end6
vertex.setValue(0.15 + 0.85 * sum)7
broadcast(vertex)8

end9

Standard Programming Model: In the standard set-
ting for GraphChi, we assume that there is not enough
RAM to store the values of vertices. In the case of PageR-
ank, the vertex values are floating point numbers corre-
sponding to the rank (Line 1 of Algorithm 4).

The update-function needs to read the values of its neigh-
bors, so the only solution is to broadcast vertex values via
the edges. That is, after an update, the new rank of a vertex
is written to the out-edges of the vertex. When neighboring

4Note that this implementation is not optimal, we discuss a more
efficient version in the next section

vertex is updated, it can access the vertex rank by reading
the adjacent edge’s value, see Algorithm 5.

Algorithm 5: Type definitions, and implementations
of neighborRank() and broadcast() in the standard
model.

typedef: EdgeType { float weight, neighbor rank; }1
neighborRank(edge) begin2

return edge.weight * edge.neighbor rank3
end4
broadcast(vertex) begin5

for e in vertex.outEdges() do6
e.neighbor rank = vertex.getValue()7

end8

end9

If the size of the vertex value type is small, this model
is competitive even if plenty of RAM is available. There-
fore, for better portability, it is encouraged to use this form.
However, for some applications, such as matrix factoriza-
tion (see Section 6), the vertex value can be fairly large
(tens of bytes), and replicating it to all edges is not efficient.
To remedy this situation, GraphChi supports an alternative
programming model, discussed next.

Alternative Model: In-memory Vertices: It is com-
mon that the number of vertices in a problem is relatively
small compared to the number of edges, and there is suf-
ficient memory to store the array of vertex values. In this
case, an update-function can read neighbor values directly,
and there is no need to broadcast vertex values to incident
edges (see Algorithm 6).

Algorithm 6: Datatypes and implementations of
neighborRank() and broadcast() in the alternative
model.

typedef: EdgeType { float weight; }1
float[] in mem vert2
neighborRank(edge) begin3

return edge.weight * in mem vert[edge.vertex id]4
end5
broadcast(vertex) /* No-op */6

We have found this model particularly useful in several
collaborative filtering applications, where the number of
vertices is typically several orders of magnitude smaller
than the number of edges, and each vertex must store a
vector of floating point values. The ability to access directly
vertex values requires us to consider consistency issues.
Fortunately, as GraphChi sequentializes updates of vertices
that share an edge, read-write races are avoided assuming
that the update-function does not modify other vertices.

9

Alternative model: assume vertex data can be kept in memory and redefine neighborRank() function

 CMU 15-418/618, Spring 2018

Performance on a Mac mini (8 GB RAM)

Throughput (edges/sec) remains stable as graph size is increased
- Desirable property: throughput largely invariant of dataset size

0 2 4 6 8
x 109

0.5

1

1.5

2

2.5

3x 107

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Pagerank

WebBP

Conn. comp.

Student Version of MATLAB

(a) Performance: SSD

0 2 4 6 8
x 109

4

6

8

10

12

14 x 106

Number of edges
Th

ro
ug

hp
ut

 (e
dg

es
/s

ec
)

Conn. comp.

WebBP

Pagerank

Student Version of MATLAB

(b) Performance : Hard drive

0

500

1000

1500

2000

2500

1 thread 2 threads 4 threads

Disk IO Graph construction Exec. updates

(c) Runtime breakdown

Figure 7: (a,b) Computational throughput of GraphChi on the experiment graphs (x-axis is the number of edges)
on SSD and hard drive (higher is better), without selective scheduling, on three different algorithms. The trend-line
is a least-squares fit to the average throughput of the applications. GraphChi performance remains good as the input
graphs grow, demonstrating the scalability of the design. Notice different scales on the y-axis. . (c) Breakdown of the
processing phases for the Connected Components algorithm (3 iterations, uk-union graph; Mac Mini, SSD).

0

500

1000

1500

2000

2500

3000

Pagerank Conn. components

Secs 1 disk 2 disks 3 disks

(a) Multiple hard drives

102 104 106 1080

5

10

15
x 106

Blocksize (bytes)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

SSD

Hard drive

Student Version of MATLAB

(b) Disk block size

101 102 1030

0.5

1

1.5

2x 107

Number of shards (P)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn comp. (SSD)

Pagerank (SSD)

Pagerank (HD)

Conn comp. (HD)

Student Version of MATLAB

(c) Number of shards

Figure 8: (a) Runtime of 3 iterations on the uk-union graph, when data is striped across 2 or 3 hard drives (AMD
server). (b) Impact of the block size used for disk I/O (x-axis is in log-scale). (c) The number of shards has little impact
on performance, unless P is very large.

Next, we studied the bottlenecks of GraphChi. Figure
7c shows the break-down of time used for I/O, graph con-
struction and actual updates with Mac Mini (SSD) when
running the Connected Components algorithm.We disabled
asynchronous I/O for the test, and actual combined running
time is slightly less than shown in the plot. The test was
repeated by using 1, 2 and 4 threads for shard processing
and I/O. Unfortunately, the performance is only slightly
improved by parallel operation. We profiled the execution,
and found out that GraphChi is able to nearly saturate the
SSD with only one CPU, and achieves combined read/write
bandwidth of 350 MB/s. GraphChi’s performance is lim-
ited by the I/O bandwidth. More benefit from parallelism
can be gained if the computation itself is demanding, as
shown in Figure 6. This experiment was made with a mid-
2012 model MacBook Pro with a four-core Intel i7 CPU.

