Lecture 19;

Heterogeneous Parallelism
and Hardware Specialization

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Let’s begin this lecture by reminding you...

That we observed in assignment 1 that a well-optimized parallel
implementation of a compute-bound application was about 44
times faster on than the output of single-threaded C code
compiled with gcc-03.

(MU 15-418/618,
Spring 2018

(MU 15-418/618,
Spring 2018

You need to buy a computer system

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.

Which do you pick?

CMU 15-418/618,
Spring 2018

Amdahl’s law revisited

f = fraction of program that is parallelizable
n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto » processors of equal capability

(MU 15-418/618,
Spring 2018

Rewrite Amdahl’s law in terms of resource limits

Relative to processor with 1 unit of resources, n=1.
Assume perf(1) =1

f = fraction of program that is parallelizable

n = total processing resources (e.g., transistors on a chip) More general form of
r = resources dedicated to each processing core, A?;ah"s Law in terms
orf,n,r

each of the n/r cores has sequential performance perf(r)

Processor A Processor B

Two examples where n=16
ra=4

rg =1

. (MU 15-418/618,
[Hill and Marty 08] Spring 2018

Speedup (relative to n=1)

Up to 16 cores (n=16) Up to 256 cores (n=256)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload

Each graph plots performance as resource allocation changes, but total chip
resources resources kept the same (constant » per graph)

perf(r) modeled as \/»

[Figure credit: Hill and Marty 08] (MU 15-418/618,

Spring 2018

Asymmetric set of processing cores

Example: n=16
Onecore:r =4
Other12 cores: r =1

(of heterogeneous processor with n
resources, relative to uniprocessor with

one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

. (MU 15-418/618,
[Hill and Marty 08] Spring 2018

Speedup (relative to n=1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

e

(chip from prev. slide)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r=1)
(MU 15-418/618,
Spring 2018

Heterogeneous processing

Observation: most “real world” applications have complex
workload characteristics *

They have components that can And components that are

be widely parallelized. difficult to parallelize.

They have components that are And components that are not.

amenable to wide SIMD (divergent control flow)

execution.

They have components with And components with unpredictable

predictable data access access, but those accesses might
cache well.

Idea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job”)

*You will likely make a similar observation during your projects v

Example: Intel “Skylake" (2015)

(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators MU 15-418/618,

Spring 2018

Example: Intel “Skylake" (2015)

(6th Generation Core i7 architecture)

CPU cores and graphics cores
share same memory system

Also share LLC (L3 cache)

— Enables, low-latency, high-
bandwidth communication
between C(PU and integrated
GPU

Graphics cores cache coherent
with CPU

(MU 15-418/618,
Spring 2018

More heterogeneity: add discrete GPU

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/Ul

High-end discrete GPU
(AMD or NVIDIA)

M
PCle x16 bus

DDR5 Memory

CPU Core 0

A

CPU Core 3 Gen9 Graphics

A 4

A

A 4

a

\ 4

Ring interconnect

!

I

L3 cache (8 MB)

Memory controller

DDR3 Memory

(MU 15-418/618,
Spring 2018

15in Macbook Pro 2011 (two GPUs)
/ (Contaie neqrated GPU)

From ifixit.com teardown CMU 15-418/618,
Spring 2018

Mobile heterogeneous processors

NVIDIA Tegra X1 Apple A9
Four ARM Cortex A57 CPU cores for applications Dual Core 64 bit CPU
Four low performance (low power) ARM A53 CPU cores GPU PowerVR GT6700 (6 “core”) GPU

One Maxwell SMM (256 “CUDA” cores)

A9 image credit Chipworks, obtained from

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3 MU 155"'” 8/2 601186
pring

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Supercomputers use heterogeneous processing

Los Alamos National Laboratory: Roadrunner

Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS

Unique at the time due to use of two types of processing elements

(IBM’s Cell processor served as “accelerator” to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatt (about 2,400 average US homes)

(MU 15-418/618,
Spring 2018

GPU-accelerated supercomputing

= (Qak Ridge Titan (world’s #5)

= 18,688 AMD Opteron 16-core CPUs
= 18,688 NVIDIA Tesla K20X GPUs
= 710 TB RAM

= Estimated machine cost $97M
= Estimated annual power/operating cost: ~ $9M *

*Source: NPR CMU 15-418/618,
Spring 2018

Intel Xeon Phi (Knights Landing)

m 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)
m 16-wide vector instructions (AVX-512), four threads per core
= Targeted as an accelerator for supercomputing applications

