Ident1fymg Performance lelters

Pauhus MlClkeVICIUSI NVIDIA

“Re-presented” by Gregory Kesden, 15-418, Spring 2018

© NVIDIA 2011

Performance Optimization Process

« Use appropriate performance metric for each kernel

— For example, Gflops/s don’t make sense for a bandwidth-bound kernel
 Determine what limits kernel performance

— Memory throughput

— Instruction throughput

— Latency

— Combination of the above
» Address the limiters in the orderof importance

— Determine how close to the HW limits the resource is being used

— Analyze for possible inefficiencies

— Apply optimizations

« Often these will just fall out from how HW operates

© NVIDIA 2011

3 Ways to AssessPerformance Limiters

 Algorithmic
— Based on algorithm’s memory and arithmetic requirements

— Least accurate: undercounts instructions and potentially memory
accesses

 Profiler
— Based on profiler-collected memory and instruction counters

— More accurate, but doesn’t account well for overlapped memory and
arithmetic

 Code modification

— Based on source modified to measure memory-only and arithmetic-only
times

— Most accurate, however cannot be applied to all codes

© NVIDIA 2011

Things to Know About Your GPU

« Theoretical memory throughput
— For example, Tesla M2090 theory is 177 GB/s
» Theoretical instruction throughput
— Varies by instruction type
» refer to the CUDA Programming Guide (Section 5.4.1) for details

— Tesla M2090 theory is 665 Glnstr/s for fp32 instructions
» Half that for fp64
* |I’m counting instructions per thread

* Rough “balanced” instruction:byte ratio

— For example, 3.76:1 from above (fp32 instr : bytes)
» Higher than this will usually mean instruction-bound code

* Lower than this will usually mean memory-bound code

© NVIDIA 2011

© NVIDIA 2011

Algorithmic Analysis

* Approach:

— Compute the ratio of arithmetic operations to bytes accessed in
the algorithm (for example, per output element)

— Compare to the balanced ratio for your GPU
« Better than nothing, but not very accurate:
— Undercounts instructions: control flow, address calculation, etc.
— May undercount memory accesses: ignores cache line sizes
« Example: vector add
— Read two 4-byte words, add, write one 4-byte word
— 1instr : 12 bytes
— Much lower than 3.76:1, thus memory bound

© NVIDIA 2011

Analysis with the Profiler

« Relevant profiler counters:
— instructions_issued
* Incremented by 1 per warp, counter is for one SM
— dram_reads, dram_writes
* Incremented by 1 per 32B access to DRAM
* Note that the VisualProfiler converts each of the above to 2 counters

— These simply get added together, refer to the Visual Profiler User Guide for details

— You’ll need to do this yourself if you’re using command-line profiling

— If your code hits in L2 cache a lot, you may want to look at L2 counters instead (accesses to
L2 are still expensive compared to arithmetic)

« Compute instruction:byte ratio and compare to the balanced one:
— (number of SMs) * 32 * instructions_issued : 32B * (dram_reads + dram_writes)
 Example: vector add
— 1.49:1, lower than 3.76 so memory-bound

Another Way to Use the Profiler

 VisualProfiler will report instruction and memory throughputs
— IPC (instructions per clock) for instructions
— GB/s achieved for memory (and L2)
« Compare those with the theory for the HW
— Profiler will also report the theoretical best
Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration
— If one of the metrics is close to the hw peak, you’re likely limited by it
— If neither metric is close to the peak, then unhidden latency is likely anissue
— “close” is approximate, 1’d say 70% of theory or better
« Example: vector add
— IPC: 0.55 out of 2.0
— Memory throughput: 130 GB/s out of 177 GB/s
— Conclusion: memory bound

© NVIDIA 2011

Another Way to Use the Profiler

add analysis - [Session1 - Device_0 - Context_0]

 VisualProfiler will report in{ rie vew
— IPC (instructions per clock) H“"a'”‘s -

Summary profiling information for the kernel: A

— GB/s achieved for memory (| Number of cals: 1
GPU time(us): 1283.97

« Compare those with the th {& s s 11

Grid size: [32768 1 1]
Block size: [S12 1 1]

[imiting Factor
IPC: 0.55 { Maximum IPC: 2)
Achieved global memory throughput: 130.83 { Peak global memory throughput{GBfs): 177.80)

— Profiler will also report the

* Though for IPC it assurfes f|
— If one of the metrics is clos

™
i Tall] Limiting Factor
- If ne]ther metric is ClOSG to ;d:e:mt?ﬁcation GPU Timestamp (us) — GPU Time (us) instructions issued active cycles
« ”» . ’ Type:SM Run:2 Type:SM Run:3
close” is approximate, 1’d s |
Memory Throughput ‘ 10 1283.97 427692 777994
« Example: vector add Analysis

