Carnegie Mellon

Introduction to CUDA Programming

15-418/618: Parallel Computer Architecture and Programming
Recitation 2, February 2, 2018,

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 1

Carnegie Mellon

Roadmap

m Review
m Possibly Helpful Tips

m Performance Optimization Example

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Carnegie Mellon

Vocabulary

m CPU: A central processor unit, i.e. a normal processor

m GPU: A graphics processing unit, i.e. what we are learning
about

m Host: The “normal computer” to which the GPU is
connected

= Of especial note are the CPU(s) and memory
m Device: The GPU and its memory

m CUDA: Compute Unified Device Architecture. nVidia’s
framework for utilizing their GPUs for general purpose
programming

= OpenCL: Open Computing Language. The “generic version”

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 3

Carnegie Mellon

Vocabulary, cont, cont

m Global memory: Device memory shared across the various
blocks
= CUDAMalloc(), CUDAMemcpy(), CUDAFree()

m Shared memory: Memory shared only by threads within
the associated block (not across blocks)

" shared

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 4

Carnegie Mellon

Vocabulary, cont

Kernel: The work, written as a function, to be parallelized
across the GPU’s cores.

Thread: An abstraction for the work associated with an
instance of the kernel.

Thread Block: A partition of threads and associated work
that will be dispatched to a Streaming Media (SM)
processor, basically a GPU.

Block: See Thread Block
Grid: Set of all blocks

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 5

Carnegie Mellon

Vocabulary, cont, cont, cont

m CUDA Core: A single graphics processor core. Within the
CUDA architecture, these aren’t one-offs, but architected
into Streaming Multiprocessors (SMs).

m Streaming Multiprocessor (SM): A collection of CUDA
Cores architected together to form a single GPU. Threads
within a thread block concurrently execute on an SM.

m Warp: A division of a block created within the SM to assign
work to cores. Warps aren’t schedule until a core is
available for each thread within the warp.

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 6

Carnegie Mellon

Syntax, Etc.

m nvcc: nVidia C compiler. Can compiler host and device
code.

m _ shared _ : Qualifier to declare a variable in shared (per
thread block) memory

m _ global__: Qualifier to place a function into device
memory, for execution onto the device, but enabling it to
be callable from the host.

m cudaMalloc() , cudaMemcpy(), cudaFree()
= Allocates, Frees, and copies to/from device memory.

= cudaMemcpyHostToDevice/cudaMemcpyDeviceToHost flag sets
direction of copy

m _ syncthreads()
= barrier to ensure all threads get there before any continue.

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 7

Carnegie Mellon

Syntax, Etc, cont

m someGlobalFunctionName<<<N,M>>>
= “Kernel Launch”
= N thread blocks
= M threads per thread block

m blockldx: block index within the (up to 3D) grid
= threadldx.x is 1D index

m threadldx: thread index within the (up to 3D) thread block
" threadldx.x is 1D index

m intindex = threadldx.x + blockldx.x * M;
= Global thread index, given M threads per block

m blockDim, gridDim
= 3D block and grid dimensions
= E.g., blockDim.x, gridDim.x, etc

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 8

Carnegie Mellon

A Picture Worth Some Number of Words

= AKkernel is launched as a grid of block Device
of threads

* blockIdxand threadIdxare 3D
» We showed only one dimension (x)

= Built-in variables:
" threadIldx

= DblockIdx
= blockDim
= gridDim

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(4,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(4,1,0)

CUDA C/C++Basics

Cyril Zeller, NVIDIA Corporation
Supercomputing 2011 Tutorial

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Thread
(3,2,0)

Thread
(4,2,0)

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 9

Carnegie Mellon

Roadmap

m Review
m Possibly Helpful Tips

m Performance Optimization Example

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 10

Carnegie Mellon

Did it fly? Wrap All CUDA Library Calls

Definitions in file reduce.cu:
// Support for CUDA error checking
// Wrapper for CUDA functions

#define CHK(ans) gpuAssert((ans), FILE , LINE);

// Checker
inline void gpuAssert (CUDAError t code, const char *file, int line)

{
if (code != CUDASuccess) {

fprintf (stderr, "GPUassert: %s %s %s\n",
CUDAGetErrorString(code), file, line);

// Cannot wrap kernel launches. Instead, insert this after each
// kernel launch.
#define POSTKERNEL CHK (CUDAPeekAtLastError())

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 1

Your Old Friend. Better. Than. Ever.

