Domain-Sbeciﬁc
Programming Systems

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Slide acknowledgments:
Pat Hanrahan, Zach Devito (Stanford University)
Jonathan Ragan-Kelley (MIT)

Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

Techniques discussed:
Exploiting parallelism in applications
Exploiting locality in applications
Leveraging hardware specialization (earlier lecture)

(MU 15-418/618, Spring 2018

Claim: most software uses modern hardware
resources inefficiently

m Consider a piece of sequential C code
- Let’s consider the performance of this code “baseline performance”

m Well-written sequential C code: ~ 5-10x faster

m Assembly language program: another small constant factor faster
® Java, Python, PHP, etc. ??

Credit: Pat Hanrahan CMU 15-418/618, Spring 2018

Code performance: relative to C(single core)

GCC-03 (no manual vector optimizations)

40/57/53 47 44/114x

40

. NBody

35 | 7] =Mandlebrot
= Tree Alloc/Delloc
30 . Power method (compute eigenvalue)
25
20
15
10
5
= =
3 I 3
o (MmN wel S mmH EEN wme W EETE BN N EYE NS BN B on's mw i B ws B l=

Java Scala C#(Mono) Haskell Go Javascript Lua Python3 Ruby
(V8) (JRuby)

Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org (MU 15-418/618, Spring 2018

Slowdown (Compared to (++)

Even good C code is inefficient

Recall Assignment 1's Mandelbrot program

Consider execution on a high-end laptop: quad-core, Intel Core i7, AVX
instructions...

Single core, with AVX vector instructions: 5.8x speedup over Cimplementation
Multi-core + hyper-threading + AVX instructions: 21.7x speedup

Conclusion: basic Cimplementation compiled with -03 leaves a lot of
performance on the table

(MU 15-418/618, Spring 2018

Making efficient use of modern machines is challenging

(proof by assignments 2, 3, and 4)

In our assignments you only programmed homogeneous parallel computers.
And parallelism in that context was not easy.

Assignment 2: GPU cores only

Assignments 3 & 4: shared memory / message passing

(MU 15-418/618, Spring 2018

Recall: need for efficiency leading to
heterogeneous parallel platforms

(PU-+data-parallel accelerator

Integrated
CPU + GPU

G PU : Qualcomm Snapdragon SoC
throughput cores + fixed-function

Mobile system-on-a-chip:

C(PU+GPU-+media processing
(MU 15-418/618, Spring 2018

Hardware trend: specialization of execution

®m Multiple forms of parallelism

- SIMD/vector processing Fine-granularity parallelism: perform
. . > same logic on different data
- Multi-threading > Mitigate inefficiencies (stalls) caused by
- Multi-core unpredictable data access
] MUItlple hode » Varying scales of coarse-granularity
= Multiple server parallelism

m Heterogeneous execution capability

- Programmable, latency-centtric (e.g., “CPU-like” cores)
- Programmable, throughput-optimized (e.g., “GPU-like” cores)
- Fixed-function, application-specific (e.g.,image/video/audio processing)

Motivation for parallelism and specialization: maximize compute capability
given constraints on chip area, chip energy consumption.
Result: amazingly high compute capability in a wide range of devices!

CMU 15-418/618, Spring 2018

Hardware diversity is a huge challenge

m Machines with very different performance characteristics

m Even worse: different technologies and performance
characteristics within the same machine at different scales

= Within a core: SIMD, multi-threading: fine-granularity sync and
communication

- Across cores: coherent shared memory via fast on-chip network
= Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Across racks: distributed memory, multi-stage network

(MU 15-418/618, Spring 2018

Variety of programming models to abstract HW

m Machines with very different performance characteristics

m Worse: different technologies and performance characteristics within
the same machine at different scales

= Within a core: SIMD, multi-threading: fine grained syncand comm

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL, Metal, Renderscript)

= Across cores: coherent shared memory via fast on-chip network
- Abstractions: OpenMP pragma, Cilk, TBB

= Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Abstractions: OpenCL

= Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

Credit: Pat Hanrahan CMU 15-418/618, Spring 2018

This is a huge challenge

m Machines with very different performance characteristics

m Worse: different performance characteristics within the same
machine at different scales

m To be efficient, software must be optimized for HW characteristics
- Difficult even in the case of one level of one machine

- Combinatorial complexity of optimizations when considering a
complex machine, or different machines

- Loss of software portability

Credit: Pat Hanrahan
(MU 15-418/618, Spring 2018

Open computer science question:

How do we enable programmers to productively
write software that efficiently uses current and
future heterogeneous, parallel machines?

