
August 23, 2011

© NVIDIA 2011

Identifying Performance Limiters
Paulius Micikevicius| NVIDIA

“Re-presented” by Gregory Kesden, 15-418, Spring 2018

2

© NVIDIA 2011

Performance Optimization Process

• Use appropriate performance metric for each kernel

– For example, Gflops/s don’t make sense for a bandwidth-bound kernel

• Determine what limits kernel performance

– Memory throughput

– Instruction throughput

– Latency

– Combination of the above

• Address the limiters in the orderof importance

– Determine how close to the HW limits the resource is being used

– Analyze for possible inefficiencies

– Apply optimizations

• Often these will just fall out from how HW operates

3

© NVIDIA 2011

3 Ways to AssessPerformance Limiters

• Algorithmic

– Based on algorithm’s memory and arithmetic requirements

– Least accurate: undercounts instructions and potentially memory
accesses

• Profiler

– Based on profiler-collected memory and instruction counters

– More accurate, but doesn’t account well for overlapped memory and
arithmetic

• Code modification

– Based on source modified to measure memory-only and arithmetic-only
times

– Most accurate, however cannot be applied to all codes

4

© NVIDIA 2011

Things to Know About YourGPU

• Theoretical memory throughput

– For example, Tesla M2090 theory is 177 GB/s

• Theoretical instruction throughput

– Varies by instruction type

• refer to the CUDA Programming Guide (Section 5.4.1) for details

– Tesla M2090 theory is 665 GInstr/s for fp32 instructions

• Half that for fp64

• I’m counting instructions per thread

• Rough “balanced” instruction:byte ratio

– For example, 3.76:1 from above (fp32 instr : bytes)

• Higher than this will usually mean instruction-bound code

• Lower than this will usually mean memory-bound code

5

© NVIDIA 2011

Algorithmic Analysis

• Approach:

– Compute the ratio of arithmetic operations to bytes accessed in
the algorithm (for example, per output element)

– Compare to the balanced ratio for your GPU

• Better than nothing, but not very accurate:

– Undercounts instructions: control flow, address calculation, etc.

– May undercount memory accesses: ignores cache line sizes

• Example: vector add

– Read two 4-byte words, add, write one 4-byte word

– 1 instr : 12 bytes

– Much lower than 3.76:1, thus memory bound

6

© NVIDIA 2011

Analysis with the Profiler

• Relevant profiler counters:

– instructions_issued

• Incremented by 1 per warp, counter is for one SM

– dram_reads, dram_writes

• Incremented by 1 per 32B access to DRAM

• Note that the VisualProfiler converts each of the above to 2 counters

– These simply get added together, refer to the Visual Profiler User Guide for details

– You’ll need to do this yourself if you’re using command-line profiling

– If your code hits in L2 cache a lot, you may want to look at L2 counters instead (accesses to
L2 are still expensive compared to arithmetic)

• Compute instruction:byte ratio and compare to the balanced one:

– (number of SMs) * 32 * instructions_issued : 32B * (dram_reads + dram_writes)

• Example: vector add

– 1.49:1, lower than 3.76 so memory-bound

7

© NVIDIA 2011

Another Way to Use the Profiler

• VisualProfiler will report instruction and memory throughputs

– IPC (instructions per clock) for instructions

– GB/s achieved for memory (and L2)

• Compare those with the theory for the HW

– Profiler will also report the theoretical best

• Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration

– If one of the metrics is close to the hw peak, you’re likely limited by it

– If neither metric is close to the peak, then unhidden latency is likely an issue

– “close” is approximate, I’d say 70% of theory or better

• Example: vector add

– IPC: 0.55 out of 2.0

– Memory throughput: 130 GB/s out of 177 GB/s

– Conclusion: memory bound

Another Way to Use the Profiler

struction and memory throughputs

or instructions

and L2)

eory for the HW

theoretical best

p32 instructions, it DOES NOT take instruction mix into consideration

to the hw peak, you’re likely limited by it

the peak, then unhidden latency is likely an issue

ay 70% of theory or better

B/s out of 177 GB/s

• VisualProfiler will report in

– IPC (instructions per clock) f

– GB/s achieved for memory (

• Compare those with the th

– Profiler will also report the

• Though for IPC it assumes f

– If one of the metrics is close

– If neither metric is close to

– “close” is approximate, I’d s

• Example: vector add

– IPC: 0.55 out of 2.0

– Memory throughput: 130 G

– Conclusion: memory bound

8

© NVIDIA 2011

9

© NVIDIA 2011

Notes on Instruction Counts

• Undercount by algorithmic analysis

– Algorithmic analysis assumed 1 instruction (add)

