Domain-sbeciﬁc
programming on graphs

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018



Last time: Increasing acceptance of
domain-specific programming systems

m Challenge to programmers: modern computers are parallel, heterogeneous machines
(HW architects striving for high area and power efficiency)

B Programming systems trend: give up generality in what types of programs can be
expressed in exchange for achieving high productivity and high performance

B “Performance portability” is a key goal: programs should execute efficiently on a
variety of parallel platforms

- Good implementations of same program for different systems required different
data structures, algorithms, and approaches to parallelization — not just
differences in low-level code generation (not a matter of generating SSE vs. AVX vs
ARM Neon vs. NVIDIA PTX instructions)

(MU 15-418/618, Spring 2018



Today’s topic: analyzing big graphs

m  Many modern applications:

- Web search results, recommender systems, influence
determination, advertising, anomaly detection, etc.

m Public dataset examples:

Twitter social graph, Wikipedia term occurrences, IMDB actors,
Netflix, Amazon communities, G+

Good source of public graphs:
https://snap.stanford.edu/data/
(Jure Leskovec, CMU PhD, 2008)

(MU 15-418/618, Spring 2018



Thought experiment: if we wanted to design a
programming system for computing on graphs,
where might we begin?

What abstractions do we need?



Whenever I'm trying to assess the importance of a
new programming system, | ask two questions:

m “What tasks/problems does the system take off the hands of the programmer?
- (are these problems challenging or tedious enough that | feel the system is
adding sufficient value for me to want to use it?)”

m “What problems does the system leave as the responsibility for the programmer?”
= (likely because the programmer is better at these tasks)

Liszt (recall last class): Halide (recall last class):
Programmer’s responsibility: Programmer’s responsibility:
- Describe mesh connectivity and fields defined on mesh - Describing image processing algorithm as pipeline of
- Describe operations on mesh structure and fields operations on images
- Describing the schedule for executing the pipeline (e.g.,
Liszt system’s responsibility: “block this loop, “parallelize this loop”, “fuse these stages”)

- Parallelize operations without violating dependencies or
creating data races (uses different algorithms to parallelize
application on different platforms)

- Choose graph data structure / layout, partition graph across
parallel machine, manage low-level communication (MPI send),
allocate ghost cells, etc.

Halide system’s responsibility:

- Implementing the schedule using mechanisms available on
the target machine (spawning pthreads, allocating temp
buffers, emitting vector instructions, loop indexing code)

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc. CMU 15-418/618, Spring 2018



Programming system design questions:

m What are the fundamental operations we want to be easy to
express and efficient to execute?

m What are the key optimizations performed by the best
implementations of these operations?

= high-level abstractions should not prevent these
- maybe even allow system to perform them for the application

(MU 15-418/618, Spring 2018



Example graph computation: Page Rank

Page Rank: iterative graph algorithm
m Devised by Larry Page & Sergey Brinn, 1996
Graph nodes = web pages

Graph edges = links between pages

discount

Co1_a | Rlj
R[i| = T Z ~Outlinks[]

A 7 linksto 4

|

Weighted combination of
rank of pages that link to it

Rank of page i

(MU 15-418/618, Spring 2018



GraphlLab Graphlatf

Carnegie Mellon “LJ}"

m A system for describing iterative computations on graphs

m History:
- 2009 Prof Carlos Guestrin at CMU, then at U Washington
- 2013 Commercialized as Turi

= 2016 Acquired by Apple
B |Implemented as a (++ runtime

® Runs on shared memory machines or distributed across clusters

- GraphLab runtime takes responsibility for scheduling work
in parallel, partitioning graphs across clusters of machines,
communication between master, etc.

(MU 15-418/618, Spring 2018



GraphLab programs: state

m Thegraph:G=(V,E)

- Application defines data blocks on each vertex and directed edge
= D, =data associated with vertex v

= D,—,=dataassociated with directed edge u—v

m Read-only global data

- (Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice: | always first describe program state

And then describe what operations are
available to manipulate this state

(MU 15-418/618, Spring 2018



GraphLab operations: the vertex program

m Defines per-vertex operations on the vertex’s local neighborhood
m Neighborhood (aka “scope”) of vertex:

- The current vertex current vertex
- Adjacent edges

- Adjacent vertices

= vertex or edge data “in scope” of red vertex
(graph data that can be accessed when executing a
vertex program at the current (red) vertex)

(MU 15-418/618, Spring 2018



Simple example: PageRank *

o, Rj
R[i] = N + o Z ~Outlinks|j]

7 links to ¢

PageRank_vertex_program(vertex i) {

double sum = 0;
foreach(vertex j : in_neighbors(i)) {
sum = sum + j.rank / num_out_neighbors(j);

}

} i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum; (Shown for a = 085)

Programming in GraphLab amounts to defining how to update graph state at each
vertex. The system takes responsibility for scheduling and parallelization.

