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Roadmap

 Review

 Possibly Helpful Tips

 Performance Optimization Example
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Vocabulary

 CPU: A central processor unit, i.e. a normal processor

 GPU: A graphics processing unit, i.e. what we are learning 
about

 Host: The “normal computer” to which the GPU is 
connected
▪ Of especial note are the CPU(s) and memory

 Device: The GPU and its memory

 CUDA: Compute Unified Device Architecture. nVidia’s
framework for utilizing their GPUs for general purpose 
programming
▪ OpenCL: Open Computing Language. The “generic version”
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Vocabulary, cont, cont

 Global memory: Device memory shared across the various 
blocks
▪ CUDAMalloc(), CUDAMemcpy(), CUDAFree()

 Shared memory: Memory shared only by threads within 
the associated block (not across blocks)
▪ __shared__
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Vocabulary, cont

 Kernel: The work, written as a function, to be parallelized 
across the GPU’s cores. 

 Thread: An abstraction for the work associated with an 
instance of the kernel. 

 Thread Block: A partition of threads and associated work 
that will be dispatched to a Streaming Media (SM) 
processor, basically a GPU. 

 Block: See Thread Block

 Grid: Set of all blocks
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Vocabulary, cont, cont, cont

 CUDA Core: A single graphics processor core. Within the 
CUDA architecture, these aren’t one-offs, but architected 
into Streaming Multiprocessors (SMs).

 Streaming Multiprocessor (SM): A collection of CUDA 
Cores architected together to form a single GPU. Threads 
within a thread block concurrently execute on an SM.

 Warp: A division of a block created within the SM to assign 
work to cores. Warps aren’t schedule until a core is 
available for each thread within the warp. 
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Syntax, Etc. 

 nvcc: nVidia C compiler. Can compiler host and device 
code.

 __shared__ : Qualifier to declare a variable in shared (per 
thread block) memory

 __global__: Qualifier to place a function into device 
memory, for execution onto the device, but enabling it to 
be callable from the host. 

 cudaMalloc() , cudaMemcpy(), cudaFree() 
▪ Allocates, Frees, and copies to/from device memory.

▪ cudaMemcpyHostToDevice/cudaMemcpyDeviceToHost flag sets 
direction of copy

 __syncthreads()__
▪ barrier to ensure all threads get there before any continue.
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Syntax, Etc, cont
 someGlobalFunctionName<<<N,M>>> 

▪ “Kernel Launch”

▪ N thread blocks

▪ M threads per thread block

 blockIdx: block index within the (up to 3D) grid
▪ threadIdx.x is 1D index

 threadIdx: thread index within the (up to 3D) thread block
▪ threadIdx.x is 1D index

 int index = threadIdx.x + blockIdx.x * M;
▪ Global thread index, given M threads per block

 blockDim, gridDim
▪ 3D block and grid dimensions

▪ E.g., blockDim.x, gridDim.x, etc
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A Picture Worth Some Number of Words

▪ A kernel is launched as a grid of blocks  

of threads

• blockIdx and threadIdx are 3D

• We showed only one dimension (x)

▪ Built-in variables:

▪ threadIdx

▪ blockIdx

▪ blockDim

▪ gridDim
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CUDA C/C++ Basics

Cyril Zeller, NVIDIA Corporation

Supercomputing 2011 Tutorial
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Roadmap

 Review

 Possibly Helpful Tips

 Performance Optimization Example
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Did it fly? Wrap All CUDA Library Calls

Definitions in file reduce.cu:

// Support for CUDA error checking

// Wrapper for CUDA functions

#define CHK(ans) gpuAssert((ans), __FILE__, __LINE__);

// Checker

inline void gpuAssert(CUDAError_t code, const char *file, int line)

{

if (code != CUDASuccess) {

fprintf(stderr, "GPUassert: %s %s %s\n",

CUDAGetErrorString(code), file, line);

}

}

// Cannot wrap kernel launches. Instead, insert this after each

// kernel launch.

