
Carnegie Mellon

115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Introduction to CUDA Programming

15-418/618: Parallel Computer Architecture and Programming
Recitation 2, February 2, 2018,

Carnegie Mellon

215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Roadmap

 Review

 Possibly Helpful Tips

 Performance Optimization Example

Carnegie Mellon

315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Vocabulary

 CPU: A central processor unit, i.e. a normal processor

 GPU: A graphics processing unit, i.e. what we are learning
about

 Host: The “normal computer” to which the GPU is
connected
▪ Of especial note are the CPU(s) and memory

 Device: The GPU and its memory

 CUDA: Compute Unified Device Architecture. nVidia’s
framework for utilizing their GPUs for general purpose
programming
▪ OpenCL: Open Computing Language. The “generic version”

Carnegie Mellon

415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Vocabulary, cont, cont

 Global memory: Device memory shared across the various
blocks
▪ CUDAMalloc(), CUDAMemcpy(), CUDAFree()

 Shared memory: Memory shared only by threads within
the associated block (not across blocks)
▪ __shared__

Carnegie Mellon

515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Vocabulary, cont

 Kernel: The work, written as a function, to be parallelized
across the GPU’s cores.

 Thread: An abstraction for the work associated with an
instance of the kernel.

 Thread Block: A partition of threads and associated work
that will be dispatched to a Streaming Media (SM)
processor, basically a GPU.

 Block: See Thread Block

 Grid: Set of all blocks

Carnegie Mellon

615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Vocabulary, cont, cont, cont

 CUDA Core: A single graphics processor core. Within the
CUDA architecture, these aren’t one-offs, but architected
into Streaming Multiprocessors (SMs).

 Streaming Multiprocessor (SM): A collection of CUDA
Cores architected together to form a single GPU. Threads
within a thread block concurrently execute on an SM.

 Warp: A division of a block created within the SM to assign
work to cores. Warps aren’t schedule until a core is
available for each thread within the warp.

Carnegie Mellon

715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Syntax, Etc.

 nvcc: nVidia C compiler. Can compiler host and device
code.

 __shared__ : Qualifier to declare a variable in shared (per
thread block) memory

 __global__: Qualifier to place a function into device
memory, for execution onto the device, but enabling it to
be callable from the host.

 cudaMalloc() , cudaMemcpy(), cudaFree()
▪ Allocates, Frees, and copies to/from device memory.

▪ cudaMemcpyHostToDevice/cudaMemcpyDeviceToHost flag sets
direction of copy

 __syncthreads()__
▪ barrier to ensure all threads get there before any continue.

Carnegie Mellon

815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Syntax, Etc, cont
 someGlobalFunctionName<<<N,M>>>

▪ “Kernel Launch”

▪ N thread blocks

▪ M threads per thread block

 blockIdx: block index within the (up to 3D) grid
▪ threadIdx.x is 1D index

 threadIdx: thread index within the (up to 3D) thread block
▪ threadIdx.x is 1D index

 int index = threadIdx.x + blockIdx.x * M;
▪ Global thread index, given M threads per block

 blockDim, gridDim
▪ 3D block and grid dimensions

▪ E.g., blockDim.x, gridDim.x, etc

Carnegie Mellon

915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

A Picture Worth Some Number of Words

▪ A kernel is launched as a grid of blocks

of threads

• blockIdx and threadIdx are 3D

• We showed only one dimension (x)

▪ Built-in variables:

▪ threadIdx

▪ blockIdx

▪ blockDim

▪ gridDim

Device

Grid

1

Block

(0,0,0)

Block

(1,0,0)

Block

(2,0,0)

Block

(1,1,0)

Block

(2,1,0)

Block

(0,1,0)

Block

(1,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(4,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(4,1,0)

Thread

(0,2,0)

Thread

(1,2,0)

Thread

(2,2,0)

Thread

(3,2,0)

Thread

(4,2,0)

CUDA C/C++ Basics

Cyril Zeller, NVIDIA Corporation

Supercomputing 2011 Tutorial

Carnegie Mellon

1015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Roadmap

 Review

 Possibly Helpful Tips

 Performance Optimization Example

Carnegie Mellon

1115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Did it fly? Wrap All CUDA Library Calls

Definitions in file reduce.cu:

// Support for CUDA error checking

// Wrapper for CUDA functions

#define CHK(ans) gpuAssert((ans), __FILE__, __LINE__);

// Checker

inline void gpuAssert(CUDAError_t code, const char *file, int line)

{

if (code != CUDASuccess) {

fprintf(stderr, "GPUassert: %s %s %s\n",

CUDAGetErrorString(code), file, line);

}

}

// Cannot wrap kernel launches. Instead, insert this after each

// kernel launch.