*This is made up syntax for slide simplicity: actual syntax is C(++, as we'll see on the next slide CMU 15-418/618, Spring 2018



Graphlab: data access

m The application’s vertex program executes per-vertex
® The vertex program defines:

- What adjacent edges are inputs to the computation

- What computation to perform per edge

- How to update the vertex’s value

- What adjacent edges are modified by the computation
- How to update these output edge values

m Note how GraphLab requires the program to tell it all data
that will be accessed, and whether it is read or write access

(MU 15-418/618, Spring 2018



GraphLab-generated vertex program (C++ code)

struct web_page {
std::string pagename;
double pagerank;
web_page(): pagerank(0.0) { }

Graph has record of type

web_page pervertex,

class pagerank_program: and no data on edges
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type; :[7

public:
// we are going to gather on all the in-edges
edge_dir_type gather_edges(icontext_type& context, Define edges to gather
const vertex_type& vertex) const { in “aath hase”

graphlab: :IN_EDGES; over in“gather phase

}

// for each in-edge gather the weighted sum of the edge. Compute value to

double gather(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const { accumulate for

edge.source().data().pagerank / edge.source().num_out_edges(); eachedge

}

// Use the total rank of adjacent pages to update this page

void apply(icontext_type& context, vertex_type& vertex, Updateveﬂrxrank

const gather_type& total) {
double newval = total * 90.85 + 0.15;
vertex.data().pagerank = newval;

}
// No scatter needed. Return NO_EDGES _
edge_dir _type scatter_edges(icontext_type& context, PageRank example
const vertex_type& vertex) const { performs no scatter
graphlab: :NO_EDGES;
} i

}s CMU 15-418/618, Spring 2018



Running the program

graphlab: :omni_engine<pagerank_program> engine(dc, graph, "sync");
engine.signal_all();
engine.start();

GraphLab runtime provides “engines” that manage scheduling of vertex programs
engine.signal_all() marks all vertices for execution

You can think of the GraphLab runtime as a work queue scheduler.
And invoking a vertex program on a vertex as a task that is placed in the work queue.

So it’s reasonable to read the code above as: “place all vertices into the work queue”
Or as: “foreach vertex” run the vertex program.

CMU 15-418/618, Spring 2018



Vertex signaling: GraphLab’s mechanism for
generating new work

. Rlj
RJ[i] = N T Z Outlinks|[j]

7 linksto 1

Iterate update of all R[i]’s 10 times
Uses generic “signal” primitive (could also wrap code on previous slide in a for loop)

struct web_page {

std::string pagename; Per-vertex “counter”
int counter;

web_page(): pagerank(@.0),counter(0) { }
}

// Use the total rank of adjacent pages to update this page
void apply(icontext_type& context, vertex_type& vertex,

const gather_type& total) {
double newval = total * 0.85 + 0.15;
vertex.data().pagerank = newval;
vertex.data().counter++; If counter < 10, signal to scheduler to run the
if (vertex.data().counter < 10) .

vertex program on the vertex again at some

vertex.signal(); . L.
point in the future

(MU 15-418/618, Spring 2018



Signal: general primitive for scheduling work

Parts of graph may converge at different rates
(iterate PageRank until convergence, but only for vertices that need it)

class pagerank_program:
public graphlab::ivertex_program<graph_type, double>,
public graphlab::IS_POD_TYPE {

private: ]E Private variable set during apply phase,

bool perform_scatter; .
’ used during scatter phase
public:

// Use the total rank of adjacent pages to update this page
void apply(icontext_type& context, vertex_type& vertex,
const gather_type& total) {
double newval = total * 0.85 + 0.15;
double oldval = vertex.data().pagerank;
vertex.data().pagerank = newval;

perform_scatter = (std::fabs(oldval - newval) > 1E-3); I— (heckforconvergence
}

// Scatter now needed if algorithm has not converged
edge_dir_type scatter_edges(icontext_type& context,
const vertex_type& vertex) const {
(perform_scatter) graphlab: :OUT_EDGES;
graphlab: :NO_EDGES;

}
// Make sure surrounding vertices are scheduled
void scatter(icontext_type& context, const vertex_type& vertex, Schedule update of
edge_type& edge) const { . .
context.signal(edge.target()); nelghbor vertices
}
}s

(MU 15-418/618, Spring 2018



Synchronizing parallel execution

Local neighborhood of vertex (vertex’s “scope”) can be read and written to by a vertex
program

Programs specify what granularity of
atomicity (“consistency”) they want
GraphLab runtime to provide: this
determines amount of available parallelism

current vertex

— “Full consistency”: implementation
ensures no other execution reads or

writes to data in scope of v when vertex

program for v is running.