(MU 15-418/618, Spring 2018

The [magical] ideal parallel programming language

High Performance
(software is scalable and efficient)

Productivity Completeness
(ease of development) (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
(MU 15-418/618, Spring 2018

Successful programming languages

Here: definition of success = widely used

High Performance
(software is scalable and efficient)

Productivity Completeness
(ease of development) (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
(MU 15-418/618, Spring 2018

Growing interest in domain-specific programming systems
To realize high performance and productivity: willing to sacrifice completeness

High Performance
(software is scalable and efficient)

+ Domain-specific *,

y languages (DSL) and :

Y programming !
‘. frameworks K

Productivity Completeness
(ease of development) (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
(MU 15-418/618, Spring 2018

Domain-specific programming systems

m Main idea: raise level of abstraction for expressing programs

m Introduce high-level programming primitives specific to an
application domain

- Productive: intuitive to use, portable across machines, primitives correspond to
behaviors frequently used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized
implementation(s)

- Given a machine: system knows what algorithms to use, parallelization
strategies to employ for this domain

- Optimization goes beyond efficient mapping of software to hardware! The
hardware platform itself can be optimized to the abstractions as well

m (Cost: loss of generality/completeness

(MU 15-418/618, Spring 2018

Two domain-specific programming examples

1. Liszt: for scientific computing on meshes

2. Halide: for image processing

What are other domain specific languages?
(SQL is another good example)

(MU 15-418/618, Spring 2018

Example 1:
Lizst: a language for solving PDE’s on meshes

[DeVito et al. Supercomputing 11, SciDac'11]

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu/
(MU 15-418/618, Spring 2018

What a Liszt program does

A Liszt program is run on a mesh
A Liszt program defines, and compute the value of, fields defined on the mesh

. Position is a field defined at each mesh vertex.
""""" The field’s value is represented by a 3-vector.

Y
val = FieldWithConst][,Float3](e.f, 0.f, 0.f)
val = FieldWithConst][,Float](e.f)
val = FieldWithConst]| ,Float](0.f)
val = FieldWithConst][,Float](0.f) E
Color key:
H
C
Notes:
Fields are a higher-kinded type

(special function that maps a type to a new type)

Liszt program: heat conduction on mesh
Program computes the value of fields defined on meshes

Set flux for all vertices to 0.f;

var i =06; 7 Color key:
while (i < 1000) { .
((mesh)) = 0.f;
((mesh)) = 0.f;
va](. < _ Ee)) A v Indep.endently,foreach
----------- > val _ (e) edge in the mesh
val dP = (vl) - (v2) E
val dT = (vi) - (v2)
val step = 1.0f/(length(dP)) A
(vl) += dT*step :
(v2) -= dT*step H
(vl) += step
(v2) += step C
}
i+=1
} Access value of field

S Given edge, loop body accesses/modifies field at mesh vertex v2
values at adjacent mesh vertices A

Liszt’s topological operators

Used to access mesh elements relative to some input vertex, edge, face, etc.

Topological operators are the only way to access mesh data in a Liszt program
Notice how many operators return sets (e.g., “all edges of this face”)

Liszt programming

m AlLiszt program describes operations on fields of an abstract mesh
representation

m Application specifies type of mesh (regular, irregular)
and its topology

B Mesh representation is chosen by Liszt (not by the programmer)

SR Well, that’s interesting. | write a program, and the compiler decides what data
structure it should use based on what operations my code performs.

(MU 15-418/618, Spring 2018

Compiling to parallel computers

Recall challenges you have faced in your assignments

1. ldentify parallelism
2. ldentify data locality
3. Reason about required synchronization

Now consider how to automate this process in the Liszt compiler.