#define POSTKERNEL CHK(CUDAPeekAtLastError())

Carnegie Mellon

1215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Your Old Friend. Better. Than. Ever.
cuda-gdb: Can get data off of the device
 break reduce.cu:90

▪ Set breakpoint corresponding to line 90 of file
reduce.cu.

 print ((@global float *) srcVecDevice)[1]

▪ Print contents of array in device memory

 CUDA thread 2

▪ Shift focus to specified thread number

 info locals

▪ Prints values of all currently-active local variables

▪ CUDA info threads

▪ Prints status of threads (in current block)

Carnegie Mellon

1315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Some Advice
 Don’t wire down constants

 Don’t assume special properties of N
▪ Multiple of block size, power of 2, …

 Use function or macro to do rounding-up division

 Write checker code
▪ Overall functionality

▪ Individual steps on device

▪ Must transfer data back to host to check

 Avoid printf within kernel functions
▪ Only use on small examples or too much unordered output.

 Get the algorithm & abstract implementation and benchmark
right before attempting low-level optimizations
▪ Exploiting the various memory categories on device

▪ Exploiting properties specific to block level

Carnegie Mellon

1415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Some More Advice
 Even more so than with C programs, out-of-bounds

memory writes in CUDA lead to bizarre and erratic
beahvior.
▪ Write bounds checking code that gets invoked when program is

run in DEBUG mode

 It’s possible to put printf’s in kernel code, but don’t rely on
them
▪ Often nothing gets printed, or values printed are incorrect.

▪ Just because nothing prints, it doesn’t mean that part of the code
wasn’t reached.

 Write host code that duplicates functionality of different
parts of CUDA code
▪ In debug mode, transfer results back to host memory and check

values against this code

Carnegie Mellon

1515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Why Is printf() weird?
 printf() output is stored in a circular buffer of a fixed size.

▪ If the buffer fills, old output will be overwritten. The buffer's size
defaults to 1MB and can be configured with
CUDADeviceSetLimit(CUDALimitPrintfFifoSize, size_t size).

 This buffer is flushed only for
▪ the start of a kernel launch

▪ synchronization (e.g. CUDADeviceSynchronize())

▪ blocking memory copies (e.g. CUDAMemcpy(...))

▪ module load/unload

▪ context destruction

▪ Note: The list above does not include program exit.

▪ If the call to CUDADeviceSynchronize() was removed from the
example program above, the we would see no output

 Concurrency serialized upon output

Credit: Steven Fackler, Former 418/618 TA, SCS’13

Carnegie Mellon

1615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Application Example: N × N Matrix
Multiplication

A B C× =

Row i

Column j Element i, j

 Complexity
▪ N3 multiplications

▪ N3 additions

 Assume row-major access

ci, j = ai,k ×bk, j
k=0

N-1

å

#define RM(r, c, width) ((r) * (width) + (c))

Carnegie Mellon

1715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Matrix Multiplication: Simple CPU
Implementation

void multMatrixSimple(int N, float *matA, float *matB, float *matC) {

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

float sum = 0.0;

for (int k = 0; k < N; k++)

sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];

matC[RM(i,j,N)] = sum;

}

}

A B C× =

Row i

Column j Element i, j

Carnegie Mellon

1815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CPU Simple Performance

 Measured in GFLOPS

 Drops off for large
values of N

 B has bad access
pattern

B

Column j

0

1

2

3

4

5

6

8 16 32 64 128 256 512 1024

G
FL

O
P

S

Carnegie Mellon

1915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Optimization #1: Pretranspose

 Transposed version of B has better access pattern
▪ Transpose once

▪ Use each element N times

A BT C× =

Row i

Row j Element i, j

ci, j = ai,k
k=0

N-1

å ×bj,k
T

Carnegie Mellon

2015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Transposing a Matrix

 Column-major ordering of elements

 Transposing converts from row-major to column-major order

#define CM(r, c, height) ((c) * (height) + (r))

