Identifying Performance Limiters

Paulius Micikevicius | NVIDIA

August 23, 2011

"Re-presented" by Gregory Kesden, 15-418, Spring 2018

© NVIDIA 2011

Performance Optimization Process

- Use appropriate performance metric for each kernel
 - For example, Gflops/s don't make sense for a bandwidth-bound kernel
- Determine what limits kernel performance
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above
- Address the limiters in the order of importance
 - Determine how close to the HW limits the resource is being used
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just fall out from how HW operates

3 Ways to Assess Performance Limiters

Algorithmic

- Based on algorithm's memory and arithmetic requirements
- Least accurate: undercounts instructions and potentially memory accesses

Profiler

- Based on profiler-collected memory and instruction counters
- More accurate, but doesn't account well for overlapped memory and arithmetic

Code modification

- Based on source modified to measure memory-only and arithmetic-only times
- Most accurate, however cannot be applied to all codes

Things to Know About Your GPU

- Theoretical memory throughput
 - For example, Tesla M2090 theory is 177 GB/s
- Theoretical instruction throughput
 - Varies by instruction type
 - refer to the CUDA Programming Guide (Section 5.4.1) for details
 - Tesla M2090 theory is 665 Glnstr/s for fp32 instructions
 - Half that for fp64
 - · I'm counting instructions per thread
- Rough "balanced" instruction: byte ratio
 - For example, 3.76:1 from above (fp32 instr : bytes)
 - · Higher than this will usually mean instruction-bound code
 - · Lower than this will usually mean memory-bound code

Algorithmic Analysis

- Approach:
 - Compute the ratio of arithmetic operations to bytes accessed in the algorithm (for example, per output element)
 - Compare to the balanced ratio for your GPU
- Better than nothing, but not very accurate:
 - Undercounts instructions: control flow, address calculation, etc.
 - May undercount memory accesses: ignores cache line sizes
- Example: vector add
 - Read two 4-byte words, add, write one 4-byte word
 - 1 instr : 12 bytes
 - Much lower than 3.76:1, thus memory bound

Analysis with the Profiler

- Relevant profiler counters:
 - instructions_issued
 - Incremented by 1 per warp, counter is for one SM
 - dram_reads, dram_writes
 - Incremented by 1 per 32B access to DRAM
 - Note that the VisualProfiler converts each of the above to 2 counters
 - These simply get added together, refer to the Visual Profiler User Guide for details
 - You'll need to do this yourself if you're using command-line profiling
 - If your code hits in L2 cache a lot, you may want to look at L2 counters instead (accesses to L2 are still expensive compared to arithmetic)
- Compute instruction:byte ratio and compare to the balanced one:
 - (number of SMs) * 32 * instructions_issued : 32B * (dram_reads + dram_writes)
- Example: vector add
 - 1.49:1, lower than 3.76 so memory-bound

Another Way to Use the Profiler

- VisualProfiler will report instruction and memory throughputs
 - IPC (instructions per clock) for instructions
 - GB/s achieved for memory (and L2)
- Compare those with the theory for the HW
 - Profiler will also report the theoretical best
 - Though for IPC it assumes fp32 instructions, it <u>DOES NOT</u> take instruction mix into consideration
 - If one of the metrics is close to the hw peak, you're likely limited by it
 - If neither metric is close to the peak, then unhidden latency is likely anissue
 - "close" is approximate, I'd say 70% of theory or better
- Example: vector add
 - IPC: 0.55 out of 2.0
 - Memory throughput: 130 GB/s out of 177 GB/s
 - Conclusion: memory bound

Another Way to Use the Profiler

add analysis - [Session1 - Device_0 - Context_0] VisualProfiler will report in File View Analysis IPC (instructions per clock) Summary profiling information for the kernel: GB/s achieved for memory (Number of calls: 1 GPU time(us): 1283.97 GPU time (%): 100.07 Compare those with the th Grid size: [32768 1 1] Block size: [512 1 1] Profiler will also report the Limiting Factor Though for IPC it assumes f IPC: 0.55 (Maximum IPC: 2) Achieved global memory throughput: 130.83 (Peak global memory throughput(GB/s): 177.80) If one of the metrics is close Show all columns Limiting Factor If neither metric is close to GPU Timestamp (us) GPU Time (us) instructions issued active cycles Identification Type:SM Run:2 Type:SM Run:3 "close" is approximate, I'ds 1 0 1283.97 427692 777994 Memory Throughput Example: vector add Analysis IPC: 0.55 out of 2.0 Instruction Throughput Analysis Memory throughput: 130 G Occupancy Analysis Conclusion: memory bound

