
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Lecture 19:

Heterogeneous Parallelism
and Hardware Specialization

CMU 15-418/618,
Spring 2018

Let’s begin this lecture by reminding you…

That we observed in assignment 1 that a well-optimized parallel
implementation of a compute-bound application was about 44

times faster on than the output of single-threaded C code
compiled with gcc -O3.

CMU 15-418/618,
Spring 2018

You need to buy a
new computer…

CMU 15-418/618,
Spring 2018

You need to buy a computer system

Core Core

Core Core
Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.
Which do you pick?

CMU 15-418/618,
Spring 2018

Amdahl’s law revisited

f = fraction of program that is parallelizable
n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto n processors of equal capability

CMU 15-418/618,
Spring 2018

Rewrite Amdahl’s law in terms of resource limits

f = fraction of program that is parallelizable
n = total processing resources (e.g., transistors on a chip)
r = resources dedicated to each processing core,

each of the n/r cores has sequential performance perf(r)

Two examples where n=16
rA = 4
rB = 1

Relative to processor with 1 unit of resources, n=1.
Assume perf(1) = 1

[Hill and Marty 08]

More general form of
Amdahl’s Law in terms
of f, n, r

CMU 15-418/618,
Spring 2018

Speedup (relative to n=1)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload
Each graph plots performance as resource allocation changes, but total chip
resources resources kept the same (constant n per graph)

perf(r)modeled as

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Figure credit: Hill and Marty 08]

11

CMU 15-418/618,
Spring 2018

Asymmetric set of processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example: n=16
One core: r = 4
Other 12 cores: r = 1

(of heterogeneous processor with n
resources, relative to uniprocessor with
one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

[Hill and Marty 08]

CMU 15-418/618,
Spring 2018

Speedup (relative to n=1)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r = 1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

(chip from prev. slide)

[Source: Hill and Marty 08]

CMU 15-418/618,
Spring 2018

Heterogeneous processing
Observation: most “real world” applications have complex
workload characteristics *

They have components that can
be widely parallelized.

And components that are
difficult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control flow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

* You will likely make a similar observation during your projects

Idea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job”)

CMU 15-418/618,
Spring 2018

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers)

CMU 15-418/618,
Spring 2018

Example: Intel “Skylake" (2015)

▪ CPU cores and graphics cores
share same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication
between CPU and integrated
GPU

▪ Graphics cores cache coherent
with CPU

(6th Generation Core i7 architecture)

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics +
media

Shared LLC

System
Agent

(display,
memory,

I/O)

CMU 15-418/618,
Spring 2018

More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics

CMU 15-418/618,
Spring 2018

15in Macbook Pro 2011 (two GPUs)

From ifixit.com teardown

AMD Radeon HD GPU

Quad-core Intel Core i7 CPU
(contains integrated GPU)

CMU 15-418/618,
Spring 2018

Mobile heterogeneous processors

Apple A9
Dual Core 64 bit CPU
GPU PowerVR GT6700 (6 “core”) GPU

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A9 image credit Chipworks, obtained from
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

CMU 15-418/618,
Spring 2018

Supercomputers use heterogeneous processing
Los Alamos National Laboratory: Roadrunner
Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS
Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as “accelerator” to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatt (about 2,400 average US homes)

CMU 15-418/618,
Spring 2018

GPU-accelerated supercomputing
▪ Oak Ridge Titan (world’s #5)

▪ 18,688 AMD Opteron 16-core CPUs
▪ 18,688 NVIDIA Tesla K20X GPUs
▪ 710 TB RAM

▪ Estimated machine cost $97M
▪ Estimated annual power/operating cost: ~ $9M *

* Source: NPR

CMU 15-418/618,
Spring 2018

Intel Xeon Phi (Knights Landing)
▪ 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)
▪ 16-wide vector instructions (AVX-512), four threads per core
▪ Targeted as an accelerator for supercomputing applications

CMU 15-418/618,
Spring 2018

Heterogeneous architectures for supercomputing
Source: Top500.org Fall 2017 rankings

Xeon Phi

Xeon Phi

Xeon Phi

NVIDIA GPU

NVIDIA GPU

CMU 15-418/618,
Spring 2018

Green500: most energy efficient supercomputers

Source: Green500 Fall 2015 rankings

Efficiency metric: MFLOPS per Watt

CMU 15-418/618,
Spring 2018

Research: ARM + GPU Supercomputer
▪ Observation: the heavy lifting in supercomputing applications is the data-

parallel part of workload

- Less need for “beefy” sequential performance cores
▪ Idea: build supercomputer out of power-efficient building blocks

- ARM CPUs (for control/scheduling) + GPU cores (primary compute engine)
▪ Project underway at Barcelona Supercomputing Center
- www.montblanc-project.eu

http://www.montblanc-project.eu

CMU 15-418/618,
Spring 2018

Energy-constrained computing
▪ Supercomputers are energy constrained
- Due to shear scale
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

CMU 15-418/618,
Spring 2018

Limits on chip power consumption
▪ General mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours

CMU 15-418/618,
Spring 2018

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

CMU 15-418/618,
Spring 2018

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N) (data set size)

ASIC delivers same performance
as one CPU core with ~ 1/1000th
the chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core with only ~
1/100th the power.

CMU 15-418/618,
Spring 2018

Benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a fixed level of performance for longer
- e.g., video playback
- Achieve “always-on” functionality that was previously impossible

Moto X:
Always listening for “ok, google now”
Device contains ASIC for detecting this audio pattern.

