
Carnegie Mellon

115-418/618 Spring 2018

Assignment 3: GraphRats

GraphRats

Carnegie Mellon

215-418/618 Spring 2018

Topics
¢ Application
¢ Implementation Issues
¢ Optimizing for Sequential Performance
¢ Optimizing for Parallel Performance
¢ Useful Advice

Carnegie Mellon

315-418/618 Spring 2018

Basic Idea
¢ Transitions

§ Each rat decides where to move next
§ Don’t like crowds
§ But also don’t like to be alone

§ Weighted random choice

¢ Graph
§ K X K grid

¢ Initial State
§ Start with all R rats in corner

0 1 2

3 4 5

6 7 8

t = 0

0 1 2

3 4 5

6 7 8

t = 1

Carnegie Mellon

415-418/618 Spring 2018

Node Count Representation

t = 0
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | |320|
+---+---+---+---+---+---+---+---+

t = 1.
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | |142|
+---+---+---+---+---+---+---+---+
| | | | | | |149| 29|
+---+---+---+---+---+---+---+---+

Carnegie Mellon

515-418/618 Spring 2018

Simulation Example

t = 0
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | |320|
+---+---+---+---+---+---+---+---+

t = 30.
+---+---+---+---+---+---+---+---+
| | | | 1 | 1 | | 1 | 1 |
+---+---+---+---+---+---+---+---+
| | | | | | 1 | 2 | 3 |
+---+---+---+---+---+---+---+---+
| | | 1 | 3 | 7 | 6 | 8 | 6 |
+---+---+---+---+---+---+---+---+
| | | | 7 | 12| 10| 12| 10|
+---+---+---+---+---+---+---+---+
| 2 | | 1 | 10| 7 | 7 | 13| 5 |
+---+---+---+---+---+---+---+---+
| | | 6 | 10| 14| 13| 11| 9 |
+---+---+---+---+---+---+---+---+
| 4 | 5 | 10| 2 | 9 | 3 | 15| 10|
+---+---+---+---+---+---+---+---+
| 1 | 8 | 8 | 7 | 7 | 16| 8 | 7 |
+---+---+---+---+---+---+---+---+

Carnegie Mellon

615-418/618 Spring 2018

Visualizations

Text (“a” for ASCII) Heat Map (“h”)
t = 30.
+---+---+---+---+---+---+---+---+
| | | | 1 | 1 | | 1 | 1 |
+---+---+---+---+---+---+---+---+
| | | | | | 1 | 2 | 3 |
+---+---+---+---+---+---+---+---+
| | | 1 | 3 | 7 | 6 | 8 | 6 |
+---+---+---+---+---+---+---+---+
| | | | 7 | 12| 10| 12| 10|
+---+---+---+---+---+---+---+---+
| 2 | | 1 | 10| 7 | 7 | 13| 5 |
+---+---+---+---+---+---+---+---+
| | | 6 | 10| 14| 13| 11| 9 |
+---+---+---+---+---+---+---+---+
| 4 | 5 | 10| 2 | 9 | 3 | 15| 10|
+---+---+---+---+---+---+---+---+
| 1 | 8 | 8 | 7 | 7 | 16| 8 | 7 |
+---+---+---+---+---+---+---+---+

Carnegie Mellon

715-418/618 Spring 2018

Running it yourself

¢ Demos
§ 1: Text visualization, synchronous updates
§ 2: Heap-map, synchronous updates

linux> cd some directory
linux> git clone https//github.com/cmu15418/asst3-s18.git
linux> cd asst3-s18/code
Linux> make demoX

X from 1 to 10

Carnegie Mellon

815-418/618 Spring 2018

Determining Rat Moves

¢ Count number of rats at current and adjacent locations
§ Adjacency structure represented as graph

¢ Compute reward value for each location
§ Based on load factor l = count/average count
§ l * Ideal load factor (= 1.5)
§ ! Fitting parameter (= 0.5)

120

83

300

408

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

Carnegie Mellon

915-418/618 Spring 2018

Reward Function

§ Maximized at load factor 1.5
§ Just above average population
§ Drops for smaller loads (too few) and larger loads (too crowded)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
Load Factor

Reward Function

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

Carnegie Mellon

1015-418/618 Spring 2018

Reward Function (cont.)