— IPC: 0.55 out of 2.0
— Memory throughput: 130 G
— Conclusion: memory bound

Instruction Throughput
Analysis

—_—

Occupancy Analysis

© NVIDIA 2011

Notes on Instruction Counts

* Undercount by algorithmic analysis
— Algorithmic analysis assumed 1 instruction (add)
— Actual code contains 17 instructions

* You can actually check the machine-language assembly instructions
— Compile into a .cubin file
— Use cuobjdump tool (comes with CUDA toolkit) to get assembly from .cubin
— Useful for checking instruction counts

— Actual instruction counts could also be used to somewhat refine the
theoretical IPC for the specific code

» For example, if all instructions were fp64, the theoretical IPC is 1.0, not 2.0

© NVIDIA 2011

Notes on the Profiler

Most counters are reported per Streaming Multiprocessor (SM)
— Not entire GPU
— Exceptions: L2 and DRAM counters

A single run can collect a few counters

— Multiple runs are needed when profiling more counters
* Done automatically by the Visual Profiler
* Have to be done manually using command-line profiler

« Counter values may not be exactly the same for repeated runs
— Threadblocks and warps are scheduled at run-time
— S0, “two counters being equal” usually means “two counters within a small delta”

Refer to the profiler documentation for moreinformation

10
© NVIDIA 2011

Analysis with Modified Source Code

« Time memory-only and math-only versions of the kernel

— Easier for codes that don’t have data-dependent control-flow or
addressing

— Gives you good estimates for:
« Time spent accessing memory
« Time spent in executing instructions

« Comparing the times for modified kernels
— Helps decide whether the kernel is mem or math bound

— Shows how well memory operations are overlapped with arithmetic
« Compare the sum of mem-only and math-only times to full-kernel time

11
© NVIDIA 2011

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math

overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2011

12

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2011

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2011

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

mem math full

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low
compared to HW theory)

14

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2011

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

mem math full

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low
compared to HW theory)

mem math full

Memory and latency bound

Poor mem-math overlap:
latency is a problem

15

© NVIDIA 2011

Source Modification

 Memory-only:
— Remove as much arithmetic as possible

» Without changing access pattern
» Use the profiler to verify that load/store count is the same

« Store-only:
— Also remove the loads
* Math-only:
— Remove global memory accesses

— Need to trick the compiler:
» Compiler throws away all code that it detects as not contributing tostores
» Put stores inside conditionals that always evaluate to false
— Condition should depend on the value about to be stored (prevents other optimizations)

— Condition outcome should not be known to the compiler

16

© NVIDIA 2011

Source Modification for Read-only

__global___void add(float *output, float *A, float *B, int flag)

{
value = Afidx] + BJ[idx]; If you compare only the
if(1 ==value * flag) | 128, the compiler may
output[idx] = value; move the computation
} into the conditional as
well

17

Source Modification and Occupancy

* Removing pieces of code is likely to affect
register count

— This could increase occupancy, skewing the results

* Make sure to keep the same occupancy
— Check the occupancy with profiler before modifications

— After modifications, if necessary add shared memory to
match the unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)

18
© NVIDIA 2011

Another Case Study

* Analysis:

* Time (ms): — Instr:byte ratio = -3.21

— Full-kernel: 25.82 — Good overlap between math and mem:

¢ 2.29 ms of math-only time (18%) is not overlapped with
— Mem-only: 23.53 mem
_ Math-only: 12.52 — App memory throughput: 72 GB/s
. . HW throughput is 125 GB/s

° |nStrUCt10nS]SSlJed: » HW theory is 177 GB/s, so memory is not used efficiently

— Full-kernel: 20,388,591
— Mem-only: 10,034,799

« Conclusion:

— Code is more memory- than instruction-limited

— Math-only: 14,683,776 - IPC is 1.2 (60% of theory)
° TOtal D RAM req UeStS * Memory throughput is 70%
— Optimizations should focus on memory throughput
— Full-kernel: 101,328,372 first
* Memoryis a larger portion of total time
- m-only: 101,328,372
Mem-o ly ’ ’ . ﬁ'l%? note that application and hw throughputs are
— Math-only: ifferent
O — More on this in upcoming webinar

© NVIDIA 2011

© NVIDIA 2011

Summary

Rough algorithmic analysis:
— How many bytes needed, how many instructions
Profiler analysis:
— Instruction count, memory access count
— Check how close instruction and memory throughputs are to hw theory
Analysis with source modification:
— Full version of the kernel
— Memory-only version of the kernel
— Math-only version of the kernel
— Examine how these times relate and overlap
More details on memory- andinstruction-optimizations
— Upcoming webinars