(MU 15-418/618,
Spring 2018

Heterogeneous architectures for supercomputing

Source: Top500.o0rg Fall 2017 rankings

Xeon Phi

NVIDIA GPU

NVIDIA GPU

Xeon Phi

Xeon Phi
CMU 15-418/618,

Spring 2018

Green500: most energy efficient supercomputers
Efficiency metric: MFLOPS per Watt

100001

Source: Green500 Fall 2015 rankings CMU 15-418/618,
Spring 2018

Research: ARM + GPU Supercomputer

= (Observation: the heavy lifting in supercomputing applications is the data-
parallel part of workload

- Less need for “heefy” sequential performance cores
= |dea: build supercomputer out of power-efficient building blocks

- ARM CPUs (for control/scheduling) + GPU cores (primary compute engine)

= Project underway at Barcelona Supercomputing Center
— www.montblanc-project.eu

(MU 15-418/618,
Spring 2018

http://www.montblanc-project.eu

Energy-constrained computing

= Supercomputers are energy constrained

- Due to shear scale

- Overall cost to operate (power for machine and for cooling)
= Datacenters are energy constrained

- Reduce cost of cooling

- Reduce physical space requirements
= Mobile devices are energy constrained

- Limited battery life

- Heat dissipation

(MU 15-418/618,
Spring 2018

Limits on chip power consumption

= General mobile processing rule: the longer a task runs the less power it can use
- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

Electrical limit: max power that can be supplied to chip

________ Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
7 (chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold

";’ - (chip is at suitable operating temp, but heat is dissipating into case)
(< J
. ¥
. Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task
. iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours
Time
Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote MU>-418/613,

Spring 2018

Efficiency benefits of compute specialization

= Rules of thumb: compared to high-quality C code on CPU...

= Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

= Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010, Dally 08] [Figure credit Eric Chung] CMU 15-418/618,
' Spring 2018

Hardware specialization increases efficiency

S FPGA

-

T GPUs

ASIC delivers same performance
as one CPU core with ~ 1/1000th
the chip area.

GPU cores: ~ 5-7 times more area
Ig2(N) (data set size) efficient than CPU cores.

S FPGA

-

= GPUs

ASIC delivers same performance
as one CPU core with only ~
1/100th the power.

Ig2(N) (data set size)

[Chung et al. MICR0 2010] o 15;5,;?::/260118:;

Benefits of increasing efficiency

m Run faster for a fixed period of time
- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once
= Run at a fixed level of performance for longer
- e.g., video playback
- Achieve “always-on” functionality that was previously impossible

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

Moto X:
iPhone: Always listening for “ok, google now”
Siri activated by button press or holding Device contains ASIC for detecting this audio pattern.

phone up to ear CMU 15-418/618,
Spring 2018

Example: iPad Air (2013)

Image Credit: ifixit.com

Touchscreen
controllers

Flash memory

Apple A7
Core Core Processor
Dual-core 64-bit ARM CPU
4MB L3
Video
Encode/Decode
P:mggseor
Motion co-processor
DRAM (accelerometer, gyro, compass, etc.)

(MU 15-418/618,
Spring 2018

Original iPhone touchscreen controller

Separate digital signal processor to interpret raw signal from capacitive touch sensor (do not burden main CPU)

302

RECEIVE RAW DATA

Y

304

FILTER RAW DATA

Y

GENERATE GRADIENT DATA

\\
=]
>

A

CALCULATE BOUNDARIES FOR TOUCH
REGIONS

\w
S
[o4]

A

CALCULATE COORDINATES FOR EACH
TOUCH REGION

\w
pud
o

Y

PERFORM MULTIPOINT TRACKING

\w
-t
N

FIG. 16

From US Patent Application 2006/0097991

RAW DATA INCLUDING NOISE

FIG. 17B
GRADIENT DATA

FIG. 17C

TOUCH REGIONS

FIG. 17D

COORDINATES OF TOUCH REGIONS

a=15.00 p=121.93
x=172.04, y=234 237288

3=33.00 p=133.97 ,
x=707.07 .04, y=331.323230

=
= o
a=8.00 p=113.33

x=417.29, y=333.665667

Zh
P T

2=35.00 p=133.74
x=290.16, y=570.155950

FIG. 17E

(MU 15-418/618,
Spring 2018

Modern computing: efficiency often matters more
than in the past, not less

Fourth, there’s battery life.