#define POSTKERNEL CHK(CUDAPeekAtLastError())
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Your Old Friend. Better. Than. Ever. 
cuda-gdb: Can get data off of the device
 break reduce.cu:90

▪ Set breakpoint corresponding to line 90 of file 
reduce.cu.

 print ((@global float *) srcVecDevice)[1]

▪ Print contents of array in device memory

 CUDA thread 2

▪ Shift focus to specified thread number

 info locals

▪ Prints values of all currently-active local variables

▪ CUDA info threads

▪ Prints status of threads (in current block)
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Some Advice
 Don’t wire down constants

 Don’t assume special properties of N
▪ Multiple of block size, power of 2, …

 Use function or macro to do rounding-up division

 Write checker code
▪ Overall functionality

▪ Individual steps on device

▪ Must transfer data back to host to check

 Avoid printf within kernel functions
▪ Only use on small examples or too much unordered output. 

 Get the algorithm & abstract implementation and benchmark 
right before attempting low-level optimizations
▪ Exploiting the various memory categories on device

▪ Exploiting properties specific to block level
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Some More Advice
 Even more so than with C programs, out-of-bounds 

memory writes in  CUDA lead to bizarre and erratic 
beahvior.
▪ Write bounds checking code that gets invoked when program is 

run in DEBUG mode

 It’s possible to put printf’s in kernel code, but don’t rely on 
them
▪ Often nothing gets printed, or values printed are incorrect.

▪ Just because nothing prints, it doesn’t mean that part of the code 
wasn’t reached.

 Write host code that duplicates functionality of different 
parts of CUDA code
▪ In debug mode, transfer results back to host memory and check 

values against this code
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Why Is printf() weird?
 printf() output is stored in a circular buffer of a fixed size.

▪ If the buffer fills, old output will be overwritten. The buffer's size 
defaults to 1MB and can be configured with 
CUDADeviceSetLimit(CUDALimitPrintfFifoSize, size_t size).

 This buffer is flushed only for
▪ the start of a kernel launch

▪ synchronization (e.g. CUDADeviceSynchronize())

▪ blocking memory copies (e.g. CUDAMemcpy(...))

▪ module load/unload

▪ context destruction

▪ Note: The list above does not include program exit. 

▪ If the call to CUDADeviceSynchronize() was removed from the 
example program above, the we would see no output

 Concurrency serialized upon output

Credit: Steven Fackler, Former 418/618 TA, SCS’13
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Application Example: N × N Matrix 
Multiplication

A B C× =

Row i

Column j Element i, j

 Complexity
▪ N3 multiplications

▪ N3 additions

 Assume row-major access

ci, j = ai,k ×bk, j
k=0

N-1

å

#define RM(r, c, width) ((r) * (width) + (c))
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Matrix Multiplication: Simple CPU 
Implementation

void multMatrixSimple(int N, float *matA, float *matB, float *matC) {

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

float sum = 0.0;

for (int k = 0; k < N; k++)

sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];

matC[RM(i,j,N)] = sum;

}

}

A B C× =

Row i

Column j Element i, j
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CPU Simple Performance

 Measured in GFLOPS

 Drops off for large 
values of N

 B has bad access 
pattern

B
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Optimization #1: Pretranspose

 Transposed version of B has better access pattern
▪ Transpose once

▪ Use each element N times

A BT C× =

Row i

Row j Element i, j

ci, j = ai,k
k=0

N-1

å ×bj,k
T
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Transposing a Matrix

 Column-major ordering of elements

 Transposing converts from row-major to column-major order

#define CM(r, c, height) ((c) * (height) + (r))

D= ST

Row j

S

Column j



void transposeMatrix(int N, float *matS, float *matD) {

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

matD[CM(i,j,N)] = matS[RM(i,j,N)];

}
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Matrix Multiplication: Pretranspose
Implementation

void multMatrixTransposed(int N, float *matA, float *matB, float *matC)

{

float *tranB = scratchMatrix(N);

transposeMatrix(N, matB, tranB);

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

float sum = 0.0;

for (int k = 0; k < N; k++)

sum += matA[RM(i,k,N)] * tranB[RM(j,k,N)];

matC[RM(i,j,N)] = sum;

}

}

A BT C× =

Row i

Row j Element i, j

ci, j = ai,k
k=0

N-1

å ×bj,k
T
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Pretranspose Performance
 Scales to large 

matrices

 “Cache-friendly” code
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Abstract Single Program Multiple Data 
(SPMD) Model

 M Processors, all executing same code
▪ Called “kernels”

▪ M based on problem size

 Share common global memory
▪ And also have private memory for local variables

▪ Make no assumptions about effect of memory access conflicts

 No synchronization primitives

 Called threads, but not at all like pthreads
▪ Very simple & lightweight

▪ All execute the same program

  