D= ST

Row j

S

Column j



void transposeMatrix(int N, float *matS, float *matD) {

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

matD[CM(i,j,N)] = matS[RM(i,j,N)];

}

Carnegie Mellon

2115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Matrix Multiplication: Pretranspose
Implementation

void multMatrixTransposed(int N, float *matA, float *matB, float *matC)

{

float *tranB = scratchMatrix(N);

transposeMatrix(N, matB, tranB);

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

float sum = 0.0;

for (int k = 0; k < N; k++)

sum += matA[RM(i,k,N)] * tranB[RM(j,k,N)];

matC[RM(i,j,N)] = sum;

}

}

A BT C× =

Row i

Row j Element i, j

ci, j = ai,k
k=0

N-1

å ×bj,k
T

Carnegie Mellon

2215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Pretranspose Performance
 Scales to large

matrices

 “Cache-friendly” code

0

1

2

3

4

5

6

8 16 32 64 128 256 512 1024

G
FL

O
P

S

Simple

Transpose

Carnegie Mellon

2315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Abstract Single Program Multiple Data
(SPMD) Model

 M Processors, all executing same code
▪ Called “kernels”

▪ M based on problem size

 Share common global memory
▪ And also have private memory for local variables

▪ Make no assumptions about effect of memory access conflicts

 No synchronization primitives

 Called threads, but not at all like pthreads
▪ Very simple & lightweight

▪ All execute the same program

  

Shared Memory

Carnegie Mellon

2415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Interacting with SPMD Machine: Control

 Overall execution
managed by code
executing on host

 Launch set of
kernels
▪ Number & kernel

function can vary
with each launch

 Wait until all
completed
▪ Explicit or implicit

synchronization

 Repeat as
necessary

Host Execution

Launch Kernels

Synchronize Threads

Host Execution

Host Execution

Host Execution

Carnegie Mellon

2515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Structure of SPMD Program

 Concept
▪ Partition computation

into sequence of tasks

▪ Perform each task over
all data with single
operation

 Performance
Limitations
▪ Synchronization

requires waiting for
slowest task

▪ No locality of data

▪ No locality of
synchronization

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Carnegie Mellon

2615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Block/Thread Notation

 Idea (One-dimensional version)
▪ Executing threads grouped into blocks

▪ Each contains same number of threads

– Host program specifies block size (blockDim.x)

▪ Host program makes sure there are enough blocks to generate N
threads

▪ Some threads in last block should not get used

__global__ void

inplaceReduceKernel(int length, int nlength, float *data) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < nlength) {

. . .

}

}

  

Carnegie Mellon

2715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Device

Interacting with SPMD Machine: Data

 Host acts as
controller

 Does not have
direct access to
device memory

Host

CPU

Host Memory

HostToDevice DeviceToHost

Memset

DeviceToDevice

Carnegie Mellon

2815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Program
 CUDA file (.cu) contains mix of device code & host code

▪ It’s up to you to understand which is which!

 Device Code
▪ Kernels (__global__)

▪ Code for threads

▪ Must only reference device memory

▪ Device functions (__device__)

▪ Called by kernels

▪ Only reference device memory

▪ Do not generate new threads

__global__ void

inplaceReduceKernel(int length, int nlength, float *data) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < nlength) {

. . .

}

}

__device__ void

deviceMult(float x, float y,

float *dest)

{

*dest = x * y;

}

Carnegie Mellon

2915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Program (cont.)
 CUDA file (.cu) contains mix of device code & host code

▪ It’s up to you to understand which is which!

