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Performance Optimization Process

• Use appropriate performance metric for each kernel

– For example, Gflops/s don’t make sense for a bandwidth-bound kernel

• Determine what limits kernel performance

– Memory throughput

– Instruction throughput

– Latency

– Combination of the above

• Address the limiters in the orderof importance

– Determine how close to the HW limits the resource is being used

– Analyze for possible inefficiencies

– Apply optimizations

• Often these will just fall out from how HW operates
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3 Ways to AssessPerformance Limiters

• Algorithmic

– Based on algorithm’s memory and arithmetic requirements

– Least accurate: undercounts instructions and potentially memory  
accesses

• Profiler

– Based on profiler-collected memory and instruction counters

– More accurate, but doesn’t account well for overlapped memory and  
arithmetic

• Code modification

– Based on source modified to measure memory-only and arithmetic-only  
times

– Most accurate, however cannot be applied to all codes
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Things to Know About YourGPU

• Theoretical memory throughput

– For example, Tesla M2090 theory is 177 GB/s

• Theoretical instruction throughput

– Varies by instruction type

• refer to the CUDA Programming Guide (Section 5.4.1) for details

– Tesla M2090 theory is 665 GInstr/s for fp32 instructions

• Half that for fp64

• I’m counting instructions per thread

• Rough “balanced” instruction:byte ratio

– For example, 3.76:1 from above (fp32 instr : bytes)

• Higher than this will usually mean instruction-bound code

• Lower than this will usually mean memory-bound code
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Algorithmic Analysis

• Approach:

– Compute the ratio of arithmetic operations to bytes accessed in  
the algorithm (for example, per output element)

– Compare to the balanced ratio for your GPU

• Better than nothing, but not very accurate:

– Undercounts instructions: control flow, address calculation, etc.

– May undercount memory accesses: ignores cache line sizes

• Example: vector add

– Read two 4-byte words, add, write one 4-byte word

– 1 instr : 12 bytes

– Much lower than 3.76:1, thus memory bound
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Analysis with the Profiler

• Relevant profiler counters:

– instructions_issued

• Incremented by 1 per warp, counter is for one SM

– dram_reads, dram_writes

• Incremented by 1 per 32B access to DRAM

• Note that the VisualProfiler converts each of the above to 2 counters

– These simply get added together, refer to the Visual Profiler User Guide for details

– You’ll need to do this yourself if you’re using command-line profiling

– If your code hits in L2 cache a lot, you may want to look at L2 counters instead (accesses to  
L2 are still expensive compared to arithmetic)

• Compute instruction:byte ratio and compare to the balanced one:

– (number of SMs) * 32 * instructions_issued : 32B * (dram_reads + dram_writes)

• Example: vector add

– 1.49:1, lower than 3.76 so memory-bound
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Another Way to Use the Profiler

• VisualProfiler will report instruction and memory throughputs

– IPC (instructions per clock) for instructions

– GB/s achieved for memory (and L2)

• Compare those with the theory for the HW

– Profiler will also report the theoretical best

• Though for IPC it assumes fp32 instructions, it DOES NOT take instruction mix into consideration

– If one of the metrics is close to the hw peak, you’re likely limited by it

– If neither metric is close to the peak, then unhidden latency is likely an issue

– “close” is approximate, I’d say 70% of theory or better

• Example: vector add

– IPC: 0.55 out of 2.0

– Memory throughput: 130 GB/s out of 177 GB/s

– Conclusion: memory bound
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Notes on Instruction Counts

• Undercount by algorithmic analysis

– Algorithmic analysis assumed 1 instruction (add)

– Actual code contains 17 instructions

• You can actually check the machine-language assembly instructions

– Compile into a .cubin file

– Use cuobjdump tool (comes with CUDA toolkit) to get assembly from .cubin

– Useful for checking instruction counts

– Actual instruction counts could also be used to somewhat refine the  
theoretical IPC for the specific code

• For example, if all instructions were fp64, the theoretical IPC is 1.0, not 2.0
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Notes on the Profiler

• Most counters are reported per Streaming Multiprocessor (SM)

– Not entire GPU

– Exceptions: L2 and DRAM counters

• A single run can collect a few counters

– Multiple runs are needed when profiling more counters

• Done automatically by the Visual Profiler

• Have to be done manually using command-line profiler

• Counter values may not be exactly the same for repeated runs

– Threadblocks and warps are scheduled at run-time

– So, “two counters being equal” usually means “two counters within a small delta”

• Refer to the profiler documentation for more information



11

© NVIDIA 2011

Analysis with Modified Source Code

• Time memory-only and math-only versions of the kernel

– Easier for codes that don’t have data-dependent control-flow or  
addressing

– Gives you good estimates for:

• Time spent accessing memory

• Time spent in executing instructions

• Comparing the times for modified kernels

– Helps decide whether the kernel is mem or math bound

– Shows how well memory operations are overlapped with arithmetic

• Compare the sum of mem-only and math-only times to full-kernel time
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Source Modification

• Memory-only:

– Remove as much arithmetic as possible

• Without changing access pattern

• Use the profiler to verify that load/store count is the same

• Store-only:

– Also remove the loads

• Math-only:

– Remove global memory accesses

– Need to trick the compiler:

• Compiler throws away all code that it detects as not contributing to stores

• Put stores inside conditionals that always evaluate to false

– Condition should depend on the value about to be stored (prevents other optimizations)

– Condition outcome should not be known to the compiler



Source Modification for Read-only

global void add( float *output, float *A, float *B, int flag)
{

...
value = A[idx] + B[idx];
if( 1 == value * flag )

output[idx] = value;
}

If you compare only the  

flag, the compiler may  

move the computation  

into the conditional as  

well
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Source Modification and Occupancy

• Removing pieces of code is likely to affect  
register count

– This could increase occupancy, skewing the results

• Make sure to keep the same occupancy

– Check the occupancy with profiler before modifications

– After modifications, if necessary add shared memory to  
match the unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)
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Another Case Study
• Analysis:

– Instr:byte ratio = ~3.21

– Good overlap between math and mem:

• 2.29 ms of math-only time (18%) is not overlapped with  
mem

– App memory throughput: 72 GB/s

• HW throughput is 125 GB/s

• HW theory is 177 GB/s, so memory is not used efficiently

• Conclusion:

– Code is more memory- than instruction-limited

• IPC is 1.2 (60% of theory)

• Memory throughput is 70%

– Optimizations should focus on memory throughput  
first

• Memory is a larger portion of total time

• Also note that application and hw throughputs are  
different

– More on this in upcoming webinar

• Time (ms):

– Full-kernel: 25.82

– Mem-only:

– Math-only:

23.53

12.52

• Instructions issued:

– Full-kernel: 20,388,591

– Mem-only:

– Math-only:

10,034,799

14,683,776

• Total DRAM requests

– Full-kernel: 101,328,372

– Mem-only: 101,328,372

– Math-only:
0
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Summary

• Rough algorithmic analysis:

– How many bytes needed, how many instructions

• Profiler analysis:

– Instruction count, memory access count

– Check how close instruction and memory throughputs are to hw theory

• Analysis with source modification:

– Full version of the kernel

– Memory-only version of the kernel

– Math-only version of the kernel

– Examine how these times relate and overlap

• More details on memory- and instruction-optimizations

– Upcoming webinars
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Local Memory

• Name refers to memory where registers and other thread-
data is spilled

– Usually when one runs out of SM resources

– “Local” because each thread has its own private area

• Details:

– Not really a “memory” – bytes are stored in global memory

– Differences from global memory:

• Addressing is resolved by the compiler

• Stores are cached in L1
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LMEM Access Operation

• A store writes a line to L1

– If evicted, that line is written to L2

– The line could also be evicted from L2, in which case it’s written to DRAM

• A load requests the line from L1

– If a hit, operation is complete

– If a miss, then requests the line from L2

• If a miss, then requests the line from DRAM

• A store always happens before a load

– Only GPU threads can access LMEM addresses



Fermi Memory Hierarchy

L2

Global Memory (DRAM)

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM
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When is Local Memory Used?

• Register spilling

– Fermi hardware limit is 63 registers per thread

– Programmer can specify lower registers/thread limits:

• To increase occupancy (number of concurrently running threads)

• -maxrregcount option to nvcc, launch_bounds () qualifier in the code

– LMEM is used if the source code exceeds register limit

• Arrays declared inside kernels, if compiler can’t resolve indexing

– Registers aren’t indexable, so have to be placed in LMEM
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How Does LMEM Affect Performance?