Shared Memory
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Interacting with SPMD Machine: Control

 Overall execution 
managed by code 
executing on host

 Launch set of 
kernels
▪ Number & kernel 

function can vary 
with each launch

 Wait until all 
completed
▪ Explicit or implicit 

synchronization

 Repeat as 
necessary

Host Execution

Launch Kernels

Synchronize Threads

Host Execution

Host Execution

Host Execution
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Structure of SPMD Program

 Concept
▪ Partition computation 

into sequence of tasks

▪ Perform each task over 
all data with single 
operation

 Performance 
Limitations
▪ Synchronization 

requires waiting for 
slowest task

▪ No locality of data

▪ No locality of 
synchronization

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6
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Block/Thread Notation

 Idea (One-dimensional version)
▪ Executing threads grouped into blocks

▪ Each contains same number of threads

– Host program specifies block size (blockDim.x)

▪ Host program makes sure there are enough blocks to generate N 
threads

▪ Some threads in last block should not get used

__global__ void

inplaceReduceKernel(int length, int nlength, float *data) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < nlength) {

. . .

}

}

  
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Device

Interacting with SPMD Machine: Data

 Host acts as 
controller

 Does not have 
direct access to 
device memory

Host

CPU

Host Memory

HostToDevice DeviceToHost

Memset

DeviceToDevice
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CUDA Program
 CUDA file (.cu) contains mix of device code & host code

▪ It’s up to you to understand which is which!

 Device Code
▪ Kernels (__global__)

▪ Code for threads

▪ Must only reference device memory

▪ Device functions (__device__)

▪ Called by kernels

▪ Only reference device memory

▪ Do not generate new threads

__global__ void

inplaceReduceKernel(int length, int nlength, float *data) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < nlength) {

. . .

}

}

__device__ void

deviceMult(float x, float y,

float *dest)

{

*dest = x * y;

}
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CUDA Program (cont.)
 CUDA file (.cu) contains mix of device code & host code

▪ It’s up to you to understand which is which!

 Host Code
▪ Conventional C/C++

▪ Can only reference host memory

▪ But, can have pointers to device memory

▪ Manages the launching of threads

▪ Manages movement of data between host & device memories
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Matrix Multiplication: Simple CUDA 
Implementation

__global__ void

CUDASimpleKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

float sum = 0.0;

for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];

}

dmatC[RM(i,j,N)] = sum;

}

A B C× =

Row i

Column j

Each thread computes
element i, j of product
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Host Code Example
 Launch kernels to perform vector product

 Useful stuff
▪ Compute

▪ Setting number of threads per block:

▪ Should be multiple of 32

▪ Max value = 1024

void CUDAMultMatrixSimple(int N, float *dmatA, float *dmatB, 

float *dmatC)

{

dim3 threadsPerBlock(LBLK, LBLK);

dim3 blocks(updiv(N, LBLK), updiv(N, LBLK));

CUDASimpleKernel<<<blocks, threadsPerBlock>>>(N, dmatA, dmatB, dmatC);

}

// Integer division, rounding up                                                                                             

static inline int updiv(int n, int d) {

return (n+d-1)/d;

}

n / déê ùú

LBLK = 32
32 X 32 = 1024 threads / block



Carnegie Mellon

3215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Host Code Example (cont).

 Managing memory transfersvoid CUDAMultiply(int N, float *aData, float *bData, float *cData) {

float *aDevData, *bDevData, *cDevData

CUDAMalloc((void **) &aDevData, N*N * sizeof(float));

CUDAMalloc((void **) &bDevData, N*N * sizeof(float));

CUDAMalloc((void **) &cDevData, N*N * sizeof(float));

CUDAMemcpy(aDevData, aData, N*N * sizeof(float), 

CUDAMemcpyHostToDevice);

CUDAMemcpy(bDevData, bData, N*N * sizeof(float),

CUDAMemcpyHostToDevice);

CUDAMultMatrixSimple(N, aDevData, bDevData, tDevData);

CUDAMemcpy(cData, cDevData, N*N * sizeof(float),

CUDAMemcpyDeviceToHost);

CUDAFree(aDevData); CUDAFree(bDevData); CUDAFree(cDevData);

}

Observe: Host can hold pointers to device memory, but cannot read or write 
device memory locations



Carnegie Mellon

3315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Simple CUDA Performance
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Inverted Indexing Accessing Pattern

__global__ void

CUDASimpleKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

. . .

