Assignment 3: GraphRats

S -

\ l £

GraphRats€l

L~
Y '*;

Carnegie Mellon University |

i

Topics

Application
Implementation Issues

Optimizing for Parallel Performance

N
N
m Optimizing for Sequential Performance
N
m Useful Advice

15-418/618 Spring 2018 2

Carnegie Mellon

Basic Idea

m Transitions
= Each rat decides where to move next
= Don’t like crowds
= But also don’t like to be alone
= Weighted random choice

m Graph
= KXKgrid
m Initial State

= Start with all R rats in corner

15-418/618 Spring 2018 3

Carnegie Mellon

it e e e e TR S

$om—t—— -t ——4-———+

tom—t———t-— =t ——4-———+

it EEE PP PR PR

et el e e e s ¥

s T e S S s T X

$om—t———t-— -t ——4-——+

1142

om—dmm oo}

29|

|149|

Hom o m o m -}

0
i et e e T e an 1

t =

tom—d———t-— - ——4-——+

tom—d———t-— = ———4-——+

et et e e g

s et e e R e

tom—b———tm— = ——4-——+

T et e e S X

et T e e R s Satatat ¥

|320]

it LR P PR R

Node Count Representation

15-418/618 Spring 2018

Carnegie Mellon

Simulation Example

30.
it R L PP P PR

i et e

tom—t———t-— -t ——4-——+

$om—t———t-——d———t———p——————4-——%+

12| 10| 12| 10|

et R L PP PR PR

7

| 13| 5

7

| 10| 7

1
et R P P PR e T

10| 14| 13) 11| 9

6
$om—t———tm— b~ ———4-———+

10|

| 15|

3

9

| 10| 2
$om—t—— -t ———4-——+

5

7

| 16| 8
it L P PR PR PR

7

0
et T e e T e TR

t =

et T e e ek Attt

to——d———t—— - ———t-——+

et B e T it

e e LS

e e T T TR

to—————t—— - ———f-——+

to——d———t—— -~ ———t-——+

|320]

et St e s 1

15-418/618 Spring 2018

Carnegie Mellon

Visualizations

Heat Map (“h”)

Text (“a” for ASCII)

30.
o m o — b ——— b+

tom—t———t-————————p———t———4-——%+

tom—t———tm—————t—— - ——4———+

it e e e S

12| 10| 12| 10|

e e S e

7

| 13| 5

7

| 10| 7

1
$om—t———t-——b————— -t ———4-———%

10| 14| 13| 11| 9

6
tom—t———t-——d———t———p———t———4-——%+

10|

| 15]

3

9

| 10| 2
 att EEE PR B PP T

5

7

| 16| 8
it e e e e S

7

15-418/618 Spring 2018

Running it yourself

linux> cd some directory
linux> git clone https//github.com/cmul5418/asst3-s18.git
linux> cd asst3-sl8/code

Linux> make demoX
Xfrom1to10

m Demos
= 1: Text visualization, synchronous updates
= 2: Heap-map, synchronous updates

15-418/618 Spring 2018

Carnegie Mellon

Determining Rat Moves

m Count number of rats at current and adjacent locations

= Adjacency structure represented as graph

m Compute reward value for each location

= Based on load factor I = count/average count

= /" |deal load factor (= 1.5)
"= Q Fitting parameter (= 0.5)
1
Reward(l) =

1+ (logy [1+a(l —1*)])?

15-418/618 Spring 2018 8

Carnegie Mellon

Reward Function

Reward(l) = !

1+ (logy [1+a(l —1*)])?

Reward Function
1.2

0.8
0.6
0.4
0.2

0 2 4 6 8 10
Load Factor
= Maximized at load factor 1.5
= Just above average population
= Drops for smaller loads (too few) and larger loads (too crowded)

15-418/618 Spring 2018 9

Carnegie Mellon

Reward Function (cont.)

Reward(l) = !

1+ (logy [1+a(l —1*)])?