 Host Code
▪ Conventional C/C++

▪ Can only reference host memory

▪ But, can have pointers to device memory

▪ Manages the launching of threads

▪ Manages movement of data between host & device memories

Carnegie Mellon

3015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Matrix Multiplication: Simple CUDA
Implementation

__global__ void

CUDASimpleKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

float sum = 0.0;

for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];

}

dmatC[RM(i,j,N)] = sum;

}

A B C× =

Row i

Column j

Each thread computes
element i, j of product

Carnegie Mellon

3115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Host Code Example
 Launch kernels to perform vector product

 Useful stuff
▪ Compute

▪ Setting number of threads per block:

▪ Should be multiple of 32

▪ Max value = 1024

void CUDAMultMatrixSimple(int N, float *dmatA, float *dmatB,

float *dmatC)

{

dim3 threadsPerBlock(LBLK, LBLK);

dim3 blocks(updiv(N, LBLK), updiv(N, LBLK));

CUDASimpleKernel<<<blocks, threadsPerBlock>>>(N, dmatA, dmatB, dmatC);

}

// Integer division, rounding up

static inline int updiv(int n, int d) {

return (n+d-1)/d;

}

n / déê ùú

LBLK = 32
32 X 32 = 1024 threads / block

Carnegie Mellon

3215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Host Code Example (cont).

 Managing memory transfersvoid CUDAMultiply(int N, float *aData, float *bData, float *cData) {

float *aDevData, *bDevData, *cDevData

CUDAMalloc((void **) &aDevData, N*N * sizeof(float));

CUDAMalloc((void **) &bDevData, N*N * sizeof(float));

CUDAMalloc((void **) &cDevData, N*N * sizeof(float));

CUDAMemcpy(aDevData, aData, N*N * sizeof(float),

CUDAMemcpyHostToDevice);

CUDAMemcpy(bDevData, bData, N*N * sizeof(float),

CUDAMemcpyHostToDevice);

CUDAMultMatrixSimple(N, aDevData, bDevData, tDevData);

CUDAMemcpy(cData, cDevData, N*N * sizeof(float),

CUDAMemcpyDeviceToHost);

CUDAFree(aDevData); CUDAFree(bDevData); CUDAFree(cDevData);

}

Observe: Host can hold pointers to device memory, but cannot read or write
device memory locations

Carnegie Mellon

3315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Simple CUDA Performance

0

100

200

300

400

500

600

8 16 32 64 128 256 512 1024

G
FL

O
P

S

Transpose

Cuda Simple

Carnegie Mellon

3415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Inverted Indexing Accessing Pattern

__global__ void

CUDASimpleKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

. . .

}

__global__ void

CUDASimpleKernelOld(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

. . .

}

Regular

Inverted

Carnegie Mellon

3515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Inverted Indexing Performance

0

100

200

300

400

500

600

8 16 32 64 128 256 512 1024

G
FL

O
P

S Transpose

Cuda Simple Inverted

Cuda Simple

~10x worse
Why?!

Carnegie Mellon

3615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

What’s the Difference?

 CUDA threads numbered within block in row-major order
▪ X = column number, Y = row number

 Threads with same value of Y map to single warp.

 Threads with same value of Y and consecutive values of X
map to consecutive positions in single warp

 When single warp accesses consecutive memory
locations, do block read or write

 When single warp accesses separated memory locations,
requires gather (read) or scatter(write)

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y

Regular

Inverted

X

Y

Carnegie Mellon

3715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Impact on Memory Referencing:

Regular

 Threads within warp have:
▪ same value of k

▪ same value of i

▪ consecutive values of j

 Warp reads & writes match memory organization

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

= dmatA[RM(i,k,N)];

= dmatB[RM(k,j,N)];

dmatC[RM(i,j,N)] =

Read A

Read B

Write B

Threads in warp reference single location

Threads in warp do block read

Threads in block do block write

Carnegie Mellon

3815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Impact on Memory Referencing: Inverted

 Threads within warp have:
▪ same value of k

▪ consecutive values of i

▪ same value of j

 Warp reads/writes does not match memory organization

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

= dmatA[RM(i,k,N)];

= dmatB[RM(k,j,N)];

dmatC[RM(i,j,N)] =

Read A

Read B

Write B

Threads in warp do gather

Threads in warp reference single location

Threads in block do scatter

Carnegie Mellon

3915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Relation to Hardware

 Optimizing memory instruction performance
▪ Load faster than gather

▪ Store faster than scatter

 Avoiding memory conflicts
▪ Inverted code has multiple warps competing for same block

of memory

Carnegie Mellon

4015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Pretransposing with CUDA

__global__ void

CUDATransposedKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

float sum = 0.0;

for (int k = 0; k < N; k++) {

sum += dmatA[RM(i,k,N)] * dmatB[RM(j,k,N)];

}

dmatC[RM(i,j,N)] = sum;