}

__global__ void

CUDASimpleKernelOld(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

. . .

}

Regular

Inverted
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CUDA Inverted Indexing Performance
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Why?!
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What’s the Difference?

 CUDA threads numbered within block in row-major order
▪ X = column number, Y = row number

 Threads with same value of Y map to single warp.

 Threads with same value of Y and consecutive values of X
map to consecutive positions in single warp

 When single warp accesses consecutive memory 
locations, do block read or write

 When single warp accesses separated memory locations, 
requires gather (read) or scatter(write)

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y

Regular

Inverted

X

Y
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Impact on Memory Referencing: 

Regular

 Threads within warp have:
▪ same value of k

▪ same value of i

▪ consecutive values of j

 Warp reads & writes match memory organization

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

= dmatA[RM(i,k,N)]; 

= dmatB[RM(k,j,N)]; 

dmatC[RM(i,j,N)] =

Read A

Read B

Write B

Threads in warp reference single location

Threads in warp do block read

Threads in block do block write
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Impact on Memory Referencing: Inverted

 Threads within warp have:
▪ same value of k

▪ consecutive values of i

▪ same value of j

 Warp reads/writes does not match memory organization

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y; 

= dmatA[RM(i,k,N)]; 

= dmatB[RM(k,j,N)]; 

dmatC[RM(i,j,N)] =

Read A

Read B

Write B

Threads in warp do gather

Threads in warp reference single location

Threads in block do scatter
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Relation to Hardware

 Optimizing memory instruction performance
▪ Load faster than gather

▪ Store faster than scatter

 Avoiding memory conflicts
▪ Inverted code has multiple warps competing for same block 

of memory
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Pretransposing with CUDA

__global__ void

CUDATransposedKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

float sum = 0.0;

for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(j,k,N)];

}

dmatC[RM(i,j,N)] = sum;

}

/* Transpose matrix */

__global__ void

CUDATransposeKernel(int N, const float  *dmatS, float *dmatD) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

dmatD[CM(i,j,N)] = dmatS[RM(i,j,N)];

}
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CUDA Pretranspose Implementations
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Thinking About CUDA
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GPU Hierarchy

 Block Level
▪ Programmer partitions problem into blocks of K threads each

▪ 32 ≤ K ≤ 1024

▪ Multiple of 32

▪ Within block, have access to fast shared memory

▪ Within block, can synchronize with __syncthreads()

 Warp Level
▪ Each block implemented as set of warps

▪ 32 threads each

▪ Implemented using “SIMT” processor

▪ Single-instruction, multiple threads

▪ Guarantees stay synchronized
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Programming with Blocks

 Localize computation 
within blocks

 Each performs 
sequence of tasks

 Each uses shared 
memory and local 
synchronization
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MM Optimization #2: Partitioning into Blocks

A B C× =
Block
Row I

Block Column J Block I, J

 Generate results on block-by-
block basis

 Localizes access to A and B

 N need not be multiple of block 
size

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å
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CPU-based Blocked Implementation

A BT C× =
Block
Row I

Block Row J Block I, J

 Use pretranspose
▪ Required for performance

 Structure
▪ Outer loops index over blocks

▪ Inner loops compute product for 
single block

 Block size SBLK = 8

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å
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Blocked Multiplication 
Implementation: Outer Loops

 Look at actual code 
to see how it handles 
cases where N is not 
multiple of block size

void multMatrixTransposeBlocked(int N, 

float *matA, float *matB, float *matC) {

float *tranB = scratchMatrix(N);

transposeMatrix(N, matB, tranB);

/* Zero out C */

memset(matC, 0, N * N * sizeof(float));

int i, j, k;

for (i = 0; i <= N-SBLK; i+= SBLK)

for (j = 0; j <= N-SBLK; j+= SBLK)

for (k = 0; k <= N-SBLK; k+=SBLK)