(MU 15-418/618, Spring 2018

Key: determining program dependencies

1. Identify parallelism
- Absence of dependencies implies code can be executed in parallel

2. ldentify data locality

- Partition data based on dependencies (localize dependent
computations for faster synchronization)

3. Reason about required synchronization
- Synchronization is needed to respect dependencies (must wait until the
values a computation depends on are known)

In general programs, compilers are unable to infer dependencies at global
scale:a[f(i)] += b[i] (mustexecute f(i) to know if dependency exists

across loop iterations 1)

(MU 15-418/618, Spring 2018

Liszt is constrained to allow dependency analysis

Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop
= dependencies for the iteration

Statically analyze code to find stencil of each top-level for loop
- Extract nested mesh element reads

- Extract field operations N E
Edge 6's read stencil is D and F

for (e <- ()) A
val = (e) H
val = (e)
val dP = (vi) - (v2)
val dT = (vi) - (v2)
val step = 1.0f/(length(dP))
(vl) += dT*step e in
() - = dT*step q edges(mesh)
(vl) += step
(v2) += step

head(e) tail(e)

Read Position,Temperature Read Position, Temperature
Write Flux, JacobiStep Write Flux, JacobiStep

Restrict language for dependency analysis

Language restrictions:
- Mesh elements are only accessed through built-in topological functions:
(mesh) ,
- Single static assignment:
val = (e)
- Data in fields can only be accessed using mesh elements:

\"

— No recursive functions

Restrictions allow compiler to automatically infer stencil for a loop iteration.

Portable parallelism: use dependencies to implement
different parallel execution strategies

I'll discuss two strategies...

Strategy 1: mesh partitioning

Strategy 2: mesh coloring

Schedule
Batch 1 Batch 2 Batch 3 Batch 4

RN NN

1 (3|8 |11|0|5|7|10(4 |9 |2

Imagine compiling a Lizst program to the
(entire) Latedays cluster

(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?

(MU 15-418/618, Spring 2018

Distributed memory |mplementat|on of Liszt

Mesh + Stencil = Granh — Partition
for(f <- faces(mesh)) {

rhoOutside(f) =
calc_flux(f, rho(outside(f))) + -
calc_flux(f, rho(inside(f)))

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)

Each processor also needs data for neighboring cells to

perform computation (“ghost cells”)
Listz allocates ghost region storage and emits required
communication to implement topological operators.

Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)

(MU 15-418/618, Spring 2018

GPU implementation: parallel reductions

In previous example, one region of mesh assigned per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)
o112 |34 |56 |7 |89 |10]11

Flux field values (per vertex)

for (e <- ()) {
(vl) += dT*step Different edges share a vertex: requires
(v2) -= dT*step atomic update of per-vertex field data

GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)
o|112 (34|56 |7 |89 [10]11

A B|C|D E F | G H

Flux field values (per vertex)

}

Identify mesh edges with colliding writes

T S 8 10 (lines in graph indicate presence of collision)
\y \ B// Can simply run program once to get this
| 4 H 6 ®) information.
2 (results valid for subsequent executions

/ \ \ / \ provided mesh does not change)
/ 11

GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)
o|112 (34|56 |7 |89 [10]11

A B|C|D E F | G H

Flux field values (per vertex)

}

“Color” nodes in graph such that no

1 S 8 10 connected nodes have the same color
\y \ B// Can execute on GPU in parallel, without
4 H 6 9 atomic operations, by running all nodes with
2 [the same color in a single CUDA launch.

N \ / 0\

1

Cluster performance of Lizst program

256 nodes, 8 cores per node (message-passing implemented using MPI)

Euler Navier- Stokes
1024 1024
23M cell mesh 21M cell mesh
o
=
)
® 512 512
o
(V5]
256 + 256 +
128 Liszt 128 | Liszt
C++ C++
32 ' ' ' 32 ' ' '
32 128 256 512 1024 32 128 256 512 1024
Cores Cores

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown here).
But uses a different algorithm when compiled to GPU! (graph coloring)

Liszt summary

® Productivity:

Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist
thinks about already!)