20

----- Local Memory and Reglster Spllllng

5» Pauhus M1c1kev1c1us| NVIDIA . ‘

© NVIDIA 2011

© NVIDIA 2011

Local Memory

 Name refers to memory where registers and other thread-
data is spilled
— Usually when one runs out of SM resources
— “Local” because each thread has its own private area

* Details:
— Not really a “memory” - bytes are stored in global memory

— Differences from global memory:
» Addressing is resolved by the compiler
 Stores are cached in L1

22

© NVIDIA 2011

LMEM Access Operation

» A store writes a line to L1
— |If evicted, that line is written to L2
— The line could also be evicted from L2, in which case it’s written to DRAM

A load requests the line from L1
— If a hit, operation is complete

— If a miss, then requests the line from L2
» If a miss, then requests the line from DRAM

» A store always happens before a load
— Only GPU threads can access LMEM addresses

23

© NVIDIA 2011

Fermi Memory Hierarchy

SM-0
Registers
L1 SMEM
A

SM-1
Registers
$ ¢)
L1 SMEM
A

SM-N

Registers

¢

¢

L1

SMEM

l

L2

!

Global Memory (DRAM)

24

© NVIDIA 2011

When is Local Memory Used?

» Register spilling
— Fermi hardware limit is 63 registers per thread

— Programmer can specify lower registers/thread limits:
» Toincrease occupancy (number of concurrently running threads)
« -maxrregcount option to nvcc,_ launch_bounds__ () qualifier in the code

— LMEM is used if the source code exceeds register limit

« Arrays declared inside kernels, if compiler can’t resolve indexing
— Registers aren’t indexable, so have to be placed in LMEM

25

How Does LMEM Affect Performance?

* It could hurt performance in two ways:

— Increased memory traffic
— Increased instruction count

 Spilling/LMEM usage isn’t always bad

— LMEM bytes can get contained within L1
» Avoids memory traffic increase

— Additional instructions don’t matter much if code is not
instruction-throughput limited

© NVIDIA 2011

26

© NVIDIA 2011

General Analysis/Optimization Steps

* Check for LMEM usage
— Compiler output
* nvcc option: -Xptxas -v,-abi=no
« Will print the number of Imem bytes for each kernel (only if kernel uses LMEM)
— Profiler
* Check the impact of LMEM on performance
— Bandwidth-limited code:
» Check how much of L2 or DRAM traffic is due to LMEM
— Arithmetic-limited code:
» Check what fraction of instructions issued is due to LMEM
« Optimize:
— Try: increasing register count, increasing L1 size, using non-caching loads

27

© NVIDIA 2011

Register Spilling: Analysis

» Profiler counters:
— 11 _local_load_hit, 11 local load miss, |1 _local store hit, |1 _local store miss

— Counted for a single SM, incremented by 1 for each 128-byte transaction

* Impact on memory
— Any memory traffic that leaves SMs (goes to L2) is expensive
— L2 counters of interest: read and write sector queries
» Actual names are longer, check the profiler documentation
* Incremented by 1 for each 32-byte transaction
— Compare:
« Estimated L2 transactions due to LMEM misses in all the SMs

— 2*(number of SMs)*4*|1_local_load_miss
+ 2: load miss implies a store happened first
* Number of SMs: |1_local_load_miss counter is for a single SM

* 4: local memory transaction is 128-bytes = 4 L2-transactions
* Sum of L2 read and write queries (not misses)
* Impact on instructions
— Compare the sum of all LMEM instructions to total instructions issued

28

© NVIDIA 2011

Optimizations When Register Spilling is
Problematic

» Try increasing the limit of registers per thread
— Use a higher limit in —maxrregcount, or lower thread count for___launch_bounds___

— Likely reduces occupancy, potentially reducing execution efficiency
* may still be an overall win - fewer total bytes being accessed

» Try using non-caching loads for global memory
— nvcc option: -Xptxas -dlcm=cg
— Potentially fewer contentions with spilled registers in L1

* Increase L1 size to 48KB

— Default is 16KB L1, larger L1 increases the chances for LMEM hits
— Can be done per kernel or per device:
» cudaFuncSetCacheConfig(), cudaDeviceSetCacheConfig()

29

Case Study

« Time Domain Finite Difference of the 3D Wave Equation
— Simulates seismic wave propagation through Earth subsurface
— Largely memory bandwidth-bound

— Running more threads concurrently helps saturate memory bandwidth
» Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread

* Check for LMEM Use
— Spills 44 bytes per thread when compiled down to 32 registers per thread

$ nvce -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_08.cu -maxrregcount=32
ptxas info : Compiling entry function' Z15fwd_3D_orderX2bILi4ELIQEEVP{SO_SO iiiii' for 'sm_20°
ptxas info : Used 32 registers, 44+0 bytes Imem, 6912+0 bytes smem, 76 bytes cmem][0], ...