• It could hurt performance in two ways:

– Increased memory traffic

– Increased instruction count

• Spilling/LMEM usage isn’t always bad

– LMEM bytes can get contained within L1

• Avoids memory traffic increase

– Additional instructions don’t matter much if code is not  
instruction-throughput limited
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General Analysis/Optimization Steps

• Check for LMEM usage

– Compiler output

• nvcc option: –Xptxas –v,–abi=no

• Will print the number of lmem bytes for each kernel (only if kernel uses LMEM)

– Profiler

• Check the impact of LMEM on performance

– Bandwidth-limited code:

• Check how much of L2 or DRAM traffic is due to LMEM

– Arithmetic-limited code:

• Check what fraction of instructions issued is due to LMEM

• Optimize:

– Try: increasing register count, increasing L1 size, using non-caching loads
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Register Spilling: Analysis

• Profiler counters:

– l1_local_load_hit, l1_local_load_miss, l1_local_store_hit, l1_local_store_miss

– Counted for a single SM, incremented by 1 for each 128-byte transaction

• Impact on memory

– Any memory traffic that leaves SMs (goes to L2) is expensive

– L2 counters of interest: read and write sector queries

• Actual names are longer, check the profiler documentation

• Incremented by 1 for each 32-byte transaction

– Compare:

• Estimated L2 transactions due to LMEM misses in all the SMs

– 2*(number of SMs)*4*l1_local_load_miss

• 2: load miss implies a store happened first

• Number of SMs: l1_local_load_miss counter is for a single SM

• 4: local memory transaction is 128-bytes = 4 L2-transactions

• Sum of L2 read and write queries (not misses)

• Impact on instructions

– Compare the sum of all LMEM instructions to total instructions issued
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Optimizations When Register Spilling is

Problematic

• Try increasing the limit of registers per thread

– Use a higher limit in –maxrregcount, or lower thread count for launch_bounds

– Likely reduces occupancy, potentially reducing execution efficiency

• may still be an overall win – fewer total bytes being accessed

• Try using non-caching loads for global memory

– nvcc option: -Xptxas –dlcm=cg

– Potentially fewer contentions with spilled registers in L1

• Increase L1 size to 48KB

– Default is 16KB L1, larger L1 increases the chances for LMEM hits

– Can be done per kernel or per device:

• cudaFuncSetCacheConfig(), cudaDeviceSetCacheConfig()
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Case Study

• Time Domain Finite Difference of the 3D Wave Equation

– Simulates seismic wave propagation through Earth subsurface

– Largely memory bandwidth-bound

– Running more threads concurrently helps saturate memory bandwidth

• Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread

• Check for LMEM Use

– Spills 44 bytes per thread when compiled down to 32 registers per thread

$ nvcc -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_o8.cu -maxrregcount=32

ptxas info : Compiling entry function '_Z15fwd_3D_orderX2bILi4ELi9EEvPfS0_S0_iiiii' for 'sm_20‘  

ptxas info : Used 32 registers, 44+0 bytes lmem, 6912+0 bytes smem, 76 bytes cmem[0], …
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Case Study: Analyze the Impact on Memory

564,332

91,520

269,215

13,477

99,435,608

33,385,908

132,821,516

• Using profiler

counters:
– SM counters:

• l1_local_load_miss:

• l1_local_load_hit:

• l1_local_store_miss:

• l1_local_store_hit:

• inst_issued:

20,412,251

– L2 query counts:

• Read:

• Write:

• Total:

• This was on a 16-SM

GPU

To get the counters use any of:

• Visual Profiler

• Command-line profiler

• NSight
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Estimated L2 queries due to LMEM of all 16 SMs:  

16*4,514,656 = 72,234,496

Percentage of all L2 queries due to LMEM:  

72,234,496 / 132,821,516 = 53.38%
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Estimated L2 queries due to LMEM of all 16 SMs:  

16*4,514,656 = 72,234,496

Percentage of all L2 queries due to LMEM:  

72,234,496 / 132,821,516 = 53.38%



Case Study: Analyze the Impact on Instructions
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• Using profiler

counters:
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– L2 query counts:
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• This was on a 16-SM

GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

938,944 / 20,412,251 = 4.60%
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Case Study: Optimizations

• Try increasing register count

– Remove the –maxrregcount=32 compiler option

• 46 registers per thread, no spilling

– Performance improved by 1.22x

• Increase L1 cache size

– Keeping the 32 register maximum and spilling 44 bytes

– Add cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 ); call

– L1 LMEM load hit rate improved to 98.32%

– Estimated 1.63% of all requests to L2 were due to LMEM

• way too small to worry about

• 1.63 was computed as on slide 12 (not by 100% - 98.32%)

– performance improved by 1.45x

• Application was already using non-caching loads for other reasons
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Register Spilling: Summary

• Doesn’t always decrease performance, but 

when it does it’s because of:
– Increased pressure on the memory bus

– Increased instruction count

• Use the profiler to determine:
– Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to 

L2) for

– Arithmetic-limited codes: LMEM instruction count as percentage of all

instructions

• Optimize by
– Increasing register count per thread

– Incresing L1 size

– Using non-caching GMEM loads