Intuitive topological operators

m Portability

Same code runs on large cluster of CPUs (MPI) and GPUs (and combinations thereof!)

® High-performance

Language is constrained to allow compiler to track dependencies

Used for locality-aware partitioning in distributed memory implementation

Used for graph coloring in GPU implementation

Compiler knows how to chooses different parallelization strategies for different
platforms

Underlying mesh representation can be customized by system based on usage and
platform (e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays

vs. array of structs for per-vertex fields)
(MU 15-418/618, Spring 2018

Example 2:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

(MU 15-418/618, Spring 2018

Halide used in practice

®m Halide used to implement Android HDR+ app
B Halide code used to process all images uploaded to Google Photos

(MU 15-418/618, Spring 2018

A quick tutorial on high-performance
image processing

(MU 15-418/618, Spring 2018

What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.e/9, 1.0/9, 1.0/9,
1.0/9, 1.0/9, 1.0/9};

for (int j=0; JF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int 1i=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

(MU 15-418/618, Spring 2018

3x3 box blur

(Zoom view)
(MU 15-418/618, Spring 2018

3x3 image blur

int WIDTH = 1624; Total work perimage =9 x WIDTH x HEIGHT
int HEIGHT = 1024;
For NxN filter: N2x WIDTH x HEIGHT

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.e/9, 1.0/9, 1.0/9,
1.0/9, 1.0/9, 1.0/9};

for (int j=0; JF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int 1i=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

(MU 15-418/618, Spring 2018

Two-pass 3x3 blur

int WIDTH = 1024; Total work perimage = 6 x WIDTH x HEIGHT
e HEIGAT = 10245 For NxN filter: 2N x WIDTH x HEIGHT

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; WIDTH x HEIGHT extra storage

3X lower arithmetic intensity than 3D blur

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<(HEIGHT+2); j++) (w+in)‘?(lE:I+2)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.€; 1D horizontal blur
for (int ii=@; ii<3; ii++) l
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;
} B tmp_buf
W x (H+2)
for (int j=0; j<HEIGHT; j++) { T
for (int i=@; i<WIDTH; i++) {
float tmp = 0.f; l
for (int jj=0; jj<3; jj++) 1D vertical blur
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; output
output[F*WIDTH + i] = tmp; W x H
} L

}

(MU 15-418/618, Spring 2018

Two-pass image blur: locality

Intrinsic bandwidth requirements of algorithm:
Application must read each element of input image and
must write each element of output image.

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];

float output[WIDTH * HEIGHT];
Data from input reused three times. (immediately reused in next

float weights[] = {1.0/3, 1.0/3, 1.0/3}; two i-loop iterations after first load, never loaded again.)
- Perfect cache behavior: never load required data more than once
for (int j=0; j<(HEIGHT+2); j++) - Perfect use of cache lines (don’t load unnecessary data into cache)

for (int i=0@; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[J*WIDTH + i] = tmp; Two pass: loads/stores to tmp_bu+ are overhead (this memory traffic
- is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Data from tmp_bu+ reused three times (but three
/ rows of image data are accessed in between)
- Never load required data more than once... if

}

for (int j=0; J<HEIGHT; j++) {
for (int i=0@; i<WIDTH; i++) {
float tmp = O.f;

for (int jj=0; jj<3;#j++)
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; cache has capacity for three rows of image
output[j*WIDTH + i] = tmp; - Perfect use of cache lines (don’t load unnecessary
} data into cache)

}

(MU 15-418/618, Spring 2018

Two-pass image blur, “chunked” (version 1)

int WIDTH = 1024;
int HEIGHT = 1024;

i t
float input[(WIDTH+2) * (HEIGHT+2)]; (w+;r;)p(le+2)
float tmp_buf[WIDTH * 3]; < Only 3 rows of intermediate
float output[WIDTH * HEIGHT]; buffer need to be allocated

float weights[] = {1.0/3, 1.0/3, 1.0/3};

tmp_buf (Wx3)

for (int j=0; Jj<HEIGHT; j++) { l

Produce 3 rows of tmp_buf
(only what’s needed for one output
row of output) ER

for (int j2=0; j2<3; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=0@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) 4 i+ii] * weights[ii];
tmp_buf[j2*WIDTH + i] = tmp;