To achieve long battery life when playing video, mobile devices must decode the video in
hardware; decoding it in software uses too much power. Many of the chips used in modern
mobile devices contain a decoder called H.264 - an industry standard that is used in every
Blu-ray DVD player and has been adopted by Apple, Google (YouTube), Vimeo, Netflix and
many other companies.

Although Flash has recently added support for H.264, the video on almost all Flash websites
currently requires an older generation decoder that is not implemented in mobile chips and
must be run in software. The difference is striking: on an iPhone, for example, H.264 videos
play for up to 10 hours, while videos decoded in software play for less than 5 hours before
the battery is fully drained.

When websites re-encode their videos using H.264, they can offer them without using Flash
at all. They play perfectly in browsers like Apple’s Safari and Google’s Chrome without any
plugins whatsoever, and look great on iPhones, iPods and iPads.

Steve Jobs' “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-flash/

(Justification for why Apple won'’t support Adobe Flash)

(MU 15-418/618,
Spring 2018

http://www.apple.com/hotnews/thoughts-on-flash/

Example: image processing on a Nikon D7000

Process 16 MPixel RAW data from sensor to obtain JPG image:

On camera: ~ 1/6 sec per image
Adobe Lightroom a quad-core Machook Pro laptop: 1-2 sec perimage

This is a older camera: much, much faster image processing performance on a
modern smart phone (burst mode)

(MU 15-418/618,
Spring 2018

Qualcomm Hexagon Digital Signal Processor

= Originally used for audio/LTE support on Qualcomm So(’s
= Multi-threaded, VLIW DSP
= Third major programmable unit on Qualcomm So(s

- Multi-core (PU

- Multi-core GPU (Adreno)

- Hexagon DSP

(MU 15-418/618,
Spring 2018

Up next? application programmable image
signal processors

= All modern systems have fixed-function support for common image processing tasks: image/video
encode/decode, sensor to image conversion, etc.

= Computational photography: use of advanced algorithms to make better photographs and videos
— Large space of (rapidly evolving techniques)

Automatic panoramas

High Dynamic Range (HDR) and low light enhancement Remove camera shake

(MU 15-418/618,
Spring 2018

AntOn SU perCOm puter [Developed by DE Shaw Research]

= Supercomputer highly specialized for molecular dynamics
- Simulates time evolution of proteins

= ASICfor computing particle-particle interactions (512 of them in machine)
= Throughput-oriented subsystem

ici - i Tower Particles >

for efficient fast-fourier transforms Plte Paricies—|— ||
= (Custom, low-latency communication PN BECACUEN | Plate and Tower Particle Match Units
Position and Position and — — — — ——

1
N Pair Queue and Select ~ /

1 I
q, ‘ Combining Rule ’
Calculations

l/o® |e
Electrostatic Function Van der Waals
Evaluator Function Evaluator

; Adder ;
i Multiplier;

Force(x,y,z) |Potentials Energy

_1 Tower and Plate Force Reduction '—Tower Forces—»
Plate Forces —>

Parameter FIFO 8 Parameter RAM

network designed for communication
patterns of N-body simulations I e]

Particle Distanc
Calculations

I

/_

(MU 15-418/618,
Spring 2018

GPU’s are heterogeneous multi-core processors

Compute resources your CUDA programs used in assignment 2

Graphics-specific, fixed-

function compute resources

« | ’

GPU

& I
« 14

Tessellate Tessellate
Tessellate Tessellate
Clip/Cull Clip/Cull
Rasterize Rasterize
Clip/Cull Clip/Cull
Rasterize Rasterize

Scheduler / Work Distributor

GPU

Memory

(MU

15-418/618,
Spring 2018

Example graphics tasks performed in fixed-function HW

Rasterization: Texture mapping:
Determining what pixels a triangle overlaps Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale geometry
from coarse geometry

(MU 15-418/618,
Spring 2018

FPGAs (Field Programmable Gate Arrays)

= Middle ground between an ASICand a processor

= FPGA chip provides array of logic blocks, connected by interconnect
= Programmer-defined logicimplemented directly by FGPA

— Flip flop (a register)
Programmable lookup table (LUT)

D (MU 15-418/618,
Image credit: Bai et al. 2014 Spring 2018

PrOjECt Catapult [Putnam et al. ISCA 2014]

= Microsoft Research investigation of use of
FPGAs to accelerate datacenter workloads

= Demonstrated offload of part of Bing Search’s
document ranking logic

1U server (Dual socket CPU + FPGA connected via PCle bus)