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

CMU 15-418/618,
Spring 2018

Example: iPad Air (2013)

DRAMFlash memory

Dual-core 64-bit ARM CPU

Imagination
PowerVR

GPU

Video
Encode/Decode

Image
Processor

4MB L3

Core Core

Motion co-processor
(accelerometer, gyro, compass, etc.)

Touchscreen
controllers

Image Credit: ifixit.com

Apple A7
Processor

CMU 15-418/618,
Spring 2018

Original iPhone touchscreen controller

From US Patent Application 2006/0097991

Separate digital signal processor to interpret raw signal from capacitive touch sensor (do not burden main CPU)

CMU 15-418/618,
Spring 2018

Modern computing: efficiency often matters more
than in the past, not less

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-flash/

(Justification for why Apple won’t support Adobe Flash)

http://www.apple.com/hotnews/thoughts-on-flash/

CMU 15-418/618,
Spring 2018

Example: image processing on a Nikon D7000

Process 16 MPixel RAW data from sensor to obtain JPG image:
On camera: ~ 1/6 sec per image
Adobe Lightroom a quad-core Macbook Pro laptop: 1-2 sec per image

This is a older camera: much, much faster image processing performance on a
modern smart phone (burst mode)

CMU 15-418/618,
Spring 2018

Qualcomm Hexagon Digital Signal Processor
▪ Originally used for audio/LTE support on Qualcomm SoC’s
▪ Multi-threaded, VLIW DSP
▪ Third major programmable unit on Qualcomm SoCs

- Multi-core CPU
- Multi-core GPU (Adreno)
- Hexagon DSP

CMU 15-418/618,
Spring 2018

Up next? application programmable image
signal processors
▪ All modern systems have fixed-function support for common image processing tasks: image/video

encode/decode, sensor to image conversion, etc.
▪ Computational photography: use of advanced algorithms to make better photographs and videos
- Large space of (rapidly evolving techniques)

High Dynamic Range (HDR) and low light enhancement

Automatic panoramas

Remove camera shake

CMU 15-418/618,
Spring 2018

Anton supercomputer
▪ Supercomputer highly specialized for molecular dynamics

- Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem
for efficient fast-fourier transforms
▪ Custom, low-latency communication
network designed for communication
patterns of N-body simulations

[Developed by DE Shaw Research]

CMU 15-418/618,
Spring 2018

GPU’s are heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in assignment 2
Graphics-specific, fixed-

function compute resources

CMU 15-418/618,
Spring 2018

Rasterization:
Determining what pixels a triangle overlaps

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale geometry
from coarse geometry

CMU 15-418/618,
Spring 2018

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

CMU 15-418/618,
Spring 2018

Project Catapult
▪ Microsoft Research investigation of use of

FPGAs to accelerate datacenter workloads
▪ Demonstrated offload of part of Bing Search’s

document ranking logic
1U server (Dual socket CPU + FPGA connected via PCIe bus)

[Putnam et al. ISCA 2014]

FPGA board

CMU 15-418/618,
Spring 2018

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP
FPGA/Future

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

CMU 15-418/618,
Spring 2018

Challenges of heterogeneous designs

CMU 15-418/618,
Spring 2018

Challenges of heterogeneity
▪ So far in this course:

- Homogeneous system: every processor can be used for every task
- To get best speedup vs. sequential execution, “keep all processors busy all the time”

▪ Heterogeneous system: use preferred processor for each task
- Challenge for system designer: what is the right mixture of resources to meet

performance, cost, and energy goals?
- Too few throughput-oriented resources (lower peak performance/efficiency for

parallel workloads -- should have used resources for more throughput cores)
- Too few sequential processing resources (get bitten by Amdahl’s Law)
- How much chip area should be dedicated to a specific function, like video?

(these resources are taken away from general-purpose processing)

▪ Implication: increased pressure to understand workloads
accurately at chip design time

CMU 15-418/618,
Spring 2018

Pitfalls of heterogeneous designs

Say 10% of the workload is rasterization
Let’s say you under-provision the fixed-function rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of chip area

Problem: rasterization is bottleneck, so the expensive programmable processors (99% of chip) are idle waiting on
rasterization. So the other 99% of the chip runs at 80% efficiency!
Tendency is to be conservative, and over-provision fixed-function components (diminishing their advantage)

[Molnar 2010]

CMU 15-418/618,
Spring 2018

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task

- Challenge for hardware designer: what is the right mixture of resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)
- How much chip area should be dedicated to a specific function, like video? (these

resources are taken away from general-purpose processing)
- Work balance must be anticipated at chip design time

- System cannot adapt to changes in usage over time, new algorithms, etc.
- Challenge to software developer: how to map programs onto a heterogeneous

collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose well into

components that each map well to different processing components of the machine
- The scheduling problem is more complex on a heterogeneous system
- Available mixture of resources can dictate choice of algorithm
- Software portability & maintenance nightmare (we’ll revisit this next class)

CMU 15-418/618,
Spring 2018

Reducing energy consumption idea 1:
use specialized processing

Reducing energy consumption idea 2:
move less data

CMU 15-418/618,
Spring 2018

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 6 battery: ~7 watt-hours (compare: Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

CMU 15-418/618,
Spring 2018

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts
may not be desirable even if they run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode,

image processing/computer vision?

- Specialized instructions: expanding set of AVX vector instructions, new instructions for
accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before

transferring to memory (likely to see fixed-function HW to reduce overhead of general data
compression/decompression)

CMU 15-418/618,
Spring 2018

Summary
▪ Heterogeneous parallel processing: use a mixture of computing resources that each

fit with mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-

specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, general-
purpose components
- This is not the case with emerging processing systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the programmer
- Current CS research challenge: how to write efficient, portable programs for emerging

heterogeneous architectures?