cuda-gdb: Can get data off of the device

m break reduce.cu:90

= Set breakpoint corresponding to line 90 of file
reduce.cu.

m print ((@global float *) srcVecDevice)[1]
" Print contents of array in device memory
m CUDA thread 2
= Shift focus to specified thread number
m info locals
" Prints values of all currently-active local variables
= CUDA info threads
" Prints status of threads (in current block)

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 12

Carnegie Mellon

Some Advice
m Don’t wire down constants

m Don’t assume special properties of N

= Multiple of block size, power of 2, ...
m Use function or macro to do rounding-up division

m Write checker code
= Qverall functionality
" |ndividual steps on device
= Must transfer data back to host to check

m Avoid printf within kernel functions
" Only use on small examples or too much unordered output.
m Get the algorithm & abstract implementation and benchmark
right before attempting low-level optimizations

= Exploiting the various memory categories on device
= Exploiting properties specific to block level

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 13

Carnegie Mellon

Some More Advice

m Even more so than with C programs, out-of-bounds
memory writes in CUDA lead to bizarre and erratic
beahvior.

= Write bounds checking code that gets invoked when program is
run in DEBUG mode

m It's possible to put printf’s in kernel code, but don’t rely on
them
= Often nothing gets printed, or values printed are incorrect.

" Just because nothing prints, it doesn’t mean that part of the code
wasn’t reached.

m Write host code that duplicates functionality of different
parts of CUDA code

" |n debug mode, transfer results back to host memory and check
values against this code

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 14

Carnegie Mellon

Why Is printf() weird?
m printf() output is stored in a circular buffer of a fixed size.

= |f the buffer fills, old output will be overwritten. The buffer's size
defaults to 1MB and can be configured with
CUDADeviceSetLimit(CUDALimitPrintfFifoSize, size_t size).

m This buffer is flushed only for

= the start of a kernel launch

= synchronization (e.g. CUDADeviceSynchronize())

" blocking memory copies (e.g. CUDAMemcpy(...))

" module load/unload

= context destruction

= Note: The list above does not include program exit.

= |f the call to CUDADeviceSynchronize() was removed from the
example program above, the we would see no output

m Concurrency serialized upon output

Credit: Steven Fackler, Former 418/618 TA, SCS’13

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 15

Application Example: N x N Matrix

Multiplication

Column j Element, j
Row i \l
A X B = C

m Complexity

N-1

o = N3 multiplications
c..=qAa. . *b, .
L] a Lk Tk,j = N3 additions
k=0

m Assume row-major access

#define RM(r, c, width) ((r) * (width) + (c))

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 16

Matrix Multiplication: Simple CPU

Implementation

Column j Element, j

_ - - - - Nl -

Row i

void multMatrixSimple (int N, float *matA, float *matB, float *matC) {
for (int i = 0; 1 < N; i++)
for (int j = 0; j < N; j++) {
float sum = 0.0;
for (int k = 0; k < N; k++)
sum += matA[RM(i,k,N)] * matB[RM(k,j, N)];
matC[RM(i,j,N)] = sum;

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 17

CPU Simple Performance

6

GFLOPS
w

0 T T T T
8 16 32 64 128
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

256

512

1024

Carnegie Mellon

Columnj

Measured in GFLOPS

Drops off for large
values of N

B has bad access
pattern

Optimization #1: Pretranspose

Row j Elementi,j

Row i \l

A X BT = C

m Transposed version of B has better access pattern
" Transpose once
= Use each element N times M

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Carnegie Mellon

19

Carnegie Mellon

Transposing a Matrix

Columnj Row j

S > 2 D=ST

m Column-major ordering of elements

#define CM(r, c, height) ((c) * (height) + (r))

m Transposing converts from row-major to column-major order

void transposeMatrix(int N, float *matS, float *matD) {
for (int i = 0; 1 < N; i++)
for (int j = 0; j < N; j++4)
matD[CM(i,j,N)] = matS[RM(i,]j,N)];

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 20

Carnegie Mellon

Matrix Multiplication: Pretranspose N5
Implementation = Qa,, b

k=0
Row j Elementi,j

_ - - - - Nl -

Row i

void multMatrixTransposed (int N, float *matA, float *matB, float *matC)
{
float *tranB = scratchMatrix(N) ;
transposeMatrix (N, matB, tranB);
for (int i = 0; 1 < N; i++)
for (int j = 0; j < N; j++) {
float sum = 0.0
for (int k = 0; k < N; k++)
sum += matA[RM(i,k,N)] * tranB[RM(j,k,N)];
matC[RM(i,j,N)] = sum;