Notes on Instruction Counts

- Undercount by algorithmic analysis
 - Algorithmic analysis assumed 1 instruction (add)
 - Actual code contains 17 instructions
- You can actually check the machine-language assembly instructions
 - Compile into a .cubin file
 - Use cuobjdump tool (comes with CUDA toolkit) to get assembly from .cubin
 - Useful for checking instruction counts
 - Actual instruction counts could also be used to somewhat refine the theoretical IPC for the specific code
 - For example, if all instructions were fp64, the theoretical IPC is 1.0, not 2.0

Notes on the Profiler

- Most counters are reported per Streaming Multiprocessor (SM)
 - Not entire GPU
 - Exceptions: L2 and DRAM counters
- A single run can collect a few counters
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
- Counter values may not be exactly the same for repeated runs
 - Threadblocks and warps are scheduled at run-time
 - So, "two counters being equal" usually means "two counters within a small delta"
- Refer to the profiler documentation for more information

Analysis with Modified Source Code

- Time memory-only and math-only versions of the kernel
 - Easier for codes that don't have data-dependent control-flow or addressing
 - Gives you good estimates for:
 - Time spent accessing memory
 - Time spent in executing instructions
- Comparing the times for modified kernels
 - Helps decide whether the kernel is mem or math bound
 - Shows how well memory operations are overlapped with arithmetic
 - Compare the sum of mem-only and math-only times to full-kernel time

Memory-bound

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Memory-bound

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Math-bound

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

Memory-bound

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Math-bound

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)

Memory-bound

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Math-bound

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)

Memory and latency bound

Poor mem-math overlap: latency is a problem

Source Modification

- Memory-only:
 - Remove as much arithmetic as possible
 - Without changing access pattern
 - Use the profiler to verify that load/store count is the same
- Store-only:
 - Also remove the loads
- Math-only:
 - Remove global memory accesses
 - Need to trick the compiler:
 - Compiler throws away all code that it detects as not contributing to stores
 - · Put stores inside conditionals that always evaluate to false
 - Condition should depend on the value about to be stored (prevents other optimizations)
 - Condition outcome should not be known to the compiler

Source Modification for Read-only

```
__global___void add( float *output, float *A, float *B, int flag)
{
    ...
    value = A[idx] + B[idx];
    if( 1 == value * flag )
        output[idx] = value;
}

If you compare only the flag, the compiler may move the computation into the conditional as well
```

17

Source Modification and Occupancy

- Removing pieces of code is likely to affect register count
 - This could increase occupancy, skewing the results
- Make sure to keep the same occupancy
 - Check the occupancy with profiler before modifications
 - After modifications, if necessary add shared memory to match the unmodified kernel's occupancy

```
kernel<<< grid, block, smem, ...>>>(...)
```

Another Case Study

- Time (ms):
 - Full-kernel: 25.82
 - Mem-only: 23.53
 - Math-only: 12.52
- Instructions issued:
 - Full-kernel: 20,388,591
 - Mem-only: 10,034,799
 - Math-only: 14,683,776
- Total DRAM requests
 - Full-kernel: 101,328,372
 - Mem-only: 101,328,372
 - Math-only:

0

- Analysis:
 - Instr:byte ratio = ~3.21
 - Good overlap between math and mem:
 - 2.29 ms of math-only time (18%) is not overlapped with mem
 - App memory throughput: 72 GB/s
 - HW throughput is 125 GB/s
 - HW theory is 177 GB/s, so memory is not used efficiently
- Conclusion:
 - Code is more memory- than instruction-limited
 - IPC is 1.2 (60% of theory)
 - Memory throughput is 70%
 - Optimizations should focus on memory throughput first
 - Memory is a larger portion of total time
 - Also note that application and hw throughputs are different
 - More on this in upcoming webinar

Summary

- Rough algorithmic analysis:
 - How many bytes needed, how many instructions
- Profiler analysis:
 - Instruction count, memory access count
 - Check how close instruction and memory throughputs are to hw theory
- Analysis with source modification:
 - Full version of the kernel
 - Memory-only version of the kernel
 - Math-only version of the kernel
 - Examine how these times relate and overlap
- More details on memory- and instruction-optimizations
 - Upcoming webinars