Compute contribution to C[i..i+SBLK-1][j..j+SBLK-1]
}       

Element i, j

C

Block i, j

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å
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Blocked Multiplication 
Implementation: Inner Loops

 i, j, k provide starting indices of blocks

 bi, bj, bk provide offsets within blocks

for (int bi = 0; bi < SBLK; bi++)

for (int bj = 0; bj < SBLK; bj++) {

float sum = 0.0;

for (int bk =0; bk < SBLK; bk++)

sum += matA[RM(i+bi,k+bk,N)] * tranB[RM(j+bj,k+bk,N)];

matC[RM(i+bi,j+bj,N)] += sum;

}

ci+bi, j+bj = ai+bi,k+bk ×bTj+bj,k+bk
bk=0

b-1

å
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CPU Implementations
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Blocking with CUDA

 Block size LBLK = 32

 Use one CUDA block for each 
block of destination matrix

 Enough CUDA blocks to cover C

 Each thread in block 
accumulates single destination 
value

Element i, j

C

Block I, J Fetch blocks A & B for k = 0

Compute block product

Fetch blocks A & B for k = 32

Compute block product







Fetch blocks A & B for k = N-32

Compute block product

Store values at destination
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CUDA Block Kernel Structure

 Block size LBLK = 32
▪ blockDim.x = blockDim.y = 32

 i, j index into source and destination arrays

 bi, bj index local arrays

__global__ void

CUDABlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int bi = threadIdx.x;

int bj = threadIdx.y;

float sum = 0.0; // Accumulate result for C[i][j]                                                                                                                         

// Shared space for two submatrices of A and B                                                                                                                   

__shared__ float subA[LBLK*LBLK];

__shared__ float subB[LBLK*LBLK];

Loop over values of k

if (i < N && j < N)

dmatC[RM(i,j,N)] = sum;

}
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CUDA Block Loop Structure

 Within loop, each thread 
plays two distinct roles
▪ Fetch elements from source 

arrays into shared memory

▪ Compute one element of 
subblock product

for (int k = 0; k < N; k+= LBLK) {

Fetch elements bi, bj for local arrays subA and subB

// Wait until entire block gets filled                                                                                        

__syncthreads();

Compute contribution to element i, j of output

// Wait until all products computed                                                                                     

syncthreads();

}

Fetch blocks A & B for next value of k

Compute block product
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Fetching Blocks

 k is multiple of LBLK

▪ Coarse-grained

 Fetch element i, k+bj from A to get subA[bi,bj]

 Fetch element k+bi, j from B to get subB[bi,bj]

 Set to 0 if out of range

if (i < N && k+bj < N) {

subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)];

} else {

subA[RM(bi,bj,LBLK)] = 0.0;

}

if (j < N && k+bi < N) {

subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];

} else {

subB[RM(bi,bj,LBLK)] = 0.0;

}

Fetch blocks A & B for next value of k
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Computing Block Product

 Each thread in block 
accumulates single destination 
value

for (int bk = 0; bk < LBLK; bk++)

sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];

cbi,bj = abi,bk ×bbk,bj
bk=0

b-1

å
Compute block product
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CUDA Blocked Implementations
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CUDA Inverted Indexing
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Warning!

 What’s wrong with this code?

for (int k = 0; k < N; k+= LBLK) {

if (i >= N || j >= N)

continue;  // Skip if out of bounds

Computation when in-bounds

// Wait until everyone finished

__syncthreads();

Compute contribution to element i, j of output
// Wait until all products computed                                                                                         

__syncthreads();

}
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Observations

 Making use of CUDA hierarchy can help
▪ Lighter weight synchronization

▪ Shared access to fast memory

▪ Different blocks can proceed at different rates

▪ (Not shown in this example)

 Advice
▪ Implement pure data-parallel version first

▪ Only exploit hierarchy for performance critical parts

▪ Watch out for synchronization bugs

▪ Proper memory referencing more important than these low-level 
optimizations
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Reading Memory with Float4’s
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Idea

 Thread blocks 
compute 
products of 64x64 
submatrices

 1024 threads 

 Organize as 64 
rows X 16 
columns

 Threads read & 
write memory in 
chunks of 16 
bytes
▪ 4 float’s each

64 rows

16 columns of float4’s
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Added Inner Step of Computation

 Each thread loops 16 times
▪ Within loop, compute product:

▪ 1x4 portion of A

▪ 4x4 of B

▪ Add sum to 1x4 portion of C

▪ 16 multiplies, 16 adds

 Why so fast?
▪ Makes maximum use of memory bus capability

4 elements from A

4 X 4 elements from B

4 elements from C

× 