Carnegie Mellon

Pretranspose Performance

° m Scales to large
matrices
5 m “Cache-friendly” code
4
g
Q3 =@=Simple
L‘B Transpose
2
1
O T T T T T T T 1
8 16 32 64 128 256 512 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 22

Abstract Single Program Multiple Data

(SPMD) Model

A A A A A A A A A A A A A A A A

A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4

Shared Memory

m M Processors, all executing same code
= Called “kernels”
" M based on problem size
m Share common global memory
= And also have private memory for local variables
= Make no assumptions about effect of memory access conflicts

m No synchronization primitives

m Called threads, but not at all like pthreads
= Very simple & lightweight

= All execute the same program
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 23

Carnegie Mellon

Interacting with SPMD Machine: Control

Host Execution

B INS Launch Kernels

Synchronize Threads

m Overall execution
managed by code
executing on host

m Launch set of
kernels

= Number & kernel
function can vary
with each launch

m Wait until all
completed

= Explicit or implicit
synchronization

m Repeat as
necessary

Host Execution

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 24

Carnegie Mellon

Structure of SPMD Program

m Concept

" Partition computation
into sequence of tasks Task 1

= Perform each task over
all data with single
operation

m Performance Task 3
Limitations

Task 2

= Synchronization Task 4
requires waiting for
slowest task

Task 5

" No locality of data

" No locality of
synchronization

Task 6

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 25

Carnegie Mellon

Block/Thread Notation

m Ildea (One-dimensional version)
= Executing threads grouped into blocks
= Each contains same number of threads
— Host program specifies block size (blockDim.x)

" Host program makes sure there are enough blocks to generate N
threads

= Some threads in last block should not get used

__global wvoid

inplaceReduceKernel (int length, int nlength, float *data) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < nlength) ({

}
}

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 26

Carnegie Mellon

Interacting with SPMD Machine: Data

DeviceToDevice

Device

vemset | DEPPTCT TP
‘ Shared Memory

m Host acts as

TT

controller HostToDevice DeviceToHost
[l D.oes not have Host

direct access to

device memory Host Memory

oo

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 27

CUDA Program

m CUDA file (.cu) contains mix of device code & host code
" |t's up to you to understand which is which!

m Device Code

= Kernels (__global)
= Code for threads
= Must only reference device memory

__device void
= Device functions (__device) deviceMult (float x, float vy,

= Called by kernels float *dest)

{
= Only reference device memory *dest = x * y;

}

= Do not generate new threads

__global void

inplaceReduceKernel (int length, int nlength, float *data) ({
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < nlength) ({

}
}

15-418/618: Lightly edited frérrrororyorg—ro—rrorororoprrs—zo=

Carnegie Mellon

CUDA Program (cont.)

m CUDA file (.cu) contains mix of device code & host code

" |t's up to you to understand which is which!

m Host Code
= Conventional C/C++
= Canonly reference host memory
= But, can have pointers to device memory
" Manages the launching of threads
" Manages movement of data between host & device memories

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 29

Carnegie Mellon

Matrix Multiplication: Simple CUDA
|mp|ementati0n Each thread computes

Column j element i, j of product

— — — - — \\1 —

Row i

__global wvoid
CUDASimpleKernel (int N, float *dmatA, float *dmatB, float *dmatC) ({
int i = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;
if (1 > N || j >= N)
return;
float sum = 0.0;
for (int k = 0; k < N; k++) {
sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
}
dmatC[RM(i,j,N)] = sum;

154 —; Ty ey e 30

Carnegie Mellon

Host Code Example LBLK = 32
32 X 32 = 1024 threads / block
m Launch kernels to perform vector product

void CUDAMultMatrixSimple (int N, float *dma
float *dmatC)

loat *dmatB,

{
dim3 threadsPerBlock (LBLK, LBLK) ;

dim3 blocks (updiv (N, LBLK), updiv (N, LBLK)) ;
CUDASimpleKernel<<<blocks, threadsPerBlock>>>(N, dmatA, dmatB, dmatC);
}

m Useful stuff
= Compute fn / d|]

// Integer division, rounding up
static inline int updiv(int n, int d) {
return (n+d-1)/d;

}

= Setting number of threads per block:
= Should be multiple of 32
= Max value = 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 31

Carnegie Mellon

Host Code Example (cont).

void CUDAMultiply(int N, float *aData, float *bData, float *cData) {

float *aDevData, *bDevData, *cDevData

CUDAMalloc ((void **) &aDevData, N*N * sizeof (float)):;