Combine them together to get one row of output

for (int i=0@; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work

tmp += tmp_buf[jj*WIDTH + i] * weights[jj]; - step 2:3 x WIDTH work
output[F*WIDTH + i] = tmp; Total work perimage =12 x WIDTH x HEIGHT 7777
}
} Loads from tmp_buffer are cached (assuming

tmp—bUﬂer fitsin cache) CMU 15-418/618, Spring 2018

Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;
int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)]; Sized to fit in cache

float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; <€ (captureallproducer-

float output[WIDTH * HEIGHT]; consumer locality)

float weights[] = {1.0/3, 1.0/3, 1.0/3}; Produce enough rows of
tmp_buf to produce a

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) { CHUNK_SIZE number of
rows of output

for (int j2=0; j2<CHUNK_SIZE+2; j2++)
for (int i=0@; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=0@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + i] = tmp;

for (int j2=0; j2<CHUNK_SIZE; j2++)

input
(W+2)x(H+2)

v

tmp_buf

¢ W x (CHUNK_SIZE+2)

output
W x H

4= Produce CHUNK_SIZE rows of output

for (int i=@; i<WIDTH; i++) { Total work per chunck of output:
float tmp = 0.f; (assume CHUNK_SIZE = 16)
for (int jj=0; jj<3; jj++) - Step 1: 18 x 3 x WIDTH work
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; - Step 2: 16 x 3 x WIDTH work
output[(j+j2)*WIDTH + i] = tmp; Total work per image: (34/16) x 3 x WIDTH x HEIGHT
} » =6.4 X WIDTH x HEIGHT

} Trends to idea 6 x WIDTH x HEIGHT as CHUNK _SIZE is increased!

.
.
s
e
e
e

.
e
.
.
.
e

(MU 15-418/618, Spring 2018

Conflicting goals (once again...)

m Want to be work efficient (perform fewer operations)
m Want to take advantage of locality when present

- Otherwise work-efficient code will be bandwidth bound

- ldeally: bandwidth cost of implementation is very close to intrinsic cost of

algorithm: data is loaded from memory once and reused as much as needed
prior to being discarded from processor’s cache

m Want to execute in parallel (multi-core, SIMD within core)

(MU 15-418/618, Spring 2018

Optimized C++ code: 3x3 image blur

Good: 10x faster: on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

— Multi-core execution
(partition image vertically)

\ Modified iteration order:

e

256x32 block-major iteration
(to maximize cache hit rate)

use of SIMD vector intrinsics

two passes fused into one:

:[/ tmp data read from cache

(MU 15-418/618, Spring 2018

Halide blur (algorithm description)

Func halide_blur(Func in) { Images are pure functions
Functions map integer coordinates (in up to a 4D domain)

to values (e.qg., colors of corresponding pixels)
Func b*u rx, out; (in, blurxand out are functions)

Var X, VY;
Algorithms are a series of functions (think: pipeline stages)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; <

out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

return out; Value of blurx at coordinate (x,y)
} is given by expression accessing

three values of in

Image<uint8_t> input = load_image(“myimage.png”);

Func my_program = halide blur(input);

Image<uint8_t> output = my_program.realize(input.width(), input.height(),
input.channels());

output.save(“myblurredimage.png”);

NOTE: execution order and storage are unspecified by the abstraction. The

implementation can evaluate, reevaluate, cache individual points as desired!
(MU 15-418/618, Spring 2018

Think of a Halide program as a pipeline

Func halide_blur(Func in) {

Func blurx, out;
Var X, Vy;

in
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; l
return out;
}
blurx

out

(MU 15-418/618, Spring 2018

Halide schedule describes how to execute a pipeline

Func halide_blur(Func in) {

Func blurx, out;
Var x, y, xi, yi

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.ef;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32).vectarize(xi,S).parallel(y); <

When evaluating out, use 2D tiling order

blurx.chunk(x).vectorize(x, 8); (Ioop.s na.med by x, y, xi, yi).
A Use tile size 256 x 32.

return out;