Reward Function
1.2

0.8
0.6
0.4
0.2

1 10 100 1000
Load Factor
= Falls off gradually

« Reward(1000) = 0.0123

15-418/618 Spring 2018 10

Carnegie Mellon

Selecting Next Move

Population Reward (avg = 10)

40

Weighted Choices
(node followed by row-major ordering of neighbors)

A

x=1.04
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 090 1.00 1.10 1.20 130 1.40 1.50

" Choose random number between 0 and sum of rewards
= Move according to interval hit

15-418/618 Spring 2018 11

Carnegie Mellon

Update Models

m Synchronous
" Demo 2
" Compute next positions for all rats, and then move them
= Causes oscillations/instabilities

m Rat-order
" Demo 3
= For each rat, compute its next position and then move it
= Smooth transitions, but costly

m Batch

= Demo4

= For each batch of B rats, compute next moves and then move them
= B=0.02*R
= Smooth enough, with better performance possibilities

15-418/618 Spring 2018 12

What We Provide

m Python version of simulator
" Demo4
= Very slow

m Cversion of simulator
= Faster, but still too slow
"= Demo 5: 8X8 grid, 320 rats
" Demo 6: 160X160 grid, 1,024,000 rats
= That’s what we’ll be using for benchmarks!
= You’ll have to be patient using the starter code

m Generate visualizations by piping C simulator output into
Python simulator
® QOperating in visualization mode
= See Makefile for examples

15-418/618 Spring 2018 13

Carnegie Mellon

Correctness

m Simulator is Deterministic
= Global random seed
= Random seeds for each rat
= Process rats in fixed order

m You Must Preserve Exact Same Behavior

" Python simulator generates same result as C simulator
" Use regress.py tocheck

= Don’t rely only on the small cases it currently checks

15-418/618 Spring 2018 14

Graphs: Grid (Demo 6)

Highly regular
Low degree
Rats spread slowly

m k X k nodes, each with nearest neighbor connectivity
m Max degree =4
m k=160: 25,600 nodes 101,760 edges

15-418/618 Spring 2018 15

Graphs: Tiled (Demo 7)

|| || || ||
n n =i n Globally regularly, locally irregular
Low/medium degree degree
Rats spread quickly within tile, slowly between tiles
- - u - Hub nodes typically have high rat counts
|| || || ||

m Smaller d X d regions, each with hub node
= Node with edge to every other node in region
= Regions connected only by nearest-neighbor edges at border
=" Maximum degree = d?-1 (= 99 for benchmark graph)

m k=160,d =10: 25,600 nodes 152,850 edges

15-418/618 Spring 2018 16

Carnegie Mellon

Fractal Graph (Demo 8)

Highly irregular

Widely varying degrees

Rats spread quickly through regions
Hub nodes typically have high rat counts

m Regions of varying size
= Some have 4 hub nodes, others 1
" Maximum degree = k?/2-1 (= 12,799 for benchmark graph)

m k=160: 25,600 nodes 254,940 edges

15-418/618 Spring 2018 17

Carnegie Mellon

States (Fractal Graph)

Right Corner (r) Diagonal (d) Uniform (u)
Demo 8 Demo 9 Demo 10

: . . .
: . -
L

15-418/618 Spring 2018 18

Carnegie Mellon

Graph Representation N node, M edges

neighbor start (length=N+1)

0 3 7 110141923 |26 |30] 33

neighbor
Includes self edges

length = N+M
:l 7 | 4 | 6) ‘ 8 5 7 Having pointer to

end is useful (why?)

15-418/618 Spring 2018 19

Carnegie Mellon

Sample Code

m From sim.c

m Compute reward value for node

/* Compute weight for node nid */
static inline double compute weight(state t *s, int nid)
{

int count = s->rat count[nid];

return mweight((double) count/s->load factor);

m Simulation state stored in state t struct

m Reward function computed by mweight

15-418/618 Spring 2018 20

Carnegie Mellon

Sample Code

m Fromsim.c
m Compute sum of reward values for node

/* Compute sum of weights in region of nid */

static inline double (state_t *s, int nid)
{

graph t *g = s->Qg;

double sum = 0.0;

int eid;

int eid start = g->neighbor start[nid];

int eid end g->neighbor start[nid+l];

int *neighbor = g->neighbor;

for (eid = eid start; eid < eid end; eid++) {
sum += compute weight (s, neighbor[eid]) ;