CUDAMalloc ((void **) &bDevData, N*N * sizeof(float));

CUDAMalloc ((void **) &cDevData, N*N * sizeof(float));

CUDAMemcpy (aDevData, aData, N*N * sizeof (float),
CUDAMemcpyHostToDevice) ;

CUDAMemcpy (bDevData, bData, N*N * sizeof (float),
CUDAMemcpyHostToDevice) ;

CUDAMultMatrixSimple (N, aDevData, bDevData, tDevData);
CUDAMemcpy (cData, cDevData, N*N * sizeof (float),

CUDAMemcpyDeviceToHost) ;
CUDAFree (aDevData) ; CUDAFree (bDevData); CUDAFree (cDevData) ;

Observe: Host can hold pointers to device memory, but cannot read or write
device memory locations

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 32

Carnegie Mellon

Simple CUDA Performance

600

500

400

300 eg=Transpose

GFLOPS

Cuda Simple

200

100

8 16 32 64 128 256 512 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 33

Carnegie Mellon

Inverted Indexing Accessing Pattern

Regular

__global wvoid

CUDASimpleKernel (int N, float *dmatA, float *dmatB, float *dmatC) {
int 1 = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;

Inverted

__global wvoid

CUDASimpleKernelOld(int N, float *dmatA, float *dmatB, float *dmatC) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 34

Carnegie Mellon

CUDA Inverted Indexing Performance

600
500 ~10x worse
Why?!
400
2 etr=Transpose
S 300 :
= Cuda Simple Inverted
Cuda Simple
200
100
0 ———%;—I——m—\

8 16 32 64 128 256 512 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 35

Carnegie Mellon

What’s the Difference?

X —>
Regular

int 1 = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;
Inverted Y

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y

v

m CUDA threads numbered within block in row-major order

® X =column number, Y = row number
m Threads with same value of Y map to single warp.

m Threads with same value of Y and consecutive values of X
map to consecutive positions in single warp

m When single warp accesses consecutive memory
locations, do block read or write

m When single warp accesses separated memory locations,
15-418/618: Lightl eﬁgw.nm%&al‘;h@s&(!?ﬁg%d) or scatter(write) 36

EE—————
Impact on Memory Referencing:

Regular

int 1 = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;
Read A | = dmatA[RM(i,k,N)]; Threads in warp reference single location
Read B | = dmatB[RM(k,]j,N)]; Threads in warp do block read
Write B | dmatC[RM(i,j,N)] = Threads in block do block write

m Threads within warp have:
= same value of k
" same value of i

= consecutive values of j

m Warp reads & writes match memory organization

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 37

Carnegie Mellon

Impact on Memory Referencing: Inverted

int i
int j

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

Read A

Read B

Write B

m Threads within warp have:

= dmatA[RM(i,k,N)];

dmatB[RM(k,Jj,N)];

dmatC[RM(i,j,N)] =

" same value of k

= consecutive values of 1

= same value of j

Threads in warp do gather

Threads in warp reference single location

Threads in block do scatter

m Warp reads/writes does not match memory organization

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

38

Carnegie Mellon

Relation to Hardware

emory
cache ENEEEEENE
EREEEENEENE

i)

. = “special” SIMD functional unit, . = SIMD load/store unit
control shared across 32 wnits (handles warp loads/stores, gathers/scatters)
(operations like sin/oos) MU 15-418, Spring 2014

m Optimizing memory instruction performance
" Load faster than gather
= Store faster than scatter

m Avoiding memory conflicts

" |nverted code has multiple warps competing for same block
of memory

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 39

Carnegie Mellon

Pretransposing with CUDA

/* Transpose matrix */
__global wvoid
CUDATransposeKernel (int N, const float *dmatS, float *dmatD) ({
int 1 blockIdx.y * blockDim.y + threadIdx.y;
int j blockIdx.x * blockDim.x + threadIdx.x;
if (1 > N || j >= N)
return;
dmatD[CM(i,j,N)]

dmatS[RM(i,]j,N)];

}

__global void
CUDATransposedKernel (int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;
if (i >>= N || j >= N)
return;
float sum = 0.0;
for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(j,k,N)];

}
dmatC[RM(i,j,N)]

sum,

}

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

40

Carnegie Mellon

CUDA Pretranspose Implementations

600
Transpose
500 .
operation must do
either scatter or
gather
400
o e Transpose
g 300 Cuda Simple Inverted
O Cuda Simple
=p=Cuda Transpose
200
100
0 _#