FPGA board

(MU 15-418/618,
Spring 2018

Summary: choosing the right tool for the job

Throughput-oriented FPGA/Future
Energy-optimized CPU processor (GPU) Programmable DSP reconfigurable logic ASIC
Video encode/decode,
Audio playback,
Camera RAW processing,
neural nets (future?)
~10X more efficient ~100X?7? ~100-1000X
jury still out .
(ury) more efficient
Easiest to program Difficult to program Not programmable +
(making it easieris costs 10-100's millions
active area of research) of dollars to design /
verify / create
Credit Pat Hanrahan for this taxonomy (MU 15-418/618,

Spring 2018

Challenges of heterogeneous designs

(MU 15-418/618,

Challenges of heterogeneity

= So farin this course:

- Homogeneous system: every processor can be used for every task
- To get best speedup vs. sequential execution, “keep all processors busy all the time”

= Heterogeneous system: use preferred processor for each task
- (Challenge for system designer: what is the right mixture of resources to meet
performance, cost, and energy goals?

- Too few throughput-oriented resources (lower peak performance/efficiency for
parallel workloads -- should have used resources for more throughput cores)

- Too few sequential processing resources (get bitten by Amdahl’s Law)
- How much chip area should be dedicated to a specific function, like video?

(these resources are taken away from general-purpose processing)

= [mplication: increased pressure to understand workloads
accurately at chip design time

(MU 15-418/618,
Spring 2018

Pitfalls of heterogeneous designs —

Say 10% of the workload is rasterization
Let’s say you under-provision the fixed-function rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of chip area

Problem: rasterization is bottleneck, so the expensive programmable processors (99% of chip) are idle waiting on
rasterization. So the other 99% of the chip runs at 80% efficiency!

Tendency is to be conservative, and over-provision fixed-function components (diminishing their advantage) .., 613

Spring 2018

Challenges of heterogeneity

= Heterogeneous system: preferred processor for each task

- Challenge for hardware designer: what is the right mixture of resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

- How much chip area should be dedicated to a specific function, like video? (these
resources are taken away from general-purpose processing)

- Work balance must be anticipated at chip design time

- System cannot adapt to changes in usage over time, new algorithms, etc.

- Challenge to software developer: how to map programs onto a heterogeneous
collection of resources?

- Challenge: “Pick the right tool for the job”: design algorithms that decompose well into
components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system
- Available mixture of resources can dictate choice of algorithm
- Software portability & maintenance nightmare (we'll revisit this next class)

(MU 15-418/618,
Spring 2018

Reducing energy consumption idea 1:
use specialized processing

Reducing energy consumption idea 2:
move less data

Spring 2018

Data movement has high energy cost

= Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption
= “Ballpark” numbers isources: Bill Dally (NVIDIA), Tom Olson (ARM)]
Integerop: ~1pJ*
Floating point op: ~20 pJ *
Reading 64 bits from small local SRAM (1Tmm away on chip): ~ 26 pJ

<+ Suggests that recomputing values,
rather than storing and reloading

Reading 64 bits from low power mobile DRAM (LPDDRY): ~1200 pJ

u |mp|| cations them, is a better answer when
optimizing code for energy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

- iPhone 6 battery: ~7 watt-hours (compare: Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

(MU 15-418/618,

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Spring 2018

http://www.displaymate.com/iPad_ShootOut_1.htm

Three trends in energy-optimized computing
= Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts

may not be desirable even if they run faster

® Specialize compute units:

Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)

Fixed-function units: audio processing, “movement sensor processing” video decode/encode,
image processing/computer vision?

Specialized instructions: expanding set of AVX vector instructions, new instructions for
accelerating AES encryption (AES-NI)

Programmable soft logic: FPGAs

= Reduce bandwidth requirements

Exploit locality (restructure algorithms to reuse on-chip data as much as possible)

Aggressive use of compression: perform extra computation to compress application data before
transferring to memory (likely to see fixed-function HW to reduce overhead of general data
compression/decompression)

(MU 15-418/618,
Spring 2018

Summary

= Heterogeneous parallel processing: use a mixture of computing resources that each
fit with mixture of needs of target applications

- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-
specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

= Traditional rule of thumb in “good system design” is to design simple, general-
purpose components

- This is not the case with emerging processing systems (optimized for perf/watt)
- Today: want collection of components that meet perf requirement AND minimize energy use
= (hallenge of using these resources effectively is pushed up to the programmer

- Current (S research challenge: how to write efficient, portable programs for emerging
heterogeneous architectures?

(MU 15-418/618,
Spring 2018