We further analyzed the relative performance of the

disk-based GraphChi to a modified in-memory version of
GraphChi. Table 3 shows that on tasks that are computa-
tionally intensive, such as matrix factorization, the disk
overhead (SSD) is small, while on light tasks such as com-
puting connected components, the total running time can
be over two times longer. In this experiment, we compared
the total time to execute a task, from loading the graph
from disk to writing the results into a file. For the top two
experiments, the live-journal graph was used, and the last
two experiments used the netflix graph. The larger graphs
did not fit into RAM.

Evolving Graphs: We evaluated the performance of
GraphChi on a constantly growing graph. We inserted
edges from the twitter-2010 graph, with rates of 100K and
200K edges in second, while simultaneously running Pager-
ank. Edges were loaded from the hard drive, GraphChi
operated on the SSD. Figure 9a shows the throughput over

13

 CMU 15-418/618, Spring 2018

Graph compression
▪ Recall: graph operations are often BW-bound

▪ Implication: using CPU instructions to reduce BW requirements
can benefit overall performance (the processor is waiting on
memory anyway!)

▪ Idea: store graph compressed in memory, decompress on-the-fly
when operation wants to read data

 CMU 15-418/618, Spring 2018

Compressing an edge list
1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000Outgoing Edges

Vertex Id

1. Sort edges for each vertex

2. Compute differences

3. Group into sections requiring same number of bytes

4. Encode deltas

32

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

0 1 4 20 971 9 14 1 5 98070 100000 75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

-27 1 4 20 971 9 14 1 5 98070 100000 75000
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2 bytes 1 byte 4 bytes1 byte

1-byte group header

2 bits: encoding width (1, 2, 4 bytes)
6 bits: number of edges in group

Compressed encoding: 26 bytes

[ONE_BYTE, 4], -27, 1, 4, 20

[TWO_BYTE, 1], 971

[ONE_BYTE, 4], 9, 14, 1, 5

[FOUR_BYTE, 3], 98070, 100000, 75000

(5 bytes)

(3 bytes)

(5 bytes)

(13 bytes)

Uncompressed encoding: 12 x 4 bytes = 48 bytes

relative to
vertex index

 CMU 15-418/618, Spring 2018

Performance impact of graph compression

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on a single thread

original Ligra
byte

byte-RLE
nibble

Figure 6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left) and on 40 cores with hyper-
threading (center). Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading (right).

Figure 7: Peak memory usage of graph algorithms on com-LJ (left), com-Orkut (center) and nlpkkt240 (right).

scan over each vertex’s edges, and is done in parallel. We also plot the average performance
per application of Ligra+ with each encoding scheme relative to Ligra in Figure 6 (left
and center). We see that sequentially, Ligra+ is slower on average than Ligra for all of
the applications except PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is
faster on all applications. In parallel, Ligra+ using nibble codes is still generally slower than
Ligra due to the high overhead of decoding, but not by as much as on a single thread (see
Figure 6). Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is
generally faster than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the e↵ect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE codes
is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In parallel,
Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs with
better compression (e.g. nlpkkt240 and uk-union) tend to have better performance in Ligra+.
For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices tend to have
higher degrees and neighbors no longer fit on a cache line, making the reduced memory
footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra by about 3%,
13% and 73% on average when using byte-RLE, byte, and nibble codes, respectively.

We plot the average parallel self-relative speedups (T1/T40) over all inputs of each of
the coding schemes per application in Figure 6 (right). Both Ligra and Ligra+ achieve
good speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the
overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.
Memory Usage. In Figure 7, we plot the peak memory usage of the applications using Ligra

 0.8

 1

 1.2

 1.4

 1.6

 1.8

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

Figure 6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left) and on 40 cores with hyper-
threading (center). Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading (right).

Figure 7: Peak memory usage of graph algorithms on com-LJ (left), com-Orkut (center) and nlpkkt240 (right).

scan over each vertex’s edges, and is done in parallel. We also plot the average performance
per application of Ligra+ with each encoding scheme relative to Ligra in Figure 6 (left
and center). We see that sequentially, Ligra+ is slower on average than Ligra for all of
the applications except PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is
faster on all applications. In parallel, Ligra+ using nibble codes is still generally slower than
Ligra due to the high overhead of decoding, but not by as much as on a single thread (see
Figure 6). Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is
generally faster than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the e↵ect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE codes
is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In parallel,
Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs with
better compression (e.g. nlpkkt240 and uk-union) tend to have better performance in Ligra+.
For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices tend to have
higher degrees and neighbors no longer fit on a cache line, making the reduced memory
footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra by about 3%,
13% and 73% on average when using byte-RLE, byte, and nibble codes, respectively.

We plot the average parallel self-relative speedups (T1/T40) over all inputs of each of
the coding schemes per application in Figure 6 (right). Both Ligra and Ligra+ achieve
good speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the
overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.
Memory Usage. In Figure 7, we plot the peak memory usage of the applications using Ligra

Re
la

tiv
e r

un
tim

e

Running time on 40 cores
(relative to no compression)

Running time on one core
(relative to no compression)

Re
la

tiv
e r

un
tim

e

▪ Benefit of graph compression increases with higher core count, since
computation is increasingly bandwidth bound

▪ Performance improves even if graphs already fit in memory
- Added benefit is that compression enables larger graphs to fit in memory

* Different data points on graphs are different compression schemes
(byte-RLE is the scheme on the previous slide)

[Shun et al. DCC 2015]

 CMU 15-418/618, Spring 2018

Summary
▪ Today there is significant interest in high performance

computation on large graphs

▪ Graph processing frameworks abstract details of efficient
graph processing from application developer
- handle parallelism and synchronization for the application developer

- handle graph distribution (across a cluster)

- may also handle graph compression and efficient iteration order (e.g., to
efficiently stream off slow storage)

▪ Great example of domain-specific programming frameworks
- for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+