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce only chunks of b1urx ata time.
Vectorize the x (innermost) loop

(MU 15-418/618, Spring 2018

Halide schedule describes how to execute a pipeline

Func halide_blur(Func in) {

Func blurx, out;
Var x, y, xi, yi

blurx(x,y) (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.ef;

out(x,y)

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.chunk(x).vectorize(x, 8);
return out;

Given a schedule, Halide carries out mechanical
process of implementing the specified schedule

(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

void halide_blur(uint8_t* in, uint8_t* out) {
#pragma omp parallel for
for (int y=0; y<HEIGHT; y+=32) {

for (int x=0; y<WIDTH; x+=256) {

uint8_t* blurx[34 * 256];

for (int yi=0; yi<34; yi++) {

// SIMD vectorize this loop (not shown)
for (int xi=@; xi<256; xi++) {
blurx[yi*256+xi] =

(in[(y+yi-1)*WIDTH+x+xi-1] +
in[(y+yi-1)*WIDTH+x+xi] +
in[(y+yi-1)*WIDTH+x+xi+1]) / 3.0;

for (int yi=0; yi<32; yi++) {
// SIMD vectorize this loop (not shown)
for (int xi=0; xi<256; xi++) {
out[(y+yi)*256+(x+xi)] =
(blurx[yi*256+xi] +
blurx[(yi+1)*256+xi] +
blurx[(yi+2)*256+xi]) / 3.0;

(MU 15-418/618, Spring 2018

Halide: two domain-specific co-languages

m Functional language for describing image processing operations
B Domain-specificlanguage for describing schedules
® Design principle: separate “algorithm specification” from its schedule

- Programmer’s responsibility: provide a high-performance schedule

- Compiler’s responsibility: carry out mechanical process of generating threads, SIMD
instructions, managing buffers, etc.

- Result: enable programmer to rapidly explore space of schedules
- (e.g., “tile these loops”, “vectorize this loop’, “parallelize this loop across cores”)

® Domain scope:

= All computation on reqular N-D coordinate spaces

= Only feed-forward pipelines (includes special support for reductions and fixed
recursion depth)

- All dependencies inferable by compiler

CMU 15-418/618, Spring 2018

Producer/consumer scheduling primitives

Four basic scheduling primitives shown below

in tmp blurred in tmp blurred
“Root” “Inline”
in tmp blurred in tmp blurred
“Sliding Window” “Chunked”

(MU 15-418/618, Spring 2018

Producer/consumer scheduling primitives

”ROOt”: void halide_blur(uint8_t* in, uint8_t* out) {
Func halide_blur(Func in) { . uint8_t blurx[WIDTH * HEIGHT];
compute all points of the producer,

then run consumer (minimal locality)

Func blurx, out;
Var x, y, xi, yi

for (int y=0; y<HEIGHT; y++) {
for (int x=0; y<WIDTH; x++) {

blurx[] = ...
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.ef; for (int y=0; y<HEIGHT; y++) {
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; for (int x=0; y<WIDTH; x++) {
out[] = ...

blurx.compute_at(ROOT);
return out;

“Inline”:
Func halide blur(Func in) { revaluate producer at every use site V°1df:f.lt::;b§:;fu;f:i;;:{";,:;":s‘t* oue)
in consumer (maximal locality) for (int x=0; y<WIDTH; x++) {
out[] = (((in[(y-1)*WIDTH+x-1] +
in[(y-1)*WIDTH+x] +
in[(y-1)*WIDTH+x+1]) / 3) +
((in[y*WIDTH+x-1] +
in[y*WIDTH+x] +
in[y*WIDTH+x+1]) / 3) +
((in[(y+1)*WIDTH+x-1] +
in[(y+1)*WIDTH+x] +
in[(y+1)*WIDTH+x+1]) / 3));

Func blurx, out;
Var x, y, xi, yi

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.ef;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

blurx.inline();
return out;

(MU 15-418/618, Spring 2018

Domain iteration primitives

Specify both order and how to parallelize
(multi-thread, SIMD vector)