}

return sum;

15-418/618 Spring 2018 21

Carnegie Mellon

Sample Code

m Compute next move for rat

static inline int next random move(state t *s, int r)

{

int nid
random t *seedp
double tsum

s->rat position|[r];
&s->rat seed[r];
compute sum weight(s, nid);

graph t *g = s->Qg;

double val = next random float(seedp, tsum);
double psum = 0.0;

int eid;

int eid start = g->neighbor start[nid];

int eid end = g->neighbor start[nid+l];

int *neighbor = g->neighbor;

for (eid = eid start; eid < eid end; eid++) {
psum += compute weight (s, neighbor[eid]);
if (val < psum) {
return neighbor[eid];

}

}

15-418/618 Spring 2018 22

Carnegie Mellon

Sequential Efficiency Considerations

m Consider move computation for rat at node with degree D

"= How many (on average) iterations of loop in
next random move?

= How many calls are made to mweight?

m Suppose there are X rats in batch at single node with
degree D

" How many (on average) iterations of loop in
next random move?

"= How many calls are made to mweight?

15-418/618 Spring 2018 23

Carnegie Mellon

Finding Parallelism

m Sequential constraints
= Must complete time steps sequentially
= Must complete each batch before starting next

m Sources of parallelism
= Qver nodes
= Computing reward functions
= Qver rats (within a batch)
= Computing next moves
= Updating node counts

15-418/618 Spring 2018 24

Carnegie Mellon

Performance Targets

m Mega-Rats Per Second (MRPS)
" Rrats running for S steps
= Requirestime T
= MRPS=10%*R*S/T
m Runs
= 5 combinations of graph/initial state

= Compute geometric mean of MRPS’s

m Target performance

1 Thread 12 Threads Speedup
Synchronous 32 256 8.0
Batch 20 70 3.5

15-418/618 Spring 2018 25

Carnegie Mellon

Some Suggestions

m Focus initially on sequential performance
= But think of ways that will allow parallelism
= Simple ideas / data structures generally work best
= Use timing to guide optimizations

m Synchronous mode easier to make fast

= Both sequentially and parallel

m Machines
= Can develop on any machine
= GHC machines work well
= Performance will be evaluated on Latedays machines
= Batch submission process

= These have different characteristics from GHC machines when
measuring parallel performance

15-418/618 Spring 2018 26

Carnegie Mellon

Instrumenting Your Code

m How do you know how much time each activity takes?
" Create simple library using cycletimer code
= Bracket steps in your code with library calls

= Use macros so that you can disable code for maximum
performance

START ACTIVITY (ACTIVITY NEXT) ;
omp parallel for schedule(static)

for (ri = 0; ri < local count; ri++) ({
int rid = ri + local_ start;
s->rat position[rid] = fast next random move(s, rid);

}
FINISH ACTIVITY (ACTIVITY NEXT) ;

15-418/618 Spring 2018 27

Carnegie Mellon

Evaluating Your Instrumented Code

1 thread
194 ms 1.0 % startup
2077 ms 11.1 % compute weights
4029 ms 21.6 % compute_ sums
11733 ms 62.8 % find moves
651 ms 3.5 % set_ops
3 ms 0.0 % unknown
+++ 25600 t 40 u 400 b 1 18.70 21.91
12 threads
192 ms 3.2 % startup
426 ms 7.0 % compute weights
940 ms 15.5 % compute sums
3168 ms 52.3 % find moves
1325 ms 21.9 % set_ops
2 ms 0.0 % unknown
SISt 25600 t 40 u 400 b 12 6.06 67.55 (3.08X)

m Can see which activities account for most time
m Can see which activities limit parallel speedup

15-418/618 Spring 2018 28

Carnegie Mellon

Some Logos

Graph | ab *,,

Carnegle Mellon

GraphRats e, |

15-418/618 Spring 2018 29

