Identifying Performance Limiters

Paulius Micikevicius | NVIDIA

“Re-presented” by Gregory Kesden, 15-418, Spring 2018

© NVIDIA 2011
Performance Optimization Process

• Use appropriate performance metric for each kernel
 – For example, Gflops/s don’t make sense for a bandwidth-bound kernel
• Determine what limits kernel performance
 – Memory throughput
 – Instruction throughput
 – Latency
 – Combination of the above
• Address the limiters in the order of importance
 – Determine how close to the HW limits the resource is being used
 – Analyze for possible inefficiencies
 – Apply optimizations
 • Often these will just fall out from how HW operates
3 Ways to Assess Performance Limiters

• Algorithmic
 – Based on algorithm’s memory and arithmetic requirements
 – Least accurate: undercounts instructions and potentially memory accesses

• Profiler
 – Based on profiler-collected memory and instruction counters
 – More accurate, but doesn’t account well for overlapped memory and arithmetic

• Code modification
 – Based on source modified to measure memory-only and arithmetic-only times
 – Most accurate, however cannot be applied to all codes
Things to Know About Your GPU

• Theoretical memory throughput
 – For example, Tesla M2090 theory is 177 GB/s

• Theoretical instruction throughput
 – *Varies by instruction type*
 • refer to the CUDA Programming Guide (Section 5.4.1) for details
 – Tesla M2090 theory is 665 GInstr/s for fp32 instructions
 • Half that for fp64
 • I’m counting instructions per thread

• Rough “balanced” instruction:byte ratio
 – For example, 3.76:1 from above (fp32 instr : bytes)
 • Higher than this will usually mean instruction-bound code
 • Lower than this will usually mean memory-bound code
Algorithmic Analysis

• Approach:
 – Compute the ratio of arithmetic operations to bytes accessed in the algorithm (for example, per output element)
 – Compare to the balanced ratio for your GPU

• Better than nothing, but not very accurate:
 – Undercounts instructions: control flow, address calculation, etc.
 – May undercount memory accesses: ignores cache line sizes

• Example: vector add
 – Read two 4-byte words, add, write one 4-byte word
 – 1 instr : 12 bytes
 – Much lower than 3.76:1, thus memory bound
Analysis with the Profiler

• **Relevant profiler counters:**
 - `instructions_issued`
 - Incremented by 1 per warp, counter is for one SM
 - `dram_reads`, `dramWrites`
 - Incremented by 1 per 32B access to DRAM
 - Note that the VisualProfiler converts each of the above to 2 counters
 - These simply get added together, refer to the Visual Profiler User Guide for details
 - You’ll need to do this yourself if you’re using command-line profiling
 - If your code hits in L2 cache a lot, you may want to look at L2 counters instead (accesses to L2 are still expensive compared to arithmetic)

• **Compute instruction:byte ratio and compare to the balanced one:**
 - \((\text{number of SMs}) \times 32 \times \text{instructions}_\text{issued} : 32\text{B} \times (\text{dram}_\text{reads} + \text{dram}_\text{writes})\)

• **Example: vector add**
 - \(1.49:1\), lower than \(3.76\) so memory-bound
Another Way to Use the Profiler

• **VisualProfiler** will report instruction and memory throughputs
 – IPC (instructions per clock) for instructions
 – GB/s achieved for memory (and L2)
• **Compare those with the theory for the HW**
 – Profiler will also report the theoretical best
 • Though for IPC it assumes fp32 instructions, it **DOES NOT** take instruction mix into consideration
 – If one of the metrics is close to the hw peak, you’re likely limited by it
 – If neither metric is close to the peak, then unhidden latency is likely an issue
 – “close” is approximate, I’d say 70% of theory or better
• **Example: vector add**
 – IPC: **0.55** out of **2.0**
 – Memory throughput: **130 GB/s** out of **177 GB/s**
 – Conclusion: memory bound
Another Way to Use the Profiler

- VisualProfiler will report in different ways:
 - IPC (instructions per clock) for instructions
 - GB/s achieved for memory (in B/s)
- Compare those with the theoretical
 - Profiler will also report the theoretical
 - Though for IPC it assumes flat memory access
 - If one of the metrics is close
 - If neither metric is close to
 - “close” is approximate, I’d say
- Example: vector add
 - IPC: 0.55 out of 2.0
 - Memory throughput: 130 G B/s
 - Conclusion: memory bound
Notes on Instruction Counts

• Undercount by algorithmic analysis
 – Algorithmic analysis assumed 1 instruction (add)
 – Actual code contains 17 instructions