— “Edge consistency”: no other execution
reads or writes any data in v or in edges
adjacentto v

= vertex or edge data in scope of red vertex — “Yertex consistency”: no other execution

reads or writestodatainv ...

(MU 15-418/618, Spring 2018



GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all scheduled vertices “simultaneously” (vertex programs
observe no updates from programs run on other vertices in same “round”)

Graph Updated graph Updated graph
(stored in data structure A) (stored in data structure B) (stored in data structure A)

Run vertex programs for all
scheduled vertices.
(output to copy of graph structure)

Run vertex programs for all
scheduled vertices.
(output to copy of graph structure)

(MU 15-418/618, Spring 2018



GraphLab: job scheduling order

m GraphLab implements several work scheduling policies
- Synchronous: update all vertices simultaneously (vertex programs observe no
updates from programs run on other vertices in same “round”)
= Round-robin: vertex programs observe most recent updates
= Graph coloring: Avoid simultaneous updates by adjacent vertices
- Dynamic: based on new work created by signal
- Several implementations: fifo, priority-based, “splash” ...

B Application developer has flexibility for choosing consistency guarantee and
scheduling policy
- Implication: choice of schedule impacts program’s correctness/output

= Our opinion: this seems like a weird design at first glance, but this is common
(and necessary) in the design of efficient graph algorithms

(MU 15-418/618, Spring 2018



Summary: GraphLab concepts

m Program state: data on graph vertices and edges + globals

m (perations: per-vertex update programs and global reduction
functions (reductions not discussed today)
- Simple, intuitive description of work (follows mathematical formulation)
- Graph restricts data access in vertex program to local neighborhood

- Asynchronous execution model: application creates work dynamically by
“signaling vertices” (enable lazy execution, work efficiency on real graphs)

m (Choice of scheduler and consistency implementation

= In this domain, the order in which nodes are processed can be critical property
for both performance and quality of result

- Application responsible for choosing right scheduler for its needs

(MU 15-418/618, Spring 2018



Elements of good domain-specific
programming system design



#1: good systems identify the most important cases,
and provide most benefit in these situations

® Structure of code should mimic natural structure of problems in the
domain
- e.g., graph processing algorithms are designed in terms of per-vertex
operations

m Efficient expression: common operations are easy and intuitive to express

m Efficient implementation: the most important optimizations in the
domain are performed by the system for the programmer

- Qur experience: a parallel programming system with “convenient” abstractions
that precludes best-known implementation strategies will almost always fail

(MU 15-418/618, Spring 2018



#2: good systems are usually simple systems

B They have a small number of key primitives and operations

- GraphLab: run computation per vertex, trigger new work by signaling
- But GraphLab’s design gets messy with all the scheduling options

- Halide: only a few scheduling primitives

- Hadoop: map + reduce

m Allows compiler/runtime to focus on optimizing these primitives

- Provide parallel implementations, utilize appropriate hardware

m Common question that good architects ask: “do we really need that?”
(can this concept be reduced to a primitive we already have?)

- For every domain-specific primitive in the system: there better be a strong
performance or expressivity justification for its existence

(MU 15-418/618, Spring 2018



#3: good primitives compose

Composition of primitives allows for wide application scope,
even if scope remains limited to a domain

— e.g., frameworks discussed today support a wide variety of graph algorithms

Composition often allows for generalizable optimization

Sign of a good design:

— System ultimately is used for applications original designers never anticipated

Sign that a new feature should not be added (or added ina
better way):

— The new feature does not compose with all existing features in the system

(MU 15-418/618, Spring 2018



Optimizing graph computations

(now we are talking about implementation)

(MU 15-418/618, Spring 2018



Wait a minute...

m  So farin this lecture, we've discussed issues such as parallelism,
synchronization ...

m But graph processing typically has low arithmeticintensity

VTune profiling results: Memory bandwidth bound!