© NVIDIA 2011

30

Case Study: Analyze the Impact on Memory

* Using profiler

counters:
— SM counters:
o 11_local load_miss: 564,332 To get the counters use any of:
« 11_local_load_hit: 91,520 » Visual Profiler .
+ U_local_store_miss: 269,215 + Command-line profiler
- - - » NSight

« 11_local_store_hit: 13,477
* jnst_issued:

20,412,251
— L2 query counts: 99 435 608
» Read: 33,385,908
* Write: 132,821,516
» Total:

* This was on a 16-SM
GPU

© NVIDIA 2011

Case Study: Analyze the Impact on Memory

 Using profiler

counters:

— SM counters:

« 11 local load miss: 564,332 Load L1 hit rate: 13.95%
. l1_local_load_hit- 91.520 Estimated L2 queries per SM due to LMEM:

2*4*564,332 = 4,514,656
e |1_local_store miss: 269,215

« |1_local_store_hit: 13,477
 inst_issued:

20,412,251
— L2 query counts: 99 435 608 Estimated L2 queries due to LMEM of all 16 SMs:
. Read: 33,385,908 16*4,514,656 = 72,234,496
: Percentage of all L2 queries due to LMEM:
* Write:
Tort'ai 132,821,516 72,234,496 / 132,821,516 = 53.38%

* This was on a 16-SM
© NVIDIA 2011 G P U

32

Case Study: Analyze the Impact on Memory

 Using profiler

counters:

— SM counters:
e bt et tans o R64,332 } Load L1 hit rate: 13.95%

53.38% of memory traffic between the SMs “\91 ,520 Estimated L2 queries per SM due to LMEM:

and L2/DRAM is due to LMEM (not useful from o 215 2*4*564,332 = 4,514,656
the application’s point of view). ’
Since application is bandwidth-limited, 13,477

reducing spilling could help performance.

|

— L2 query counts: 99 435 608 Estimated L2 queries due to LMEM of all 16 SMs:
. Read: 33,385,908 16*4,514,656 = 72,234,496
e Percentage of all L2 queries due to LMEM:
* Write: 132,821,51
oot 32,821,916 72,234,496 / 132,821,516 = 53.38%

* This was on a 16-SM
© NVIDIA 2011 G P U

33

Case Study: Analyze the Impact on Instructions
 Using profiler

counters:

— SM counters:
. 11_local_load_miss: 564,332 "
» 11_local_load_hit: 71,520 > Total instructions due to LMEM: 938,944
« |1_local_store_miss: 269,215
« 11_local_store_hit: 13,477 4
* jnst_issued:

Percentage of instructions due to LMEM:
938,944 / 20,412,251 = 4.60%

20,412,251
— L2 query counts: 99 435 608
» Read: 33,385,908
* Write: 132,821,516
» Total:

* This was on a 16-SM
© NVIDIA 2011 G P U

34

Case Study: Analyze the Impact on Instructions
 Using profiler

counters:

— SM counters:
. 11_local_load_miss: 564,332 "
» 11_local_load_hit: 71,520 > Total instructions due to LMEM: 938,944
« |1_local_store_miss: 269,215
« 11_local_store_hit: 13,477 4
* jnst_issued:

Percentage of instructions due to LMEM:
938,944 / 20,412,251 = 4.60%

20,412,251
— L2 query counts: 99 435 608
» Read: 33,385,908
* Write: 132,821,516
» Total:

* This was on a 16-SM
© NVIDIA 2011 G P U

35

© NVIDIA 2011

Case Study: Optimizations

* Try increasing register count
— Remove the -maxrregcount=32 compiler option
* 46 registers per thread, no spilling
— Performance improved by 1.22x
* Increase L1 cache size
— Keeping the 32 register maximum and spilling 44 bytes
— Add cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); call
— L1 LMEM load hit rate improved to 98.32%

— Estimated 1.63% of all requests to L2 were due to LMEM
» way too small to worry about
* 1.63 was computed as on slide 12 (not by 100% - 98.32%)

— performance improved by 1.45x
» Application was already using non-caching loads for other reasons

36

© NVIDIA 2011

Register Spilling: Summary

* Doesn’t always decrease performance, but
when it does it’s because of:

— Increased pressure on the memory bus
— Increased instruction count

» Use the profiler to determine:

— Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to
L2) for

— Arithmetic-limited codes: LMEM instruction count as percentage of all
instructions

* Optimize by
— Increasing register count per thread
— Incresing L1 size
— Using non-caching GMEM loads

37