Local Memory and Register Spilling

Paulius Micikevicius | NVIDIA

Local Memory

- Name refers to memory where registers and other threaddata is spilled
 - Usually when one runs out of SM resources
 - "Local" because each thread has its own private area

• Details:

- Not really a "memory" bytes are stored in global memory
- Differences from global memory:
 - Addressing is resolved by the compiler
 - Stores are cached in L1

LMEM Access Operation

- A store writes a line to L1
 - If evicted, that line is written to L2
 - The line could also be evicted from L2, in which case it's written to DRAM
- A load requests the line from L1
 - If a hit, operation is complete
 - If a miss, then requests the line from L2
 - If a miss, then requests the line from DRAM
- A store always happens before a load
 - Only GPU threads can access LMEM addresses

Fermi Memory Hierarchy

When is Local Memory Used?

- Register spilling
 - Fermi hardware limit is 63 registers per thread
 - Programmer can specify lower registers/thread limits:
 - To increase occupancy (number of concurrently running threads)
 - -maxrregcount option to nvcc, __launch_bounds__() qualifier in the code
 - LMEM is used if the source code exceeds register limit
- Arrays declared inside kernels, if compiler can't resolve indexing
 - Registers aren't indexable, so have to be placed in LMEM

How Does LMEM Affect Performance?

- It could hurt performance in two ways:
 - Increased memory traffic
 - Increased instruction count
- Spilling/LMEM usage isn't always bad
 - LMEM bytes can get contained within L1
 - Avoids memory traffic increase
 - Additional instructions don't matter much if code is not instruction-throughput limited

General Analysis/Optimization Steps

- Check for LMEM usage
 - Compiler output
 - nvcc option: -Xptxas -v,-abi=no
 - Will print the number of lmem bytes for each kernel (only if kernel uses LMEM)
 - Profiler
- Check the impact of LMEM on performance
 - Bandwidth-limited code:
 - Check how much of L2 or DRAM traffic is due to LMEM
 - Arithmetic-limited code:
 - Check what fraction of instructions issued is due to LMEM
- Optimize:
 - Try: increasing register count, increasing L1 size, using non-caching loads

Register Spilling: Analysis

Profiler counters:

- I1_local_load_hit, I1_local_load_miss, I1_local_store_hit, I1_local_store_miss
- Counted for <u>a single</u> SM, incremented by 1 for each 128-byte transaction

Impact on memory

- Any memory traffic that leaves SMs (goes to L2) is expensive
- L2 counters of interest: read and write sector queries
 - · Actual names are longer, check the profiler documentation
 - Incremented by 1 for each 32-byte transaction
- Compare:
 - Estimated L2 transactions due to LMEM misses in all the SMs
 - 2*(number of SMs)*4*l1_local_load_miss
 - 2: load miss implies a store happened first
 - Number of SMs: l1_local_load_miss counter is for a single SM
 - 4: local memory transaction is 128-bytes = 4 L2-transactions
 - Sum of L2 read and write queries (not misses)

Impact on instructions

Compare the sum of all LMEM instructions to total instructions issued

Optimizations When Register Spilling is Problematic

- Try increasing the limit of registers per thread
 - Use a higher limit in -maxregcount, or lower thread count for launch bounds
 - Likely reduces occupancy, potentially reducing execution efficiency
 - may still be an overall win fewer total bytes being accessed
- Try using non-caching loads for global memory
 - nvcc option: -Xptxas -dlcm=cg
 - Potentially fewer contentions with spilled registers in L1
- Increase L1 size to 48KB
 - Default is 16KB L1, larger L1 increases the chances for LMEM hits
 - Can be done per kernel or per device:
 - cudaFuncSetCacheConfig(), cudaDeviceSetCacheConfig()

Case Study

- Time Domain Finite Difference of the 3D Wave Equation
 - Simulates seismic wave propagation through Earth subsurface
 - Largely memory bandwidth-bound
 - Running more threads concurrently helps saturate memory bandwidth
 - Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread

Check for LMEM Use

Spills 44 bytes per thread when compiled down to 32 registers per thread

```
$ nvcc -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_o8.cu -maxrregcount=32
```

ptxas info : Compiling entry function '_Z15fwd_3D_orderX2blLi4ELi9EEvPfS0_S0_iiiii' for 'sm_20'

ptxas info : Used 32 registers, 44+0 bytes Imem, 6912+0 bytes smem, 76 bytes cmem[0], ...