§ Falls off gradually
§ Reward(1000) = 0.0123

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000
Load Factor

Reward Function

Reward ! = 	 $
$%	 &'()	 $%* !	+!∗)	

Carnegie Mellon

1115-418/618 Spring 2018

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

Selecting Next Move

§ Choose random number between 0 and sum of rewards
§ Move according to interval hit

120

83

300

408

0.125

0.180

0.061

0.4220.721

Population Reward (avg = 10)

x = 1.04

Weighted Choices
(node followed by row-major ordering of neighbors)

Carnegie Mellon

1215-418/618 Spring 2018

Update Models
¢ Synchronous

§ Demo 2

§ Compute next positions for all rats, and then move them

§ Causes oscillations/instabilities

¢ Rat-order
§ Demo 3

§ For each rat, compute its next position and then move it

§ Smooth transitions, but costly

¢ Batch
§ Demo 4

§ For each batch of B rats, compute next moves and then move them

§ B = 0.02 * R
§ Smooth enough, with better performance possibilities

Carnegie Mellon

1315-418/618 Spring 2018

What We Provide
¢ Python version of simulator

§ Demo 4

§ Very slow

¢ C version of simulator
§ Faster, but still too slow

§ Demo 5: 8X8 grid, 320 rats

§ Demo 6: 160X160 grid, 1,024,000 rats

§ That’s what we’ll be using for benchmarks!

§ You’ll have to be patient using the starter code

¢ Generate visualizations by piping C simulator output into
Python simulator
§ Operating in visualization mode

§ See Makefile for examples

Carnegie Mellon

1415-418/618 Spring 2018

Correctness
¢ Simulator is Deterministic

§ Global random seed
§ Random seeds for each rat
§ Process rats in fixed order

¢ You Must Preserve Exact Same Behavior
§ Python simulator generates same result as C simulator
§ Use regress.py to check
§ Don’t rely only on the small cases it currently checks

Carnegie Mellon

1515-418/618 Spring 2018

Graphs: Grid (Demo 6)

¢ k X k nodes, each with nearest neighbor connectivity
¢ Max degree = 4
¢ k = 160: 25,600 nodes 101,760 edges

Highly regular
Low degree
Rats spread slowly

Carnegie Mellon

1615-418/618 Spring 2018

Graphs: Tiled (Demo 7)

¢ Smaller d X d regions, each with hub node
§ Node with edge to every other node in region
§ Regions connected only by nearest-neighbor edges at border
§ Maximum degree = d2-1 (= 99 for benchmark graph)

¢ k = 160, d = 10: 25,600 nodes 152,850 edges

Globally regularly, locally irregular
Low/medium degree degree
Rats spread quickly within tile, slowly between tiles
Hub nodes typically have high rat counts

Carnegie Mellon

1715-418/618 Spring 2018

Fractal Graph (Demo 8)

¢ Regions of varying size
§ Some have 4 hub nodes, others 1
§ Maximum degree = k2/2-1 (= 12,799 for benchmark graph)

¢ k = 160: 25,600 nodes 254,940 edges

Highly irregular
Widely varying degrees
Rats spread quickly through regions
Hub nodes typically have high rat counts

Carnegie Mellon

1815-418/618 Spring 2018

States (Fractal Graph)
Right Corner (r)

Demo 8
Diagonal (d)

Demo 9
Uniform (u)

Demo 10

t = 0

t = 3

Carnegie Mellon

1915-418/618 Spring 2018

Graph Representation
0 1 2

3 4 5

6 7 8

neighbor
Includes self edges
length = N+M

0 3 7 10 14 19 23 26 30 33

neighbor_start (length = N+1)

Having pointer to
end is useful (why?)

0 2 411 30 1 52 0 4 63

1 3 5 74 85 3 762 4

6 87 5 784

N node, M edges

Carnegie Mellon

2015-418/618 Spring 2018

Sample Code
¢ From sim.c
¢ Compute reward value for node

¢ Simulation state stored in state_t struct
¢ Reward function computed by mweight

/* Compute weight for node nid */
static inline double compute_weight(state_t *s, int nid)
{

int count = s->rat_count[nid];
return mweight((double) count/s->load_factor);