8 16 32 64 128 256 512 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 4

Carnegie Mellon

Thinking About CUDA
NVIDIA Kepler GK104 architecture SMX unit (one “core”)
e --)) o)))))))))))
— - == [®[=]== = [=]=]=]=]=]=]]=]=
- 0000000000000000
B o lll@@@@
Warp execution e OROOOO0000000000
gs";ﬁ -- ID.II)))|])
Warp Selector IIQIIIEE
Q@llﬁ
-- ()))))))))))
hp Seoctos EIIIIIE
IIEIEIQE@IQ
_) o))]))))))))))
" nmm'y
or L1 data cache | 0 O | { O
(64 KB) (| o o |
5 | O
)
@ = SIMD functional unit, =“special” SIMD functional unit, . = SIMD load/store unit

control shared across 32 units control shared across 32 units (handles warp loads/stores, gathers/scatters)

(1 MUL-ADD per dlock) (operations like sin/cos)

MU 15418, Spring 2014
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 42

GPU Hierarchy

m Block Level
" Programmer partitions problem into blocks of K threads each
= 32<K<1024
= Multiple of 32
= Within block, have access to fast shared memory
" Within block, can synchronize with __ syncthreads ()

m Warp Level
= Each block implemented as set of warps
= 32 threads each
" |mplemented using “SIMT” processor
= Single-instruction, multiple threads
= Guarantees stay synchronized

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 43

Programming with Blocks

m Localize computation
within blocks

m Each performs
sequence of tasks

m Each uses shared
memory and local
synchronization

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

/-\

Carnegie Mellon

44

Carnegie Mellon

MM Optimization #2: Partitioning into Blocks

Block Column J Block 1, J
Block
Row / A X B = C

m Generate results on block-by-
block basis

N,-1
6 e
CI,J = aALK XBK’J m Localizes access to Aand B

K=0 m N need not be multiple of block
size

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 45

CPU-based Blocked Implementation

Block Row J
\

\

Block
Row / A X BT

|

m Use pretranspose

Block 1, J

Carnegie Mellon

= Required for performance

Nyl
CI,J — aALK XBK,J m Structure

K=0 = Quter loops index over blocks

" |nner loops compute product for

single block

m Block size SBLK=8

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

46

Blocked Multiplication

Implementation: Outer Loops

Block i, j
\ m Look at actual code
Ngl to see how it handles
C C = 4 xB cases where N is not
LJ g Lk -k multiple of block size

void multMatrixTransposeBlocked (int N,
float *matA, float *matB, float *matC) {
float *tranB = scratchMatrix(N) ;
transposeMatrix (N, matB, tranB);
/* Zero out C */
memset (matC, 0, N * N * sizeof(float));
int i, j, k;
for (i = 0; i <= N-SBLK; i+= SBLK)
for (j = 0; j <= N-SBLK; j+= SBLK)
for (k = 0; k <= N-SBLK; k+=SBLK)
Compute contribution toC[i. .i+SBLK-1] [j..Jj+SBLK-1]

Blocked Multiplication

Implementation: Inner Loops

b=
_ T
Civbi j+bj — A Ly i * O j+bj k+bk
bk=0

m i, j, k provide starting indices of blocks
m bi, bj, bk provide offsets within blocks

for (int bi = 0; bi < SBLK; bi++)
for (int bj = 0; bj < SBLK; bj++) {
float sum = 0.0;
for (int bk =0; bk < SBLK; bk++)
sum += matA[RM(i+bi,k+bk,N)] * tranB[RM(j+bj,k+bk,N)];
matC[RM(i+bi, j+bj,N)] += sum;

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 48

Carnegie Mellon

Fast blocked:
Pretranspose +

CPU Implementations

6 Unroll inner loop
8x and reassociate
5
4
=l=Simple
g =/=Transpose
3
g == B|ocked
=O=Transpose+Blocked
Fast Blocked
2
1
O T T T T T T T 1

8 16 32 64 128 256 512 1024
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 49

Carnegie Mellon

Blocking with CUDA

Block/, J Fetch blocks A & B for k=0
—
Compute block product
—
C Fetch blocks A & B for k = 32
—
Compute block product
—_—
.A
m Block size LBLK = 32 Fetch blocks A & B for k = N-32
—
m Use one CUDA block for each Compute block product
block of destination matrix Store values at destination

m Enough CUDA blocks to cover C

m Each thread in block
accumulates single destination
value

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 50

CUDA Block Kernel Structure

__global wvoid
CUDABlockKernel (int N, float *dmatA, float *dmatB, float *dmatC) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int bi = threadIdx.x;
int bj = threadIdx.y;
float sum = 0.0; // Accumulate result for C[i] []]
// Shared space for two submatrices of A and B
shared float subA[LBLK*LBLK];
shared float subB[LBLK*LBLK];