• You can actually check the machine-language assembly instructions
 – Compile into a .cubin file
 – Use cuobjdump tool (comes with CUDA toolkit) to get assembly from .cubin
 – Useful for checking instruction counts
 – Actual instruction counts could also be used to somewhat refine the theoretical IPC for the specific code
 • For example, if all instructions were fp64, the theoretical IPC is 1.0, not 2.0
Notes on the Profiler

• Most counters are reported per Streaming Multiprocessor (SM)
 – Not entire GPU
 – Exceptions: L2 and DRAM counters
• A single run can collect a few counters
 – Multiple runs are needed when profiling more counters
 • Done automatically by the Visual Profiler
 • Have to be done manually using command-line profiler
• Counter values may not be exactly the same for repeated runs
 – Threadblocks and warps are scheduled at run-time
 – So, “two counters being equal” usually means “two counters within a small delta”
• Refer to the profiler documentation for more information
Analysis with Modified Source Code

• Time memory-only and math-only versions of the kernel
 – Easier for codes that don’t have data-dependent control-flow or addressing
 – Gives you good estimates for:
 • Time spent accessing memory
 • Time spent in executing instructions

• Comparing the times for modified kernels
 – Helps decide whether the kernel is mem or math bound
 – Shows how well memory operations are overlapped with arithmetic
 • Compare the sum of mem-only and math-only times to full-kernel time
Some Example Scenarios

Memory-bound

Good mem-math
overlap: latency not a problem
(assuming memory throughput is not low compared to HW theory)
Some Example Scenarios

Memory-bound
Good mem-math overlap: latency not a problem
(assuming memory throughput is not low compared to HW theory)

Math-bound
Good mem-math overlap: latency not a problem
(assuming instruction throughput is not low compared to HW theory)
Some Example Scenarios

- **Memory-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming memory throughput is not low compared to HW theory)

- **Math-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming instruction throughput is not low compared to HW theory)

- **Balanced**
 - Good mem-math overlap: latency not a problem
 - (assuming memory/instruction throughput is not low compared to HW theory)
Some Example Scenarios

- **Memory-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming memory throughput is not low compared to HW theory)

- **Math-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming instruction throughput is not low compared to HW theory)

- **Balanced**
 - Good mem-math overlap: latency not a problem
 - (assuming memory/instr throughput is not low compared to HW theory)

- **Memory and latency bound**
 - Poor mem-math overlap: latency is a problem

© NVIDIA 2011
Source Modification

• Memory-only:
 – Remove as much arithmetic as possible
 • Without changing access pattern
 • Use the profiler to verify that load/store count is the same
• Store-only:
 – Also remove the loads
• Math-only:
 – Remove global memory accesses
 – Need to trick the compiler:
 • Compiler throws away all code that it detects as not contributing to stores
 • Put stores inside conditionals that always evaluate to false
 – Condition should depend on the value about to be stored (prevents other optimizations)
 – Condition outcome should not be known to the compiler
Source Modification for Read-only

```c
__global__ void add( float *output, float *A, float *B, int flag )
{
    ...
    value = A[idx] + B[idx];
    if( 1 == value * flag )
        output[idx] = value;
}
```

If you compare only the flag, the compiler may move the computation into the conditional as well.
Source Modification and Occupancy

• Removing pieces of code is likely to affect register count
 – This could increase occupancy, skewing the results

• Make sure to keep the same occupancy
 – Check the occupancy with profiler before modifications
 – After modifications, if necessary add shared memory to match the unmodified kernel’s occupancy

 \[
 \text{kernel} \llll \text{grid, block, smem, ...} \rrrr (\ldots)
 \]
Another Case Study

• Time (ms):
 – Full-kernel: 25.82
 – Mem-only: 23.53
 – Math-only: 12.52

• Instructions issued:
 – Full-kernel: 20,388,591
 – Mem-only: 10,034,799
 – Math-only: 14,683,776

• Total DRAM requests
 – Full-kernel: 101,328,372
 – Mem-only: 101,328,372
 – Math-only: 0

• Analysis:
 – Instr:byte ratio = 3.21
 – Good overlap between math and mem:
 • 2.29 ms of math-only time (18%) is not overlapped with mem
 – App memory throughput: 72 GB/s
 • HW throughput is 125 GB/s
 • HW theory is 177 GB/s, so memory is not used efficiently

• Conclusion:
 – Code is more memory- than instruction-limited
 • IPC is 1.2 (60% of theory)
 • Memory throughput is 70%
 – Optimizations should focus on memory throughput first
 • Memory is a larger portion of total time
 • Also note that application and hw throughputs are different
 – More on this in upcoming webinar
Summary

• Rough algorithmic analysis:
 – How many bytes needed, how many instructions
• Profiler analysis:
 – Instruction count, memory access count
 – Check how close instruction and memory throughputs are to hw theory
• Analysis with source modification:
 – Full version of the kernel
 – Memory-only version of the kernel
 – Math-only version of the kernel
 – Examine how these times relate and overlap
• More details on memory- and instruction-optimizations
 – Upcoming webinars
Local Memory