}

/* Transpose matrix */

__global__ void

CUDATransposeKernel(int N, const float *dmatS, float *dmatD) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

if (i >= N || j >= N)

return;

dmatD[CM(i,j,N)] = dmatS[RM(i,j,N)];

}

Carnegie Mellon

4115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Pretranspose Implementations

0

100

200

300

400

500

600

8 16 32 64 128 256 512 1024

G
FL

O
P

S Transpose

Cuda Simple Inverted

Cuda Simple

Cuda Transpose

Transpose
operation must do
either scatter or
gather

Carnegie Mellon

4215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Thinking About CUDA

Carnegie Mellon

4315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

GPU Hierarchy

 Block Level
▪ Programmer partitions problem into blocks of K threads each

▪ 32 ≤ K ≤ 1024

▪ Multiple of 32

▪ Within block, have access to fast shared memory

▪ Within block, can synchronize with __syncthreads()

 Warp Level
▪ Each block implemented as set of warps

▪ 32 threads each

▪ Implemented using “SIMT” processor

▪ Single-instruction, multiple threads

▪ Guarantees stay synchronized

Carnegie Mellon

4415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Programming with Blocks

 Localize computation
within blocks

 Each performs
sequence of tasks

 Each uses shared
memory and local
synchronization

Carnegie Mellon

4515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

MM Optimization #2: Partitioning into Blocks

A B C× =
Block
Row I

Block Column J Block I, J

 Generate results on block-by-
block basis

 Localizes access to A and B

 N need not be multiple of block
size

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å

Carnegie Mellon

4615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CPU-based Blocked Implementation

A BT C× =
Block
Row I

Block Row J Block I, J

 Use pretranspose
▪ Required for performance

 Structure
▪ Outer loops index over blocks

▪ Inner loops compute product for
single block

 Block size SBLK = 8

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å

Carnegie Mellon

4715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Blocked Multiplication
Implementation: Outer Loops

 Look at actual code
to see how it handles
cases where N is not
multiple of block size

void multMatrixTransposeBlocked(int N,

float *matA, float *matB, float *matC) {

float *tranB = scratchMatrix(N);

transposeMatrix(N, matB, tranB);

/* Zero out C */

memset(matC, 0, N * N * sizeof(float));

int i, j, k;

for (i = 0; i <= N-SBLK; i+= SBLK)

for (j = 0; j <= N-SBLK; j+= SBLK)

for (k = 0; k <= N-SBLK; k+=SBLK)

Compute contribution to C[i..i+SBLK-1][j..j+SBLK-1]
}

Element i, j

C

Block i, j

CI ,J = AI ,K ×BK ,J

K=0

Nb-1

å

Carnegie Mellon

4815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Blocked Multiplication
Implementation: Inner Loops

 i, j, k provide starting indices of blocks

 bi, bj, bk provide offsets within blocks

for (int bi = 0; bi < SBLK; bi++)

for (int bj = 0; bj < SBLK; bj++) {

float sum = 0.0;

for (int bk =0; bk < SBLK; bk++)

sum += matA[RM(i+bi,k+bk,N)] * tranB[RM(j+bj,k+bk,N)];

matC[RM(i+bi,j+bj,N)] += sum;

}

ci+bi, j+bj = ai+bi,k+bk ×bTj+bj,k+bk
bk=0

b-1

å

Carnegie Mellon

4915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CPU Implementations

0

1

2

3

4

5

6

8 16 32 64 128 256 512 1024

G
FL

O
P

S

Simple

Transpose

Blocked

Transpose+Blocked

Fast Blocked

Fast blocked:
Pretranspose +
Unroll inner loop
8x and reassociate

Carnegie Mellon

5015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Blocking with CUDA

 Block size LBLK = 32

 Use one CUDA block for each
block of destination matrix

 Enough CUDA blocks to cover C

 Each thread in block
accumulates single destination
value

Element i, j

C

Block I, J Fetch blocks A & B for k = 0

Compute block product

Fetch blocks A & B for k = 32

Compute block product







Fetch blocks A & B for k = N-32

Compute block product

Store values at destination

Carnegie Mellon

5115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Block Kernel Structure

 Block size LBLK = 32
▪ blockDim.x = blockDim.y = 32

 i, j index into source and destination arrays

 bi, bj index local arrays

__global__ void

CUDABlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int bi = threadIdx.x;

int bj = threadIdx.y;

float sum = 0.0; // Accumulate result for C[i][j]