Walking over edges accesses
information from “random”
graph vertices

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop

o R[j|
Rli] = N T Z Outlinks|[j]

7 linksto 1

(MU 15-418/618, Spring 2018



Two ideas to increase the performance of
operations on large graphs *

1. Reorganize graph structure to increase locality

2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge
(MU 15-418/618, Spring 2018



Directed graph representation

VertexId 1 2 3 4 5 6
Outgoingkdges 2 3 '3 5/2 4561512362414
Vertex Id 1 2 3 4 5 6
IncomingEdges 4 51 3 56 12536 23436

(MU 15-418/618, Spring 2018



Memory footprint challenge of large graphs

m (Challenge: cannot fit all edges in memory for large graphs
(graph vertices may fit)

- From example graph representation:
- Each edge represented twice in graph structure (as incoming/outgoing edge)
- 8 bytes per edge to represent adjacency
- May also need to store per-edge values (e.g., 4 bytes for a per-edge weight)
= 1hbillion edges (modest): ~12 GB of memory for edge information
- Algorithm may need multiple copies of per-edge structures (current, prev data, etc.)

m Could employ cluster of machines to store graph in memory
- Rather than store graph on disk

m Would prefer to process large graphs on a single machine

- Managing clusters of machines is difficult
- Partitioning graphs is expensive (also needs a lot of memory) and difficult

(MU 15-418/618, Spring 2018



“Streaming” graph computations

m Graph operations make “random” accesses to graph data (edges

adjacent to vertex v may distributed arbitrarily throughout storage)
- Single pass over graph’s edges might make billions of fine-grained accesses to disk

m Streaming data access pattern Processor

- Make large, predictable data accesses to slow storage
(achieve high bandwidth data transfer)
Fast storage

- Load data from slow storage into fast storage*, then (low latency, high BW,
reuse it as much as possible before discarding it o apadty)
(achieve high arithmeticintensity)

- (Can we restructure graph data structure so that data o
access requires only a small number of efficient bulk (high latency, low BW,

high ity)
loads/stores from slow storage? .'9 capacity
Disk, SSD, etc.

* By fast storage, in this context | mean DRAM. However, techniques for streaming from disk into memory
would also apply to streaming from memory into a processor’s cache CMU 15-418/618, Spring 2018



Sharded graph representation

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard

- Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3:
vertices (1-2) vertices (3-4) vertices (5-6)
src dst value src dst value src dst value
1 2 0.3 1 3 0.4 2 5 0.6
3 2 0.2 2 3 0.9 3 5 0.9
4 1 o.8 3 4 0.15 6 0.85
5 1 @.25|| 5 3 e.2 || 4 > ©3

2 06 [| ¢ 4 9.9 || 5 6 0.2
6 2 0.1

Yellow = data required to process subgraph

containing vertices in shard 1

Notice: to construct subgraph containing vertices in shard 1 and their incoming and
outgoing edges, only need to load contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes

CMU 15-418/618, Spring 2018



Sharded graph representation

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard

- Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3:
vertices (1-2) vertices (3-4) vertices (5-6)
src dst value src dst value src dst value
1 2 0.3 1 3 0.4 2 5 0.6
3 2 0.2 2 3 0.9 3 5 0.9
4 1 o.8 3 4 0.15 6 0.85
5 1 e.25]| 5 3 e.2 || 4 2 @3

2 0.6 6 4 0.9 5 6 0.2
6 2 0.1

Yellow = data required to process subgraph

containing vertices in shard 2

(MU 15-418/618, Spring 2018



Sharded graph representation

GraphChi: Large-scale graph
computation on just a PC
[Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard

- Sort edges in a shard by source vertex id

Shard 1: Shard 2: Shard 3:
vertices (1-2) vertices (3-4) vertices (5-6)
src dst value src dst value src dst value
1 2 0.3 1 3 0.4 2 5 0.6
3 2 0.2 2 3 0.9 3 5 0.9
4 1 0.8 3 4 0.15 6 0.85
5 1 e.25]| 5 3 e.2 || 4 > @3

2 0.6 6 4 9.9 5 6 0.2
6 2 0.1

Yellow = data required to process subgraph

containing vertices in shard 3

Observe: due to sort of incoming edges, iterating over all intervals results in

contiguous sliding window over the shards

(MU 15-418/618, Spring 2018



Putting it all together: looping over all
graph edges

For each partition 1 of vertices:
- Load shard 1 (contains all incoming edges)
- For each other shard s

- Load section of s containing data for edges leaving 1
and entering s

- Construct subgraph in memory
- Do processing on subgraph

Note: a good implementation could hide disk 1/0 by prefetching data for next iteration of loop