• **Name refers to memory where registers and other thread-data is spilled**
 – Usually when one runs out of SM resources
 – “Local” because each thread has its own private area

• **Details:**
 – Not really a “memory” - bytes are stored in global memory
 – Differences from global memory:
 • Addressing is resolved by the compiler
 • Stores are cached in L1
LMEM Access Operation

• A store writes a line to L1
 – If evicted, that line is written to L2
 – The line could also be evicted from L2, in which case it’s written to DRAM

• A load requests the line from L1
 – If a hit, operation is complete
 – If a miss, then requests the line from L2
 • If a miss, then requests the line from DRAM

• A store always happens before a load
 – Only GPU threads can access LMEM addresses
Fermi Memory Hierarchy

- SM-0
 - Registers
 - L1
 - SMEM

- SM-1
 - Registers
 - L1
 - SMEM

- SM-N
 - Registers
 - L1
 - SMEM

- L2

- Global Memory (DRAM)
When is Local Memory Used?

- **Register spilling**
 - Fermi hardware limit is **63 registers** per thread
 - Programmer can specify lower registers/thread limits:
 - To increase occupancy (number of concurrently running threads)
 - `-maxrregcount` option to `nvcc`, `__launch_bounds`() qualifier in the code
 - LMEM is used if the source code exceeds register limit

- **Arrays declared inside kernels, if compiler can’t resolve indexing**
 - Registers aren’t indexable, so have to be placed in LMEM
How Does LMEM Affect Performance?

• It could hurt performance in two ways:
 – Increased memory traffic
 – Increased instruction count

• Spilling/LMEM usage isn’t always bad
 – LMEM bytes can get contained within L1
 • Avoids memory traffic increase
 – Additional instructions don’t matter much if code is not instruction-throughput limited
General Analysis/Optimization Steps

• **Check for LMEM usage**
 – Compiler output
 • `nvcc` option: `-Xptxas -v,-abi=no`
 • Will print the number of **lmem bytes** for each kernel (only if kernel uses LMEM)
 – Profiler

• **Check the impact of LMEM on performance**
 – Bandwidth-limited code:
 • Check how much of L2 or DRAM traffic is due to LMEM
 – Arithmetic-limited code:
 • Check what fraction of instructions issued is due to LMEM

• **Optimize:**
 – Try: increasing register count, increasing L1 size, using non-caching loads
Register Spilling: Analysis

• **Profiler counters:**
 – l1_local_load_hit, l1_local_load_miss, l1_local_store_hit, l1_local_store_miss
 – Counted for a single SM, incremented by 1 for each 128-byte transaction

• **Impact on memory**
 – Any memory traffic that leaves SMs (goes to L2) is expensive
 – L2 counters of interest: read and write sector queries
 • Actual names are longer, check the profiler documentation
 • Incremented by 1 for each 32-byte transaction
 – Compare:
 • Estimated L2 transactions due to LMEM misses in all the SMs
 – \(2 \times \text{(number of SMs)} \times 4 \times \text{l1_local_load_miss}\)
 • 2: load miss implies a store happened first
 • Number of SMs: l1_local_load_miss counter is for a single SM
 • 4: local memory transaction is 128-bytes = 4 L2-transactions
 • Sum of L2 read and write queries (not misses)

• **Impact on instructions**
 – Compare the sum of all LMEM instructions to total instructions issued
Optimizations When Register Spilling is Problematic

• **Try increasing the limit of registers per thread**
 – Use a higher limit in `--maxrregcount`, or lower thread count for `__launch_bounds__`
 – Likely reduces occupancy, potentially reducing execution efficiency
 • may still be an overall win - fewer total bytes being accessed

• **Try using non-caching loads for global memory**
 – nvcc option: `-Xptxas -dlcm=cg`
 – Potentially fewer contentions with spilled registers in L1

• **Increase L1 size to 48KB**
 – Default is 16KB L1, larger L1 increases the chances for LMEM hits
 – Can be done per kernel or per device:
 • `cudaFuncSetCacheConfig()`, `cudaDeviceSetCacheConfig()`
Case Study

• **Time Domain Finite Difference of the 3D Wave Equation**
 – Simulates seismic wave propagation through Earth subsurface
 – Largely memory bandwidth-bound
 – Running more threads concurrently helps saturate memory bandwidth
 • Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread

• **Check for LMEM Use**
 – Spills 44 bytes per thread when compiled down to 32 registers per thread

```bash
$ nvcc -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_o8.cu -maxrregcount=32
ptxas info : Compiling entry function '_Z15fwd_3D_orderX2bILi4ELi9EEvPfS0_S0_iiii' for 'sm_20'
ptxas info : Used 32 registers, 44+0 bytes lmem, 6912+0 bytes smem, 76 bytes cmem[0], ...
```
Case Study: Analyze the Impact on Memory

• Using profiler counters:
 – SM counters:
 • l1_local_load_miss: 564,332
 • l1_local_load_hit: 91,520
 • l1_local_store_miss: 269,215
 • l1_local_store_hit: 13,477
 • inst_issued: 20,412,251
 – L2 query counts: 99,435,608
 • Read: 33,385,908
 • Write: 132,821,516
 • Total:

• This was on a 16-SM GPU

To get the counters use any of:
• Visual Profiler
• Command-line profiler
• NSight
Case Study: Analyze the Impact on Memory

• Using profiler counters:
 – SM counters:
 • l1_local_load_miss: 564,332
 • l1_local_load_hit: 91,520
 • l1_local_store_miss: 269,215
 • l1_local_store_hit: 13,477
 • inst_issued: 20,412,251

 – L2 query counts:
 • Read: 33,385,908
 • Write: 132,821,516
 • Total: 165,207,424

 Load L1 hit rate: 13.95%
 Estimated L2 queries per SM due to LMEM:
 \[2*4*564,332 = 4,514,656\]

 Estimated L2 queries due to LMEM of all 16 SMs:
 \[16*4,514,656 = 72,234,496\]
 Percentage of all L2 queries due to LMEM:
 \[72,234,496 / 132,821,516 = 53.38\%

• This was on a 16-SM GPU
Case Study: Analyze the Impact on Memory

• Using profiler counters:
 – SM counters:
 • Using a dual-GPU:
 564,332
 91,520
 269
 21
 5
 13,477
 99,435,608
 33,385,908
 132,821,516
 20,412,251
 – L2 query counts:
 • Read: 33,385,908
 • Write: 132,821,516
 • Total: 99,435,608

53.38% of memory traffic between the SMs and L2/DRAM is due to LMEM (not useful from the application’s point of view).

Since application is bandwidth-limited, reducing spilling could help performance.

Load L1 hit rate: 13.95%
Estimated L2 queries per SM due to LMEM:
\[2 \times 4 \times 564,332 = 4,514,656\]

Estimated L2 queries due to LMEM of all 16 SMs:
\[16 \times 4,514,656 = 72,234,496\]

Percentage of all L2 queries due to LMEM:
\[72,234,496 / 132,821,516 = 53.38\%\]

This was on a 16-SM GPU
Case Study: Analyze the Impact on Instructions

- Using profiler counters:
 - SM counters:
 - l1_local_load_miss: 564,332
 - l1_local_load_hit: 91,520
 - l1_local_store_miss: 269,215
 - l1_local_store_hit: 13,477
 - inst_issued: 20,412,251
 - L2 query counts: 99,435,608
 - Read: 33,385,908
 - Write: 132,821,516
 - Total:

Total instructions due to LMEM: 938,944
Percentage of instructions due to LMEM: 938,944 / 20,412,251 = 4.60%

• This was on a 16-SM GPU
Case Study: Analyze the Impact on Instructions

- Using profiler counters:
 - SM counters:
 - l1_local_load_miss: 564,332
 - l1_local_load_hit: 91,520
 - l1_local_store_miss: 269,215
 - l1_local_store_hit: 13,477
 - inst_issued: 20,412,251
 - L2 query counts: 99,435,608
 - Read: 33,385,908
 - Write: 132,821,516
 - Total:

Total instructions due to LMEM: 938,944
Percentage of instructions due to LMEM: 938,944 / 20,412,251 = 4.60%

- This was on a 16-SM GPU
Case Study: Optimizations

• **Try increasing register count**
 – Remove the `-maxrregcount=32` compiler option
 • 46 registers per thread, no spilling
 – Performance improved by **1.22x**

• **Increase L1 cache size**
 – Keeping the 32 register maximum and spilling 44 bytes
 – Add `cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);` call
 – L1 LMEM load hit rate improved to **98.32%**
 – Estimated **1.63%** of all requests to L2 were due to LMEM
 • way too small to worry about
 • 1.63 was computed as on slide 12 (not by 100% - 98.32%)
 – performance improved by **1.45x**

• **Application was already using non-caching loads for other reasons**
Register Spilling: Summary

• Doesn’t always decrease performance, but when it does it’s because of:
 – Increased pressure on the memory bus
 – Increased instruction count

• Use the profiler to determine:
 – Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to L2) for
 – Arithmetic-limited codes: LMEM instruction count as percentage of all instructions

• Optimize by
 – Increasing register count per thread
 – Increasing L1 size
 – Using non-caching GMEM loads