– Actual code contains 17 instructions

• You can actually check the machine-language assembly instructions

– Compile into a .cubin file

– Use cuobjdump tool (comes with CUDA toolkit) to get assembly from .cubin

– Useful for checking instruction counts

– Actual instruction counts could also be used to somewhat refine the
theoretical IPC for the specific code

• For example, if all instructions were fp64, the theoretical IPC is 1.0, not 2.0

10

© NVIDIA 2011

Notes on the Profiler

• Most counters are reported per Streaming Multiprocessor (SM)

– Not entire GPU

– Exceptions: L2 and DRAM counters

• A single run can collect a few counters

– Multiple runs are needed when profiling more counters

• Done automatically by the Visual Profiler

• Have to be done manually using command-line profiler

• Counter values may not be exactly the same for repeated runs

– Threadblocks and warps are scheduled at run-time

– So, “two counters being equal” usually means “two counters within a small delta”

• Refer to the profiler documentation for more information

11

© NVIDIA 2011

Analysis with Modified Source Code

• Time memory-only and math-only versions of the kernel

– Easier for codes that don’t have data-dependent control-flow or
addressing

– Gives you good estimates for:

• Time spent accessing memory

• Time spent in executing instructions

• Comparing the times for modified kernels

– Helps decide whether the kernel is mem or math bound

– Shows how well memory operations are overlapped with arithmetic

• Compare the sum of mem-only and math-only times to full-kernel time

Some Example Scenarios

mem math full

Memory-bound

Good mem-math

overlap: latency not a

problem

(assuming memory

throughput is not low

compared to HW theory)

time

© NVIDIA 2011

12

Some Example Scenarios

mem math full mem math full

Math-bound

Good mem-math

overlap: latency not a

problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math

overlap: latency not a

problem

(assuming memory

throughput is not low

compared to HW theory)

time

© NVIDIA 2011

Some Example Scenarios

mem math full mem math full mem math full

Math-bound

Good mem-math

overlap: latency not a

problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math

overlap: latency not a

problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math

overlap: latency not a

problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

© NVIDIA 2011

14

Some Example Scenarios

mem math full mem math full mem math full mem math full

Memory and latency bound

Poor mem-math overlap:

latency is a problem

Math-bound

Good mem-math

overlap: latency not a

problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math

overlap: latency not a

problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math

overlap: latency not a

problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

15

© NVIDIA 2011

16

© NVIDIA 2011

Source Modification

• Memory-only:

– Remove as much arithmetic as possible

• Without changing access pattern

• Use the profiler to verify that load/store count is the same

• Store-only:

– Also remove the loads

• Math-only:

– Remove global memory accesses

– Need to trick the compiler:

• Compiler throws away all code that it detects as not contributing to stores

• Put stores inside conditionals that always evaluate to false

– Condition should depend on the value about to be stored (prevents other optimizations)

– Condition outcome should not be known to the compiler

Source Modification for Read-only

global void add(float *output, float *A, float *B, int flag)
{

...
value = A[idx] + B[idx];
if(1 == value * flag)

output[idx] = value;
}

If you compare only the

flag, the compiler may

move the computation

into the conditional as

well

17

© NVIDIA 2011

18

© NVIDIA 2011

Source Modification and Occupancy

• Removing pieces of code is likely to affect
register count

– This could increase occupancy, skewing the results

• Make sure to keep the same occupancy

– Check the occupancy with profiler before modifications

– After modifications, if necessary add shared memory to
match the unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)

19

© NVIDIA 2011

Another Case Study
• Analysis:

– Instr:byte ratio = ~3.21

– Good overlap between math and mem:

• 2.29 ms of math-only time (18%) is not overlapped with
mem

– App memory throughput: 72 GB/s

• HW throughput is 125 GB/s

• HW theory is 177 GB/s, so memory is not used efficiently

• Conclusion:

– Code is more memory- than instruction-limited

• IPC is 1.2 (60% of theory)

• Memory throughput is 70%

– Optimizations should focus on memory throughput
first

• Memory is a larger portion of total time

• Also note that application and hw throughputs are
different

– More on this in upcoming webinar

• Time (ms):

– Full-kernel: 25.82

– Mem-only:

– Math-only:

23.53

12.52

• Instructions issued:

– Full-kernel: 20,388,591

– Mem-only:

– Math-only:

10,034,799

14,683,776

• Total DRAM requests

– Full-kernel: 101,328,372

– Mem-only: 101,328,372

– Math-only:
0

20

© NVIDIA 2011

Summary

• Rough algorithmic analysis:

– How many bytes needed, how many instructions

• Profiler analysis:

– Instruction count, memory access count

– Check how close instruction and memory throughputs are to hw theory

• Analysis with source modification:

– Full version of the kernel

– Memory-only version of the kernel

– Math-only version of the kernel

– Examine how these times relate and overlap

• More details on memory- and instruction-optimizations

– Upcoming webinars

Local Memory and Register Spilling
Paulius Micikevicius| NVIDIA

© NVIDIA 2011

22

© NVIDIA 2011

Local Memory

• Name refers to memory where registers and other thread-
data is spilled

– Usually when one runs out of SM resources

– “Local” because each thread has its own private area

• Details:

– Not really a “memory” – bytes are stored in global memory

– Differences from global memory:

• Addressing is resolved by the compiler

• Stores are cached in L1

23

© NVIDIA 2011

LMEM Access Operation

• A store writes a line to L1

– If evicted, that line is written to L2

– The line could also be evicted from L2, in which case it’s written to DRAM

• A load requests the line from L1

– If a hit, operation is complete

– If a miss, then requests the line from L2

• If a miss, then requests the line from DRAM

• A store always happens before a load

– Only GPU threads can access LMEM addresses

Fermi Memory Hierarchy

L2

Global Memory (DRAM)

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

24

© NVIDIA 2011

25

© NVIDIA 2011

When is Local Memory Used?

• Register spilling

– Fermi hardware limit is 63 registers per thread

– Programmer can specify lower registers/thread limits:

• To increase occupancy (number of concurrently running threads)

• -maxrregcount option to nvcc, launch_bounds () qualifier in the code

– LMEM is used if the source code exceeds register limit

• Arrays declared inside kernels, if compiler can’t resolve indexing

– Registers aren’t indexable, so have to be placed in LMEM

26

© NVIDIA 2011

How Does LMEM Affect Performance?

• It could hurt performance in two ways:

– Increased memory traffic

– Increased instruction count

• Spilling/LMEM usage isn’t always bad

– LMEM bytes can get contained within L1

• Avoids memory traffic increase

– Additional instructions don’t matter much if code is not
instruction-throughput limited

27

© NVIDIA 2011

General Analysis/Optimization Steps

• Check for LMEM usage

– Compiler output

• nvcc option: –Xptxas –v,–abi=no

• Will print the number of lmem bytes for each kernel (only if kernel uses LMEM)

– Profiler

• Check the impact of LMEM on performance

– Bandwidth-limited code:

• Check how much of L2 or DRAM traffic is due to LMEM

– Arithmetic-limited code:

• Check what fraction of instructions issued is due to LMEM

• Optimize:

– Try: increasing register count, increasing L1 size, using non-caching loads

28

© NVIDIA 2011

Register Spilling: Analysis

• Profiler counters:

– l1_local_load_hit, l1_local_load_miss, l1_local_store_hit, l1_local_store_miss

– Counted for a single SM, incremented by 1 for each 128-byte transaction

• Impact on memory

– Any memory traffic that leaves SMs (goes to L2) is expensive

– L2 counters of interest: read and write sector queries

• Actual names are longer, check the profiler documentation

• Incremented by 1 for each 32-byte transaction

– Compare:

• Estimated L2 transactions due to LMEM misses in all the SMs

– 2*(number of SMs)*4*l1_local_load_miss

• 2: load miss implies a store happened first

• Number of SMs: l1_local_load_miss counter is for a single SM

• 4: local memory transaction is 128-bytes = 4 L2-transactions

• Sum of L2 read and write queries (not misses)

• Impact on instructions

– Compare the sum of all LMEM instructions to total instructions issued

29

© NVIDIA 2011

Optimizations When Register Spilling is

Problematic

• Try increasing the limit of registers per thread

– Use a higher limit in –maxrregcount, or lower thread count for launch_bounds

– Likely reduces occupancy, potentially reducing execution efficiency

• may still be an overall win – fewer total bytes being accessed

• Try using non-caching loads for global memory

– nvcc option: -Xptxas –dlcm=cg

– Potentially fewer contentions with spilled registers in L1

• Increase L1 size to 48KB

– Default is 16KB L1, larger L1 increases the chances for LMEM hits

– Can be done per kernel or per device:

• cudaFuncSetCacheConfig(), cudaDeviceSetCacheConfig()

30

© NVIDIA 2011

Case Study

• Time Domain Finite Difference of the 3D Wave Equation

– Simulates seismic wave propagation through Earth subsurface

– Largely memory bandwidth-bound

– Running more threads concurrently helps saturate memory bandwidth

• Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread

• Check for LMEM Use

– Spills 44 bytes per thread when compiled down to 32 registers per thread

$ nvcc -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_o8.cu -maxrregcount=32

ptxas info : Compiling entry function '_Z15fwd_3D_orderX2bILi4ELi9EEvPfS0_S0_iiiii' for 'sm_20‘

ptxas info : Used 32 registers, 44+0 bytes lmem, 6912+0 bytes smem, 76 bytes cmem[0], …

31

© NVIDIA 2011

Case Study: Analyze the Impact on Memory

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

To get the counters use any of:

• Visual Profiler

• Command-line profiler

• NSight

Case Study: Analyze the Impact on Memory

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

Load L1 hit rate: 13.95%

Estimated L2 queries per SM due to LMEM:

2*4*564,332 = 4,514,656

32

© NVIDIA 2011

Estimated L2 queries due to LMEM of all 16 SMs:

16*4,514,656 = 72,234,496

Percentage of all L2 queries due to LMEM:

72,234,496 / 132,821,516 = 53.38%

Case Study: Analyze the Impact on Memory

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

Load L1 hit rate: 13.95%

Estimated L2 queries per SM due to LMEM:

2*4*564,332 = 4,514,656

33

© NVIDIA 2011

Estimated L2 queries due to LMEM of all 16 SMs:

16*4,514,656 = 72,234,496

Percentage of all L2 queries due to LMEM:

72,234,496 / 132,821,516 = 53.38%

Case Study: Analyze the Impact on Instructions

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

938,944 / 20,412,251 = 4.60%

34

© NVIDIA 2011

Case Study: Analyze the Impact on Instructions

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

938,944 / 20,412,251 = 4.60%

35

© NVIDIA 2011

36

© NVIDIA 2011

Case Study: Optimizations

• Try increasing register count

– Remove the –maxrregcount=32 compiler option

• 46 registers per thread, no spilling

– Performance improved by 1.22x

• Increase L1 cache size

– Keeping the 32 register maximum and spilling 44 bytes

– Add cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); call

– L1 LMEM load hit rate improved to 98.32%

– Estimated 1.63% of all requests to L2 were due to LMEM

• way too small to worry about

• 1.63 was computed as on slide 12 (not by 100% - 98.32%)

– performance improved by 1.45x

• Application was already using non-caching loads for other reasons

37

© NVIDIA 2011

Register Spilling: Summary

• Doesn’t always decrease performance, but

when it does it’s because of:
– Increased pressure on the memory bus

– Increased instruction count

• Use the profiler to determine:
– Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to

L2) for

– Arithmetic-limited codes: LMEM instruction count as percentage of all

instructions

• Optimize by
– Increasing register count per thread

– Incresing L1 size

– Using non-caching GMEM loads