2D blocked iteration order

—

(MU 15-418/618, Spring 2018

Example Halide results

®m Camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned
ARM NEON assembly

- Halide: 2.75x less code, 5% faster

® Bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of (++
- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

(MU 15-418/618, Spring 2018

Stepping back: what is Halide?

m Halide is a DSL for helping good developers optimize image
processing code more rapidly

- Halide doesn’t decide how to optimize a program for a novice programmer

- Halide provides primitives for a programmer (that has strong knowledge of code
optimization, such as a 418 student) to rapidly express what optimizations the
system should apply

- Halide carries out the nitty-gritty of mapping that strategy to a machine

(MU 15-418/618, Spring 2018

Automatically generating Halide schedules

[Mullapudi, CMU 2016]
Extend Halide compiler to automatically generate schedule for programmer
- Compiler input: Halide program + size of expected input/output images
|| =Naive schedule B =Automatically generated schedule (no autotuning, ~ seconds)
B = Expert manual schedule B =Automatically generated, with auto-tuning (~ 10 minutes)

(best human-created schedule) B =Automatically generated, auto-tuning over 3 days ¢y 15.415/615, spring 2018

“Racing” top Halide programmers

Halide auto-scheduler produced schedules
that were better than those of expert Google
Halide programmers in two of three cases (it
got beat in one!)

Throughput (1/ms)

Throughput (1/ms)

Throughput (1/ms)

o
|

Optimization of Manually Authored Schedules

LENSBLUR /\~
0 — 1 1 1
0 40 80 120
MAXFILTER
/\ //
. /\(\/ | |
0 15 30 45
NL MEANS

4//
10 20 30 40 50
Schedule development time (minutes)
B = Auto-scheduler [[]=Programmer1 [l = Programmer 2

o

(MU 15-418/618, Spring 2018

Darkroom/Rigel Hegarty 2014, Hegarty 2016

m Directly synthesize FGPA implementation of image processing
pipeline from a high-level description (a constrained “Halide-like”
language)

bx = im(x,y))) ISP

=}
Q.

(T(x-1,) + FPGA
sharpened = im(x,y)

I(x,y) + mEN
| [|
| [|
HEE

Edge Detection
O~ Darkroom ASIC .
Line-buffered pipeline
I(x,y) + 0.1*

I(x+1,y))/3
Corner Detection
(I(x,y) - by(x,y)) CPU

e
by = im(x,y)
(bx(x,y-1) +
bx(x,y) + Darkroom
bx(x,y+1))/3
e
Stencil Language] - @ @

m Goal: ultra high efficiency image processing

(MU 15-418/618, Spring 2018

Many other recent domain-specific programming systems

Less domain specific than examples given today,

but still designed specifically for: G r’a P h

data-parallel computations on big data for Carnegie Mellon

distributed systems (*Map-Reduce’) DSL for graph-based machine learning computations

Also see Green-Marl, Ligra
(DSLs for describing operations on graphs)

Model-view-controller paradigm for
web-applications

Ongoing efforts in many domains...

Simit: a language for physical simulation [MIT]

(MU 15-418/618, Spring 2018

Domain-specific programming system development

m (Can develop DSL as a stand-alone lanqguage
- Graphics shading languages
- MATLAB, SQL

m “Embed” DSL in an existing generic language
- e.g., (++ library (GraphLab, OpenGL host-side APl, Map-Reduce)
- Lizst syntax above was all valid Scala code

B Active research idea:

- Design generic languages that have facilities that assist rapid embedding of
new domain-specific languages

- “Whatis a good language for rapidly making new DSLs?”

(MU 15-418/618, Spring 2018

Summary

® Modern machines: parallel and heterogeneous
- Only way to increase compute capability in energy-constrained world

m Most software uses small fraction of peak capability of machine
= Very challenging to tune programs to these machines
- Tuning efforts are not portable across machines

m Domain-specific programming environments trade-off

generality to achieve productivity, performance, and portability

- (ase studies today: Liszt, Halide
- Common trait: languages provide abstractions that make dependencies known

- Understanding dependencies is necessary but not sufficient: need domain
restrictions and domain knowledge for system to synthesize efficient
implementations

(MU 15-418/618, Spring 2018