// Shared space for two submatrices of A and B

__shared__ float subA[LBLK*LBLK];

__shared__ float subB[LBLK*LBLK];

Loop over values of k

if (i < N && j < N)

dmatC[RM(i,j,N)] = sum;

}

Carnegie Mellon

5215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Block Loop Structure

 Within loop, each thread
plays two distinct roles
▪ Fetch elements from source

arrays into shared memory

▪ Compute one element of
subblock product

for (int k = 0; k < N; k+= LBLK) {

Fetch elements bi, bj for local arrays subA and subB

// Wait until entire block gets filled

__syncthreads();

Compute contribution to element i, j of output

// Wait until all products computed

syncthreads();

}

Fetch blocks A & B for next value of k

Compute block product

Carnegie Mellon

5315-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Fetching Blocks

 k is multiple of LBLK

▪ Coarse-grained

 Fetch element i, k+bj from A to get subA[bi,bj]

 Fetch element k+bi, j from B to get subB[bi,bj]

 Set to 0 if out of range

if (i < N && k+bj < N) {

subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)];

} else {

subA[RM(bi,bj,LBLK)] = 0.0;

}

if (j < N && k+bi < N) {

subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];

} else {

subB[RM(bi,bj,LBLK)] = 0.0;

}

Fetch blocks A & B for next value of k

Carnegie Mellon

5415-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Computing Block Product

 Each thread in block
accumulates single destination
value

for (int bk = 0; bk < LBLK; bk++)

sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];

cbi,bj = abi,bk ×bbk,bj
bk=0

b-1

å
Compute block product

Carnegie Mellon

5515-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Blocked Implementations

0

200

400

600

800

1000

1200

1400

8 16 32 64 128 256 512 1024

G
FL

O
P

S Fast Blocked

Cuda Simple

Cuda Block

Carnegie Mellon

5615-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

CUDA Inverted Indexing

0

200

400

600

800

1000

1200

1400

8 16 32 64 128 256 512 1024

G
FL

O
P

S

Fast Blocked

Cuda Simple Inverted

Cuda Simple

Cuda Block Inverted

Cuda Block

Blocked version has
similar indexing
properties as unblocked

Carnegie Mellon

5715-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Warning!

 What’s wrong with this code?

for (int k = 0; k < N; k+= LBLK) {

if (i >= N || j >= N)

continue; // Skip if out of bounds

Computation when in-bounds

// Wait until everyone finished

__syncthreads();

Compute contribution to element i, j of output
// Wait until all products computed

__syncthreads();

}

Carnegie Mellon

5815-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Observations

 Making use of CUDA hierarchy can help
▪ Lighter weight synchronization

▪ Shared access to fast memory

▪ Different blocks can proceed at different rates

▪ (Not shown in this example)

 Advice
▪ Implement pure data-parallel version first

▪ Only exploit hierarchy for performance critical parts

▪ Watch out for synchronization bugs

▪ Proper memory referencing more important than these low-level
optimizations

Carnegie Mellon

5915-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Carnegie Mellon

6015-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Reading Memory with Float4’s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 32 64 128 256 512 1024

G
FL

O
P

S Fast Blocked

Cuda Simple

Cuda Block

Cuda Quad Block

Idea suggested
by Kayvon
Fatahalian

Carnegie Mellon

6115-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Idea

 Thread blocks
compute
products of 64x64
submatrices

 1024 threads

 Organize as 64
rows X 16
columns

 Threads read &
write memory in
chunks of 16
bytes
▪ 4 float’s each

64 rows

16 columns of float4’s

Carnegie Mellon

6215-418/618: Lightly edited from Prof. Bryant, 15-418/618, Spring 2017

Added Inner Step of Computation

 Each thread loops 16 times
▪ Within loop, compute product:

▪ 1x4 portion of A

▪ 4x4 of B

▪ Add sum to 1x4 portion of C

▪ 16 multiplies, 16 adds

 Why so fast?
▪ Makes maximum use of memory bus capability

4 elements from A

4 X 4 elements from B

4 elements from C

× 