}

Carnegie Mellon

2115-418/618 Spring 2018

Sample Code
¢ From sim.c
¢ Compute sum of reward values for node

/* Compute sum of weights in region of nid */
static inline double compute_sum_weight(state_t *s, int nid)
{

graph_t *g = s->g;
double sum = 0.0;
int eid;
int eid_start = g->neighbor_start[nid];
int eid_end = g->neighbor_start[nid+1];
int *neighbor = g->neighbor;
for (eid = eid_start; eid < eid_end; eid++) {

sum += compute_weight(s, neighbor[eid]);
}
return sum;

}

Carnegie Mellon

2215-418/618 Spring 2018

Sample Code
¢ Compute next move for rat

static inline int next_random_move(state_t *s, int r)
{

int nid = s->rat_position[r];
random_t *seedp = &s->rat_seed[r];
double tsum = compute_sum_weight(s, nid);
graph_t *g = s->g;
double val = next_random_float(seedp, tsum);
double psum = 0.0;
int eid;
int eid_start = g->neighbor_start[nid];
int eid_end = g->neighbor_start[nid+1];
int *neighbor = g->neighbor;
for (eid = eid_start; eid < eid_end; eid++) {

psum += compute_weight(s, neighbor[eid]);
if (val < psum) {

return neighbor[eid];
}

}
}

Carnegie Mellon

2315-418/618 Spring 2018

Sequential Efficiency Considerations
¢ Consider move computation for rat at node with degree D

§ How many (on average) iterations of loop in
next_random_move?

§ How many calls are made to mweight?

¢ Suppose there are X rats in batch at single node with
degree D
§ How many (on average) iterations of loop in
next_random_move?

§ How many calls are made to mweight?

Carnegie Mellon

2415-418/618 Spring 2018

Finding Parallelism
¢ Sequential constraints

§ Must complete time steps sequentially
§ Must complete each batch before starting next

¢ Sources of parallelism
§ Over nodes

§ Computing reward functions
§ Over rats (within a batch)

§ Computing next moves
§ Updating node counts

Carnegie Mellon

2515-418/618 Spring 2018

Performance Targets
¢ Mega-Rats Per Second (MRPS)

§ R rats running for S steps

§ Requires time T

§ MRPS = 10-6 * R * S / T

¢ Runs
§ 5 combinations of graph/initial state

§ Compute geometric mean of MRPS’s

¢ Target performance

1 Thread 12 Threads Speedup
Synchronous 32 256 8.0

Batch 20 70 3.5

Carnegie Mellon

2615-418/618 Spring 2018

Some Suggestions
¢ Focus initially on sequential performance

§ But think of ways that will allow parallelism
§ Simple ideas / data structures generally work best
§ Use timing to guide optimizations

¢ Synchronous mode easier to make fast
§ Both sequentially and parallel

¢ Machines
§ Can develop on any machine

§ GHC machines work well
§ Performance will be evaluated on Latedays machines

§ Batch submission process
§ These have different characteristics from GHC machines when

measuring parallel performance

Carnegie Mellon

2715-418/618 Spring 2018

Instrumenting Your Code
¢ How do you know how much time each activity takes?

§ Create simple library using cycletimer code
§ Bracket steps in your code with library calls
§ Use macros so that you can disable code for maximum

performance

START_ACTIVITY(ACTIVITY_NEXT);
#pragma omp parallel for schedule(static)
for (ri = 0; ri < local_count; ri++) {

int rid = ri + local_start;
s->rat_position[rid] = fast_next_random_move(s, rid);

}
FINISH_ACTIVITY(ACTIVITY_NEXT);

Carnegie Mellon

2815-418/618 Spring 2018

Evaluating Your Instrumented Code

¢ Can see which activities account for most time
¢ Can see which activities limit parallel speedup

194 ms 1.0 % startup
2077 ms 11.1 % compute_weights
4029 ms 21.6 % compute_sums

11733 ms 62.8 % find_moves
651 ms 3.5 % set_ops

3 ms 0.0 % unknown
+++ 25600 t 40 u 400 b 1 18.70 21.91

192 ms 3.2 % startup
426 ms 7.0 % compute_weights
940 ms 15.5 % compute_sums

3168 ms 52.3 % find_moves
1325 ms 21.9 % set_ops

2 ms 0.0 % unknown
+++ 25600 t 40 u 400 b 12 6.06 67.55 (3.08X)

1 thread

12 threads

Carnegie Mellon

2915-418/618 Spring 2018

Some Logos