(MU 15-418/618, Spring 2018



PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding window approach

PageRank in GraphChi:

1 typedef: VertexType float

2 Update(vertex) begin

3 var sum «— 0

4 for e in vertex.inEdges() do
5 ‘ sum += e.weight * neighborRank(e)
6 end

7 vertex.setValue(0.15 + 0.85 * sum)
8 broadcast(vertex) q—
9

— Take per-vertex rank and distribute to all outbound edges

end (memory inefficient: replicates per-vertex rank to all edges)

Alternative model: assume vertex data can be kept in memory and redefine neighborRank() function
typedef: EdgeType { float weight; }
float[] in_mem_vert
neighborRank(edge) begin
‘ return edge.weight * in_mem_vert[edge.vertex_id]
end

s

wn A W N

CMU 15-418/618, Spring 2018



Performance on a Mac mini (8 GB RAM)

6

53X 10 14%10

’g S B Disk |0 O Graph construction @ Exec. updates
@

3 2.5¢ Pag?erank 2125+ Pagerank 2600
% + % + 2000
g 2, Conn. comp. 3 10/ Conn. comp. *
~—" + x S—" +
-+ = 1500
8_ 1 5; é— 85( T
%-, x o o x 1000
a 1t x % _CED 65 Y ®
= 00 o o M
|£ 0.5 o WebBP ~ . o WGPBP o 500

0 2 4 8 0 2 4 6 8

6
Number of edges

(a) Performance: SSD

9

Number of edges

(b) Performance : Hard drive

9

0

2 threads

4 threads

(¢) Runtime breakdown

Throughput (edges/sec) remains stable as graph size is increased
- Desirable property: throughput largely invariant of dataset size

(MU 15-418/618, Spring 2018



Graph compression

m Recall: graph operations are often BW-bound

m |mplication: using CPU instructions to reduce BW requirements
can benefit overall performance (the processor is waiting on
memory anyway!)

m |dea: store graph compressed in memory, decompress on-the-fly
when operation wants to read data

(MU 15-418/618, Spring 2018



Compressing an edge list

Vertex Id 32
OutgoingEdges 1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000

1. Sort edges for each vertex
5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2. Compute differences

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000
91 4 20 971 9 14 1 5 98070 100000 75000

3. Group into sections requiring same number of bytes

relativeto 2. 610 30 1001 1010 1024 1025 1030 100000 200000 275000
vertexindex  -27:1 420 971 9 14 1 5 98070 100000 75000
| 1 byte | 2 byte; | 1 byte - 4 bytes |
4. Encode deltas Uncompressed encoding: 12 x 4 bytes = 48 bytes

1-byte group header Compressed encoding: 26 bytes

[ONE_BYTE, 4], -27, 1, 4, 20 (5 bytes)
o | [TWO BYTE, 1], 971 (3 bytes)
6 bits: number of edges in group [ONE_BYTE, 4], 9, 14, 1, 5 (5 bytes)

— 2 bits: encoding width (1, 2, 4 bytes)
[FOUR_BYTE, 3], 98070, 100000, 75000 (13 bytes)

(MU 15-418/618, Spring 2018



Performance impact of graph compression

[Shun et al. DCC 2015]

Running time on one core Running time on 40 cores

” (relative to no compression) - (relative to no compression)

2.2 L original Ligra === byte-RLE mmmmmm ' original Ligra === byte-RLE mm—
g '2 | byte mm— nibble mm—m g 1.6 - byte mm— nibble m——
S5 S 1.4 _
v B N v
2 14 i 212 .
s s
[ — = (Y]
(- o 1+

0.8

m  Benefit of graph compression increases with higher core count, since
computation is increasingly bandwidth bound

m  Performance improves even if graphs already fit in memory
- Added benefit is that compression enables larger graphs to fit in memory

* Different data points on graphs are different compression schemes

(byte-RLE is the scheme on the previous slide) CHU 15-418/618, Spring 2018



Summary

m Today there is significant interest in high performance
computation on large graphs

m Graph processing frameworks abstract details of efficient
graph processing from application developer

- handle parallelism and synchronization for the application developer
- handle graph distribution (across a cluster)

- may also handle graph compression and efficient iteration order (e.g., to
efficiently stream off slow storage)

m Great example of domain-specific programming frameworks
- formore, see: GraphLab, GraphX, Pregel, Ligra/Ligra+

(MU 15-418/618, Spring 2018