Loop over values of k

if (1 < N & j < N)
dmatC[RM(i,j,N)] = sum;

m Block size LBLK = 32
" blockDim.x=blockDim.y =32

m i, jindexinto source and destination arrays
m bi, bjindexlocal arrays

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 51

CUDA Block Loop Structure

for (int k = 0; k < N; k+= LBLK) {

Fetch elements bi, b for local arrays subA and subB

// Wait until entire block gets filled
__syncthreads() ;

Compute contribution to element i, j of output

// Wait until all products computed
syncthreads () ;

m Within loop, each thread
plays two distinct roles Fetch blocks A & B for next value of k

" Fetch elements from source
arrays into shared memory

Compute block product

= Compute one element of
subblock product

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 52

Carnegie Mellon

Fetching Blocks

if (1 < N && k+bj < N) {

subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)];
} else {

subA[RM(bi,bj,LBLK)] = 0.0;

}
if (jJ < N && kt+bi < N) {

subB[RM (bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];
} else {
subB[RM (bi,bj,LBLK)]

0.0;
}

I:I Fetch blocks A & B for next value of k
m kis multiple of LBLK

= Coarse-grained
m Fetch element i, k+bj from A to get subA[bi,bj]

m Fetch element k+bi, j from B to get subB[bi,bj]
m Set to Oif out of range

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 53

Carnegie Mellon

Computing Block Product

for (int bk = 0; bk < LBLK; bk++)
sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];

m Each thread in block
accumulates single destination
value

b-1
|:| Compute block product _ o b
Ay, 4Oy

Cbi,bj _ 7 bj

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 54

Carnegie Mellon

CUDA Blocked Implementations

1400

1200

1000

800

Fast Blocked

GFLOPS

Cuda Simple
600 Cuda Block

400

200

O T W | - | | | | | | 1
8 16 32 64 128 256 512 1024
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 55

Carnegie Mellon

Blocked version has

CUDA Inverted Indexing similar indexing

1400 properties as unblocked

1200

1000

Fast Blocked

" 800
8 Cuda Simple Inverted
™ Cuda Simple
(G)
600 =3 Cuda Block Inverted
Cuda Block
400
200

8 16 32 64 128 256 512 1024

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 56

Carnegie Mellon

Warning!

for (int k = 0; k < N; k+= LBLK) {

if (i >=N || j >= N)
continue; // Skip if out of bounds

Computation when in-bounds

// Wait until everyone finished
__syncthreads() ;

Compute contribution to element i, j of output
// Wait until all products computed
__syncthreads() ;

m What’s wrong with this code?

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 57

Carnegie Mellon

Observations

m Making use of CUDA hierarchy can help
= Lighter weight synchronization
= Shared access to fast memory
= Different blocks can proceed at different rates

= (Not shown in this example)

m Advice
" |mplement pure data-parallel version first
" Only exploit hierarchy for performance critical parts
= Watch out for synchronization bugs

" Proper memory referencing more important than these low-level
optimizations

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 58

Carnegie Mellon

4 Easy
Payments

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 59

Reading Memory with Float4’s

2000

1800

1600

1400

1200

1000

GFLOPS

800

600

400

200

0 +—& . o . v
8 16 32 64 128 256 512 1024
15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Carnegie Mellon

Idea suggested
by Kayvon
Fatahalian

=== Fast Blocked
Cuda Simple
=¢=Cuda Block
Cuda Quad Block

60

Carnegie Mellon

Idea

16 columns of £1oat4d’s

m Thread blocks
compute
products of 64x64
submatrices

m 1024 threads

m Organize as 64
rows X 16
columns

m Threads read &
write memory in
chunks of 16
bytes

" 4 float’s each

64 rows

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017 61

Carnegie Mellon

Added Inner Step of Computation

4 X 4 elements from B

4 elements from A

-1 X

m Each thread loops 16 times
= Within loop, compute product:
= 1x4 portion of A

= 4x4 of B
= Add sum to 1x4 portion of C
= 16 multiplies, 16 adds

m Why so fast?

= Makes maximum use of memory bus capability

15-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

4 elements from C

0

62