Case Study: Analyze the Impact on Memory

Using profiler counters:

– SM counters:

• l1_local_load_miss: 564,332

• 11 local load hit: 91,520

• l1_local_store_miss: 269,215

• l1_local_store_hit: 13,477

inst_issued: 20,412,251

L2 query counts: 99,435,608

• Read: 33,385,908

• Write: 132,821,516

• Total:

This was on a 16-SM
 GPU

To get the counters use any of:

- Visual Profiler
- Command-line profiler
- NSight

Case Study: Analyze the Impact on Memory

Using profiler counters:

– SM counters:

l1_local_load_miss:
 l1_local_load_hit:
 l1_local_load_hit:
 l1_local_load_hit:
 l1_local_load_hit:
 l1_local_load_hit:

• 11_local_store_miss: 269,215

• l1_local_store_hit: 13,477

inst_issued: 20,412,251

L2 query counts: 99,435,608

• Read: 33,385,908

• Write: 132,821,516

Total:

This was on a 16-SM GPU

Estimated L2 queries due to LMEM of all 16 SMs:

16*4,514,656 = 72,234,496

2*4*564,332 = 4,514,656

Percentage of all L2 queries due to LMEM:

72,234,496 / 132,821,516 = **53.38%**

Case Study: Analyze the Impact on Memory

91,520

69,215

13,477

- Using profiler counters:
 - SM counters:

<u> 11 ihan ibahi nidari ibah 44</u>564,332 ^{*} 53.38% of memory traffic between the SMs and L2/DRAM is due to LMEM (not useful from the application's point of view).

Since application is bandwidth-limited, reducing spilling could help performance. Load L1 hit rate: 13.95% Estimated L2 gueries per SM due to LMEM: 2*4*564,332 = 4,514,656

20,412,251

L2 query counts: 99,435,608

> Read: 33,385,908

> 132,821,516 • Write:

Total:

Estimated L2 queries due to LMEM of all 16 SMs: 16*4.514.656 = 72.234.496

Percentage of all L2 queries due to LMEM:

72,234,496 / 132,821,516 = **53.38%**

 This was on a 16-SM **GPU**

Case Study: Analyze the Impact on Instructions

Using profiler

counters:

– SM counters:

• l1_local_load_miss: 564,332

• l1_local_load_hit: 91,520

• l1_local_store_miss: 269,215

• l1_local_store_hit: 13,477

• inst_issued:

20,412,251

L2 query counts: 99,435,608

• Read: 33,385,908

• Write: 132,821,516

Total:

This was on a 16-SM
 GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

938,944 / 20,412,251 = **4.60**%

Case Study: Analyze the Impact on Instructions

Using profiler

counters:

– SM counters:

• l1_local_load_miss: 564,332

• l1_local_load_hit: 91,520

• l1_local_store_miss: 269,215

• l1_local_store_hit: 13,477

• inst_issued:

20,412,251

L2 query counts: 99,435,608

• Read: 33,385,908

• Write: 132,821,516

Total:

This was on a 16-SM
 GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

938,944 / 20,412,251 = **4.60**%

Case Study: Optimizations

- Try increasing register count
 - Remove the -maxrregcount=32 compiler option
 - 46 registers per thread, no spilling
 - Performance improved by 1.22x
- Increase L1 cache size
 - Keeping the 32 register maximum and spilling 44 bytes
 - Add cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); call
 - L1 LMEM load hit rate improved to 98.32%
 - Estimated 1.63% of all requests to L2 were due to LMEM
 - way too small to worry about
 - 1.63 was computed as on slide 12 (not by 100% 98.32%)
 - performance improved by 1.45x
- Application was already using non-caching loads for other reasons

Register Spilling: Summary

Doesn't always decrease performance, but when it does it's because of:

- Increased pressure on the memory bus
- Increased instruction count

Use the profiler to determine:

- Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to L2) for
- Arithmetic-limited codes: LMEM instruction count as percentage of all instructions

Optimize by

- Increasing register count per thread
- Incresing L1 size
- Using non-caching GMEM loads